
Received March 17, 2020, accepted March 25, 2020, date of publication March 30, 2020, date of current version April 29, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2984020

Hybrid Prediction Method for Wind Speed
Combining Ensemble Empirical Mode
Decomposition and Bayesian
Ridge Regression
YUJUN YANG 1,2,3 AND YIMEI YANG1,2
1School of Computer Science and Engineering, Huaihua University, Huaihua 418008, China
2Key Laboratory of Wuling-Mountain Health Big Data Intelligent Processing and Application in Hunan Province Universities, Huaihua 418000, China
3Key Laboratory of Intelligent Control Technology for Wuling-Mountain Ecological Agriculture in Hunan Province, Huaihua 418000, China

Corresponding author: Yimei Yang (yym1630@163.com)

This work was supported in part by the Scientific Research Fund of Hunan Provincial Education under Grant 19C1472 and
Grant 17C1266, in part by the Key Laboratory of Intelligent Control Technology for Wuling-Mountain Ecological Agriculture in Hunan
Province under Grant ZNKZ2018-5, in part by the Key Scientific Research Projects of Huaihua University under Grant HHUY2019-08,
in part by the Key Laboratory of Wuling-Mountain Health Big Data Intelligent Processing and Application in Hunan Province Universities,
and in part by the Constructing Program of the Key Discipline in Huaihua University.

ABSTRACT In recent years, with the rapid development of wind power generation, some problems are
gradually highlighted. At present, one of the essential methods to solve these problems is to predict wind
speed. In this paper, a hybrid BRR-EEMD method is proposed for short-term wind speed prediction based
on the Bayesian ridge regression prediction method and ensemble empirical mode decomposition. We use
ensemble empirical mode decomposition of the hybrid method to decompose complex time series of wind
speed into several relatively milder, more regular, and stable subsequences. Then each subsequence is carried
out by using the Bayesian ridge regression method. The value of each subsequence is predicted by it. Finally,
the value of multiple subsequences is fused to form the prediction results of the original complex time series
of wind speed. In order to verify the proposed method comprehensively, this paper selects two data to test.
According to the results, predicted values have shown higher accuracy compared with the various prediction
methods. Therefore, the hybrid BRR-EEMD method is accurate and effective in predicting wind speed,
which has practical significance and potential value.

INDEX TERMS Ensemble empirical mode decomposition, short-term predicting, Bayesian ridge regression,
wind speed, time series.

I. INTRODUCTION
With the growth of the global population and the rapid
development of the global economy, economic development
and the progress of science and technological progress are
proliferating, and the demand for energy is multiplying. The
increasing energy demand has led to the depletion of tra-
ditional fossil energy. Energy shortage, climate warming,
and environmental pollution are becoming more and more
dangerous. However, wind energy is free and clean. Wind
energy has attracted more and more attention and has become
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one of the most popular renewable energy. In 2018, the new
installed capacity of global wind power was 53.9 GW, and
the cumulative installed capacity is more than 600 GW for
the first time. In China, the new installed capacity is 21 GW,
and the cumulative installed capacity is 221 GW [1]. Accord-
ing to data released by Bloomberg New Energy Finance,
the global onshore wind power installed capacity in 2019
was 53.2GW, and the new installed capacity of offshore wind
power reached a historical high of 7.5GW. China occupies
half of the global market. In 2019, the new installed capacity
was 28.9GW, including 26.2GW of onshore wind power
and 2.7GW of offshore wind power, accounting for 48% of
the global market. Accurate wind speed prediction plays an
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essential role in the effective generation and distribution of
wind power. So far, the researchers [2]–[14] proposed many
wind speed prediction models [45]–[59].

Although the factors of changing wind speed are com-
plex and random, this does not mean that wind speed is
unpredictable. In recent years, many researchers and scholars
have paid close attention to the analysis and prediction of
wind speed. This kind of work can be summarized into two
directions; one is deterministic method; the other is statistical
method. The first method focuses on the physical theory of
atmospheric and meteorological processes. It is a prediction
method based on the physical model. This method requires
the establishment of thermodynamic and dynamic equations
to describe the evolution of the atmosphere. At the same time,
we need to pay attention to much historical data. Therefore,
this method usually uses specific mathematical equations to
represent the diffusion model of wind speed. The trend of
wind speed and wind energy can be predicted considering
the boundary conditions and the actual terrain. The prediction
model constructed by this method is very complex, the calcu-
lation is complex, the amount of calculation is tremendous,
and the result is susceptible to the wrong initial informa-
tion [15]–[17]. The prediction method based on statistical
theory has been widely used recently. Common statistical
models include grey model (GM) [18], [19], autoregres-
sive integrated moving average (ARIMA) [20], [21], support
vector regression (SVR) [22], [23], multiple linear regres-
sion (MLR) [24], long-term and short-term memory network
(LSTM) [9], [25], [26], artificial neural network(ANN) [27],
machine learning algorithm(ML) [22], deep learning algo-
rithm(DL) [29] and other hybrid models [30]. More and more
researchers use machine learning methods to extract internal
patterns from data. These methods were published in nature
in 2019 [31]. The physical model based on theory and the
machine learning model based on data have different char-
acteristics. Nevertheless, the two methods can complement
each other. The former has strong extrapolation ability. The
latter is more flexible and can find new rules. For instance,
Alexiadis et al. [32] proposed a technique for predicting wind
speed within several hours ahead, based on cross-correlation
at neighboring sites. Meanwhile, the authors develop an arti-
ficial neural network that significantly improves predicting
accuracy comparing to the persistence predicting methods.
Barbounis et al. [33] proposed two novel and optimal on-line
learning schemes for the update of the recurrent network’s
weights using the recursive prediction error algorithm. The
proposed methods assure the continuous stability of the
network during the learning phase and exhibit improved per-
formance compared to the conventional dynamic backprop-
agation. Simulation results demonstrate that the recurrent
models, trained by the suggested methods, outperform the
static ones while they exhibit significant improvement over
the persistent method. Azad et al. [14] proposed a method of
long-term wind speed predicting and general pattern recog-
nition using neural networks. It may be a solution regard-
ing the long-term wind speed forecast in order to solve the

two problems, which are inefficient and less reliable results
on account of wind speed with unstable and intermittent
characteristics. Zhang et al. [34] proposed a sophisticated
deep-learning method for short-term and long-term wind
speed forecasts. The sophisticated deep-learning method
forecasts wind speed by analyzing the higher level features
abstracted from lower level features of the wind speed data.
These automatically learned features are very informative
and appropriate for the wind speed forecast. The sophisti-
cated deep-learning method is a deep stochastic model that
can represent the wind speed very well. The evaluation of
the sophisticated deep-learning method is depicted by both
hour-ahead and day-ahead prediction experiments based on
real wind speed data in the world. The prediction accuracy of
the sophisticated deep-learning method outperforms existing
methods. Ren et al. [35] proposed a novel wind speed pre-
dicting method by integrating empirical mode decomposition
and support vector regression methods. The EMD-SVR wind
speed predictingmethod is evaluated by awind speed data set.
The EMD-SVR wind speed predicting method outperforms
several recently reported methods concerning the accuracy
or computational complexity. Khodayar et al. [36] proposed
a deep neural network architecture with stacked autoen-
coder and stacked denoising autoencoder for ultrashort-term
and short-term wind speed predicting. In order to improve
the accuracy of current methodologies, rough neural net-
works are incorporated in the deep neural network archi-
tecture with stacked autoencoder and stacked denoising
autoencoder to develop novel rough extensions of SAE and
SDAE which are robust for wind uncertainties. Experimen-
tal results show that the deep neural network architecture
with stacked autoencoder and stacked denoising autoencoder
outperform classic DNNs and previous methods in the view
of lower RMSE and mean absolute error measurements.
Zhang et al. [37] proposed a wind speed predicting using
a two-stage predicting system with an error-correcting and
nonlinear ensemble strategy. The two-stage predicting sys-
tem is performed based on the data preprocessing approach,
improved multi-objective optimization algorithm, error cor-
rection, and nonlinear ensemble strategy. The two-stage pre-
dicting system effectively overcomes the shortcomings of
wind speed predicting capacity, so it is more conducive
to enhancing predicting precision and stability than other
involved methods. All the methods mentioned above focus
on the prediction values of wind speed using a limited data
set. On the contrary, how to effectively decompose the time
series data of wind speed to make prediction becomes a
challenge. Due to the uncertainty and diffusion of wind
speed, it is not enough that some particular statistical meth-
ods tend to introduce the biases of wind speed predic-
tion. However, hybrid methods can get better prediction
results than some particular statistical methods. Besides,
the ensemble empirical mode decomposition method can
divide and conquer of complex problems. Therefore,
based on the Bayesian ridge regression prediction method
and ensemble empirical mode decomposition method, the
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FIGURE 1. The decomposition process chart of sequences.

proposed hybrid BRR-EEMD method is used to predict the
wind speed.

The rest of this paper is arranged as follows. Section 2
mainly introduces the related concepts and terms, for exam-
ple, the EMD, the EEMD, and the BRR. The third part
describes the comprehensive data collection, preprocessing,
and modeling process. The experimental results of the pro-
posed method are described in Section 4. Section 5 discusses
the simulation experiment and empirical analyzes of the pro-
posed hybrid method for prediction. Finally, the last section
is the conclusion and some future works of this paper.

II. RELATED WORKS
The related concepts and terms, such as Empirical Mode
Decomposition (EMD) method, Ensemble Empirical Mode
Decomposition (EEMD) method, and Bayesian Ridge
Regression (BRR) method related to this paper, will be intro-
duced as follows.

A. EMPIRICAL MODE DECOMPOSITION
Huang et al. proposed the empirical mode decomposition
(EMD) [38] in 1998, which is a self-adaptive time-frequency
analysis method and a very effective time series decompo-
sition method. Based on the local characteristics of time
series data, the empirical mode decomposition can effectively
extract the original time-series data from the time series with
noise. It can also achieve better results in the decomposition
of complex time series. Therefore, it has been successfully
applied in many practical fields. The EMD has three assump-
tions which are shown as following [39]:

(1) The target signal must have at least two extrema, one
maximum, and one minimum.

(2) The characteristic time scale is defined by the time
lapse between the extrema.

(3) If there is no extreme value but only inflection point in
the data, they can be distinguished one or more times to reveal
the extrema.

The decomposition process of EMD is shown as follows
(1) For a given time series x(t) is shown in the black line in

Fig.1, all local extremum points, which are shown in the blue
points and red points in Fig. 1, are obtained, and their upper
and lower envelope lines, which are shown in the blue line
and red line in Fig. 1, are obtained by using a cubic spline.

(2) The mean value m(t) of the upper and lower envelopes,
which is shown in the thick purple-red line in Fig.1, and
then the difference between original signal x(t) and mean

value m(t) defined h(t) as Eq.1.

h(t) = x(t)− m(t) (1)

(3) Determine whether h(t) is an IMF. If h(t) is an IMF,
the result of Eq.1 is defined as the ith IMF c (i). Otherwise,
h(t) is regarded as the original signal x(t), and the above steps
are repeated until h(t) becomes a real IMF. After this, the ith
IMF c (i) is decomposed by

c (i) = h (i) , i = 1, 2, . . . , n− 1 (2)

(4) Separate the ith IMF c (i) from x(t) by

r (i) = x(t)− c (i) (3)

where r (i) is defined as the residue signal.
(5) Repeat the above steps K times until the stop condition

takes place. Then, K IMFs will be obtained, and they satisfy
r1 − c2 = r2
...

rK−1 − cK = rK

(4)

Finally, the original signal x(t) can be decomposed into

x(t) =
∑K

k=1
ck (t)+ rK (t) (5)

B. ENSEMBLE EMPIRICAL MODE DECOMPOSITION
Traditional EMD has the problem of mode mixing
when analyzing vibration signals. To solve this problem,
many researchers put forward some solutions. In 2009,
Wu and Huang [40] proposed an adaptive empirical mode
decomposition method, which is a new, improved version
of traditional EMD, named EEMD. The EEMD is a non-
stationary signal analysis method, but it is different from
the Fast Fourier Transform and Wavelet Transform. The
EEMD is suitable for any data, and it can decompose data
completely without the need for base function based on
the data itself. The key to this method is empirical mode
decomposition, which can decompose complex signals into
finite intrinsic mode functions (IMF). Each IMF component
decomposed contains local characteristic signals of differ-
ent time scales of the original signal. The empirical mode
decompositionmethod canmake the non-stationary data to be
stabilized, and then Hilbert transform can be used to obtain
the time-frequency spectrum, which is of physical signifi-
cance. Compared with Fast Fourier Transform and Wavelet
Transform decomposition, this method is intuitive, direct,
posterior, and adaptive, because the data itself decomposes
the basic function. Because the decomposition is based on the
local characteristics of the time scale of the signal sequence,
it has the adaptive characteristics. Here is a brief introduction
to the process of decomposing data with the EEMD method.

Suppose the EEMD method decomposes the sequences X
into n subsequences. According to the decomposition reg-
ulation of the EEMD method, the last subsequence is
called residual subsequence R. In fact, the EEMD method
decomposes the sequences X into n − 1 subsequence
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FIGURE 2. The EEMD decomposition process chart of Sin sequences.

component Ci(i = 1, 2, . . . , n − 1), named IMFi(i =
1, 2, . . . , n−1), and a residual subsequence R. The following
is a brief introduction to the steps of the EEMD method
decomposition process.

(1) For a given sequence x(t) is shown in the black line
in Fig.1, the cubic spline interpolation method of local max-
imum and minimum values is used to create its upper and
lower envelope lines, which are shown in the blue line and
red line in Fig. 1.

(2) Calculate the mean value m(t) of the upper and lower
envelope lines, as shown in the thick purple-red line in Fig.1.

(3) By subtracting the mean value m(t) of the upper and
lower envelope from the original sequences x(t), the first
subsequence IMF1 component h(t) = x(t)−m(t) is obtained.

(4) Taking the subsequence component h(t) as a new
sequence x(t), and repeating steps (1) to (3) until the stop
condition is met. The stop conditions are as follows:

(a) The mean value m(t) of the upper and lower envelope
lines is approximately equal to zero;

(b) The number of extreme points of component h(t) is
equal to or at most different from the number of zero-crossing
points;

(c) The predefinedmaximumnumber of iterations has been
reached.

(5) The subsequence component h(t) is taken as a subse-
quence IMF component Ci(i = 1, 2, . . . , n−1), and calculate
the remaining subsequence R: R(t) = x(t)− h(t).

(6) Use the remaining subsequence R(t) as the new
sequences x(t) to calculate the next IMF, and repeat steps
(1) to (5) until all the IMF is obtained or the maximum
decomposition level is reached.

Finally, the EEMD method has decomposed completely
sequences X into n subsequences, which are expressed
by Eq.6.

x (t) =
∑n−1

i=1
(Ci)+ Rn, i = 1, 2, . . . , n− 1 (6)

where the number n of subsequences depends on the
complexity of the original sequences. Fig. 2 shows a
decomposition process of the EEMD for the time series Eq.7.

x(t)=sin (2π ∗ 10t)+2 ∗ sin (2π ∗ 100t)+3 ∗ sin (2π ∗ t)

(7)

where t = 0, f , 2f , . . . , 300f , f = 0.001.

C. BAYESIAN RIDGE REGRESSION
Because Bayesian ridge regression is a particular case of
Bayesian linear regression and belongs to ridge regression,
it has all the characteristics of ridge regression and Bayesian
linear regression. We first introduce the Bayesian estimation
and the Bayesian linear regression [41].

Define a set of samples as D, the samples in the sam-
ple set D are all extracted independently from a fixed but
unknown probability density function p(x). It is required
to estimate the probability distribution of x based on these
samples, which is recorded as p(x|D). Moreover make p(x|D)
as close as possible to p(x). This is the core of Bayesian
estimation. Although p(x) is unknown, it is well known that
a density distribution has two elements: form and parameter.
We can assume that the form of p(x) is known, but the value of
parameter θ is unknown. Here the p(x|θ ) is the first important
element of Bayesian estimation, which also is a conditional
probability density function. Because the form of p(x|θ ) is
known, and the value of parameter θ is unknown, where x
can be regarded as a test sample. So the conditional density
function p(x|θ ), in essence, is the likelihood estimation of θ
at point x. Since the value of parameter θ is unknown, θ can
be regarded as a random variable. Then, a prior probability
density function p(θ ) can be used to represent the training
samples before they are observed. By observing the training
samples, we can transform the prior probability density into
the posterior probability density function p(θ |D). According
to the posterior probability density correlation, we hope that
p(θ |D) has a very significant peak near the real value of θ .
This is the posterior probability density, the second major
element of Bayesian estimation. Now, the core problem of
Bayesian estimation p(x|D) is connected with two important
elements of Bayesian estimation: p(x|θ ) and p(θ |D).

p(x|D) = ∫ p(x, θ |D)dθ = ∫ p(x|θ,D)p(θ |D)dθ (8)

In the above formula, x is the test sample, D is the training
set, and the selection of x and D is independent. Therefore,
p(x|θ,D) can be written as p(x|θ ). Therefore, the core prob-
lem of Bayesian estimation is the following formula:

p(x|D) = ∫ p(x|θ )p(θ |D)dθ (9)

Here p(x|θ ) is the likelihood estimate of θ on the test
sample x, while p(θ |D) is the posterior probability of θ on
the existing sample set. The posterior probability p(θ |D) is
shown in the following formula.

p(θ |D) =
p(D|θ )p(θ )

p(D)
=

p(D|θ )p(θ )
∫ p(D|θ )p(θ )dθ

(10)

p(D|θ ) =
∏n

k=1
p(xk |θ ) (11)

In order to clearly express that there are n samples in the
sample set D, the notation is used here:

Dn = {x1, x2, . . . , xn} (12)

According to the former formula, there are the following
formulas when n > 1:

p(Dn|θ ) = p(xn|θ )p(Dn−1|θ ) (13)
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According to the previous formula, it is easy to get the
following formulas:

p
(
θ |Dn

)
=

p (xn | θ) p
(
Dn−1 | θ

)
p (θ)

∫ p (xn | θ) p
(
Dn−1 | θ

)
p (θ) dθ

=
p(xn|θ )p(θ |Dn−1)
∫ p(xn|θ )p(θ |Dn−1)dθ

(14)

When there is no observed sample, p(θ |D0) = p(θ )
is defined as the initial estimate of parameter θθ . Then
let the sample set enter the above formula in turn,
we can get a series of probability density functions:
p
(
θ |D0

)
, p
(
θ |D1

)
, p
(
θ |D2

)
, . . . , p (θ |Dn). This pro-

cess is called the Bayesian recursive method of parameter
estimation, also called incremental learning of Bayesian
estimation.

According to the previous discussion on maximum like-
lihood estimation(MLE), it is easy to know that if MLE is
applied to the linear regression model, the complexity of the
model will be controlled by two factors: the number of basis
functions and the number of samples. Although adding a
regular term, which is a prior distribution of parameters to
the MLE estimation, can limit the complexity of the model
to a certain extent and prevent overfitting, the selection of the
basis function still plays a decisive role in the performance of
the model. Because MLE always makes the model too com-
plex to produce the phenomenon of overfitting, the simple
application of MLE is not particularly effective.

Cross-validation is an effective way to limit the complexity
of the model and prevent overfitting, but it needs to divide
the data into a training set and a test set, which is also a
severe waste of data samples. Based on the above discussion,
we can introduce Bayesian linear regression. Bayesian linear
regression can not only solve the problem of overfitting in
MLE but also make full use of data samples. Only using
training samples can effectively and accurately determine the
complexity of the model. The model faced here is a linear
regression model, which is a linear combination of the basic
functions of a group of input variables x. Its mathematical
form is as follows:

y(x,w) = w0 +
∑M

j=1
ωjφj(x) (15)

Here φj(x) is the basis function mentioned earlier. The total
number of basis functions is M . If φ0(x) = 1 is defined,
the above formula can be simply expressed as:

y(x,w) =
∑M

j=0
ωjφj(x) = wTφ(x) (16)

where, w = (w0,w1,w2, . . . ,wM ), φ = (φ0, φ1, . . . , φM )
Then the probability of the linear model is expressed as

follows:

p(t|x,w, β) = N (t|y(x,w), β−1I ) (17)

Assuming that the parameter w satisfies the Gaussian dis-
tribution, the above formula is a prior distribution as follows.

p(w) = N (w|0, α−1I ) (18)

In general, we call p(w) a conjugate prior. Here t is the
target output corresponding to x. β−1 and α−1 correspond to
the variance of the Gaussian distribution of the sample set and
w, respectively. Here w is a parameter. Then, the logarithmic
posterior probability function of the linear model as follows.

lnp (θ |D) = lnp (w |T )

= −
β

2

∑N

n=1
{y(xn,w)− tn}2 +

α

2
wTw+ const (19)

where T is the target value vector of the data sample, T =
{t1, t2, . . . , tn}, const is a constant quantity independent of the
parameter T .
According to the above incremental learning of Bayesian

estimation, the following formula can be easily obtained.
Here is a brief introduction to the Bayesian learning pro-

cess: on the posterior probability p(θ |Dn−1) of the previous
training set Dn−1, multiply it by the likelihood estimation
of the new test sample point xn to get the posterior prob-
ability p(θ |Dn) of the new set Dn. Thus, it is equivalent to
that p(θ |Dn−1) becomes the prior probability distribution of
(θ |Dn), which is shown as follows.

p(θ |Dn) ∝ p(xn|θ )p(θ |Dn−1) (20)

If the prior distribution of Bayesian linear regression is
the following formula (21), the final posterior distribution
formula becomes the following formula (22).

p(w) = N (w|0, α−1I ) (21)

lnp (θ |D) = lnp (w |T )

= −
β

2

∑N

n=1
{y(xn,w)− tn}2+

α

2
wTw+const

(22)

III. METHODOLOGY
This chapter mainly introduces the structure and flowchart
of the proposed hybrid BRR-EEMD predict method for
wind speed based on the Bayesian ridge regression predic-
tion method and ensemble empirical mode decomposition
method. The proposed hybrid BRR-EEMD predict method
use ensemble empirical mode decomposition method to
decompose complex time series sequence into several rela-
tively simple subsequences firstly. Bayesian ridge regression
is used to predict the value of each subsequence. Finally,
the prediction results of several subsequences are fused to
form the prediction results of the original complex time series
sequence. There are many standard fusion methods, such as
addition, multiplication, function fusion, and so on.

The structure of our proposed hybrid BRR-EEMD pre-
dict method is shown in Fig.3. The main structure of our
proposed hybrid predict method includes EEMD decompo-
sition, BRR prediction, and fusion method. The proposed
hybrid BRR-EEMDpredictmethod is separate into five steps:
collect data and preprocess data, decompose data to obtain
several subsequences by EEMDmethod, forecast each subse-
quence one by one using BRR method. Finally, form the pre-
diction results of the original complex time series sequence
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FIGURE 3. The structure of the proposed hybrid BRR-EEMD predict
method.

fusing the prediction results of several subsequences. In this
study, we choose addition as the fusion method. The follow-
ing is a brief introduction to the structure of our proposed
hybrid BRR-EEMD predict method.

(1) Generate simulation data and collect wind speed time
series sequence data in the real world, preprocess the original
wind speed data, make the data format of wind speedmeet the
format requirements of EEMD method decomposition, and
form the input data X of hybrid BRR-EEMD predict method.

(2) EEMD method decomposes input data X into n subse-
quences. According to the regulation of the EEMD decom-
position time series, the last subsequence is usually called
residual subsequence R. Therefore, n subsequences include
n − 1 IMF subsequence and a residual subsequence R,
which are respectively expressed as IMF1, IMF2, IMF3, . . . ,
IMFn−1, R.
(3) Build one BRR model for each subsequence, and the

processing of each subsequence is independent and does
not affect each other, so n subsequences need to build n
BRR models. After the n BRR models which are marked as
BRRk(k = 1, 2, 3, . . . , n−1, n) is built, predict of wind speed
of n subsequences with n BRR models, n prediction results
Pvk(k = 1, 2, 3, . . . , n− 1, n) are obtained accordingly.

(4) There are many fusion methods to fuse the prediction
results of several subsequences to get the final prediction
results of the original wind speed sequence. The addition is
chosen as fusion method in this paper, which is to accumulate
the prediction results of all subsequence to form the final
prediction results.

(5) Finally, comparing the prediction results with the actual
wind speed sequence, three evaluation criteria are used to
calculate the prediction errors RMSE,MAE and R2, and eval-
uate the advantages and disadvantages of hybrid BRR-EEMD
predict method.

FIGURE 4. The flowchart of the proposed prediction method.

The flowchart of our proposed hybrid BRR-EEMD predict
method is shown in Fig.4. The data flowchart of the proposed
method is divided into three stages: data input, model pre-
diction, and model evaluation. The data input stage includes
data collection, data preprocessing, and data decomposition.
In the prediction stage of the model, n subsequence data
decomposed by EEMD are respectively predicted by the BRR
model, and the prediction value of each subsequence data
is obtained. The evaluation phase of the model includes the
following steps. Firstly, the prediction value of n subsequence
data is fused. In this paper, the fusion method of the sum is
used, that is, sum the prediction value of n subsequence data,
and then get the prediction value of the original sequence
data. The next operation is to calculate the RMSE, MAE, and
R2 values of the prediction values in combination with the
original sequence data. Finally, we use these values of RMSE,
MAE, and R2 to evaluate the model.

IV. EXPERIMENTS DATA
In this section, the experimental data are mainly introduced.
In order to better test the prediction effect of our method,
we use two kinds of experimental data. The first kind of
experimental data is artificial simulation experimental data,
which is automatically generated by computer according to
the algorithm. This data is mainly used to verify the cor-
rectness and effectiveness of our proposed method. In many
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literatures [42]–[44], artificial simulation data is also used to
verify the effectiveness of the method. The second experi-
mental data is the wind speed history data in the real world
weather data. Only by using real data in the real world to
test our proposed method is the most effective, so as to prove
whether our method can be applied in the actual field.

A. ARTIFICIAL SIMULATION EXPERIMENTAL DATA
In the experiment, we use artificial simulation experiment
data to test the validity and correctness of our method.
In order to achieve the purpose of effectively testing our
proposed method and obtaining sufficient and effective
experimental results, the artificially generated simulation
experimental data cannot be too small. Therefore, we choose
8000 artificial simulation data as experimental data. The arti-
ficial simulation data selected in the experiment is based on
sin function composition, which is automatically generated
by the computer program according to formula 23.

x (t) = sin (2π ∗ 100t)

y (t) = sin (2π ∗ 10t)

z (t) = x (t)+ y(t) (23)

where t = 0, f , 2f , . . . , 800f ; f = 0.0001 in Eq.23.

B. REAL SOCIAL EXPERIMENTAL DATA
In the experiment of this study, we use the actual data in the
field of weather in real society to test the actual effect of
our proposed method. The time series of wind speed in the
meteorological field is used in this paper. The time series of
wind speed in the field of Meteorology reflects the natural
phenomena without human intervention. Moreover, the wind
speed time-series fluctuates greatly, and the data are very
representative, which can effectively test the effectiveness
and practicability of our proposed method.

In the experiment, the wind speed time-series we use
is the wind speed data of the air quality data set in the
meteorological field. The wind speed time series data used
in the experiment are weather and pollution conditions
collected by the U.S. Embassy in Beijing in five years
(January 1, 2010 to December 31, 2014). The data set is
recorded in hours, including PM2.5 data, weather informa-
tion, date and time, weather information, dew point, temper-
ature, pressure, wind direction, wind speed, and accumulated
snowfall hours. In the experiment, we only choosewind speed
data for the experiment, because the change of wind speed
time series is more intense than others. The data with more
drastic changes can better test the validity and usability of
our proposed method. The original data of the dataset used
in the experiment can be downloaded from the UCI machine
learning repository.

C. DATA PREPROCESSING
The data used in this experiment is time-series data, that is,
continuous numerical data. In this paper, we use these data to
establish a prediction problem. The prediction problem is to

TABLE 1. Length of data used in the experiment.

predict the value of the next time series according to the value
of the 11 consecutive time series. That is to say, according to
the 11 consecutive previous (hour or point) data of the above
data, we predict the value of the 12th (hour or point) data of
the time series. The length of the experimental data is shown
in Table 1. In Table 1, sin represents the artificially generated
sin simulation time series, andwind speed represents thewind
speed time series of the actual air quality data collected by the
US embassy in Beijing.

In order to get better experimental results, we try to choose
more data as experimental data and try to remove the invalid
data or noise data. In practice, sensors are generally used to
collect data, so there may be a fault in the sensor. In the case
of sensor failure, the data collected is incorrect. Therefore,
we need to remove invalid data or noise data before we start
the experiment.

Because the prediction problem constructed in this study is
to predict the value of the next series according to the value
of the 11 consecutive previous sequences of the time series,
it needs to preprocess the original wind speed time-series
data. The original wind speed time series is stored in a
one-dimensional array. The experiment needs to transform
the original one-dimensional wind speed data into a two-
dimensional array with 12 data as a group (row), which will
result in the first part of the data not available. It causes the
total length of the selected raw data (Row 1 in Table 1) to
be 12 longer than the total length of the experimental data
(Row 2 in Table 1). In order to ensure the comparability of
the experimental results, we choose that the length of time
series data of sin and wind speed is the same. In order to
reduce the operation time, the first 8000 original data were
selected. The length of the generated sin simulation time
series is also 8000. Therefore, the ‘‘Total length of selected
original data’’ of the two experimental data is displayed in
the first row of Table 1, which is 8000. The ‘‘Total length of
experimental data’’ of the two experimental data is shown in
the second row of Table 1, which is 7988. In the experiment,
the data need to be divided into test data and verification data.
In the experiment, the ratio of 6:4 is used to segment the
data. 60% of the total length of the experimental data is used
as the test data, and the rest is used as the validation data.
The specific length of test data and validation data of each
time series is shown in the third and fourth rows of Table 1,
respectively.
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V. EXPERIMENTS
The experimental data used in the experiment come from
two fields: one is the artificial simulation experimental data,
the others are the real data in the real world. Besides, in order
to comparewith othermethods conveniently, seven prediction
methods are selected to test the same experimental data.
Therefore, this section will explain and analyze the experi-
mental results from three aspects.

A. EVALUATION CRITERION
There are many criteria for model evaluation. Most of the
evaluation criteria are one-sided and targeted. For different
problems, different evaluation standards must be used. Sev-
eral typical problems are clustering, regression, classifica-
tion, sorting, prediction, and recommendation. In order to
evaluate our method correctly and effectively, we choose
three evaluation criteria RMSE, R2, and MAE, to calculate
the prediction error and evaluate the proposed method.

The root mean square error (RMSE) is the mean square
root of the sum of the squares of the distances that the data
deviate from the real value, that is, the mean square root of
the sum of the squares of the errors. The root mean square
error is a widely used evaluation index and very sensitive
to extremely small or large errors. The calculation formula
is close to the standard deviation in form, which is shown
in Eq.24.

RMSE (x, ỹ) =

√
1
m

∑m

k=1
(xk − ỹk)2 (24)

where, x and ỹ in Eq.24 represents the real value of time
series and predicted value of time series respectively, xk , and
ỹk represent the kth real value and the kth predicted value of
time series respectively, and m represents the length of test
data.

R-square (R2) is the ratio of the sum of squares of the
regression(SSR) to the sum of total deviation squares(STDS),
which is called the coefficient of certainty. The SSR is the
sum of the squares of the difference between the predicted
data and the original data mean. The calculation formula
of SSR is shown in formula 25. The STDS is the sum of
the squares of the difference between the original data and
the mean. The calculation formula of STDS is shown in
formula 26. The calculation formula of R2 is shown
in formula 27.

The R2 is to represent the fit of a model by the change of
data. It can be seen from formula 27 that the normal value
range of R2 is [0.1]. The closer it is to 1, it indicates that the
stronger the ability of the variables of the equation to interpret
x is, the better the model fits the data.

SSR =
1
m

∑m

k=1
(ỹk − yk )

2
(25)

STDS =
1
m

∑m

k=1
(xk − yk )

2
(26)

R2 (x, ỹ) =
SSR
STDS

= 1−

∑m
k=1 (xk − ỹk )

2∑m
k=1 (xk − yk )

2 (27)

In Eq.25, Eq.26, Eq.27, x, yk , and ỹ respectively represent
the real value, the average value, and the predicted value of
time series, m represents the length of time series, and the
calculation formula of average value yk is shown in Eq.28.

yk =
1
m

∑m

k=1
yk (28)

Mean absolute error (MAE) is the average value of abso-
lute error, which can better reflect the actual situation of
predicted value error. The calculation formula of MAE is
shown in Eq.29.

MAE (x, ỹ) =
1
m

∑m

k=1
|xk − ỹk | (29)

where x, ỹ,m in Eq.29 respectively represent the real value of
time series, the predicted value of time series, and the length
of time series.

B. ANALYSIS OF EXPERIMENTAL RESULTS OF OTHER
METHODS
In order to compare with other prediction methods and find
the effect and characteristics of the proposed method, six pre-
diction methods are selected to predict the same experimental
data. The experimental results are shown in Table 2. In order
to let readers have a basic understanding of the six methods
selected, the following is a brief introduction of these six
methods.

1) NuSVR
NuSVR is short for Nu support vector regression. Nu sup-
port vector regression is similar to support vector regression.
Nu support vector regression uses the parameter Nu to control
the number of support vectors, which is implemented accord-
ing to libsvm. In the experiment, the penalty parameter and nu
parameter were 1 and 0.1, respectively, and no loss parameter
was set.

2) GBR
GBR is short for Gradient boosting for regression. Gradient
boosting for regression establishes an additive model in the
forward stage, which allows any minor optimization of
the loss function. In each stage, a regression tree is used to
fit the negative gradient of a given loss function.

3) RFR
RFR is short for random forest regression. The random tree
is a primary estimation method. The random tree method
uses a large number of classification decision trees to fit
the subsamples of data sets. Finally, the random tree method
averages the fitting values of all subsamples to improve the
prediction accuracy and fitting control.

4) KRR
KRR is short for kernel ridge regression. Kernel ridge regres-
sion combines the skill of ridge regression and kernel. At the
same time, the kernel ridge regression is regularized by the
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TABLE 2. Prediction results of three methods for three time-series.

linear least square L2 norm. In the data space of the online
kernel, the kernel ridge uses the linear function in the original
space. For the nonlinear kernel, kernel ridge regression uses
a nonlinear function in the original space.

5) KNR
KNR is short for the K-nearest Neighbors Regression, which
is a kind of regressionmethod based on the k-nearest neighbor
algorithm. The K-nearest neighbor regression method is easy
to understand, and usually can get excellent performance
without toomuch adjustment. The K-nearest neighbor regres-
sion method has a fast construction speed and is generally
suitable for models with small training data sets. When the
training data set of the K-nearest neighbor regression method
is large; for example, the number of features and samples
is large, the prediction speed may be slow. The K-nearest
neighbor regression method has two important parameters:
the number of neighbors and the distance between data points.
In practice, the K-nearest neighbor regression method is best
to set a small number of neighbors. Generally, when the
parameter is set to 3-5, the K-nearest neighbor regression
method often gets better results. However, in order to consider
its performance comprehensively, it is necessary to adjust the
parameter accordingly.

6) BRR
BRR is short for Bayesian ridge regression, which uses
the regularized parameters λ (accuracy of weight) and

α (accuracy of noise) to fit the model. Bayesian ridge
regression is developed based on Bayesian linear regres-
sion. Bayesian ridge regression solves the problem that
Bayesian linear regression is difficult to determine the model
in Maximum likelihood estimation(MLE) by introducing
the penalty parameters and the Bayesian method of ridge
regression.

Table 2 shows the prediction results of seven methods of
two time series: sin and wind speed. We use seven methods
to predict two time-series data at the same time, respectively.
The specific length of the used time-series data is shown in the
second row of Table 1. In the experiment, the prediction prob-
lem is to predict the value of the next time series according to
the value of 11 consecutive previous time series. The experi-
mental results in Table 2 are calculated by RMSE, MAE and
R2 based on the predicted and real results. The smaller the
results of RMSE, and MAE, the better the prediction effect.
However, the closer the experimental result of R2 is to 1,
the more suitable the model is for the data, and the better the
prediction effect of the prediction method is.

In order to compare the effect with other methods, we show
the results of the BRR and our proposed BRR-EEMDmethod
in bold, as shown in Table 2. It is found that the BRR and
our proposed BRR-EEMDmethod have the best effect on the
prediction of sin time series data. The KR method and the
BRR method are better in predicting wind speed time-series
data. Therefore, the BRR is the best method to predict the
selected two time-series data.

By observing Table 2, it is easy to find that for
the prediction of sin time series data, except for the
KR method, the other six methods have a good prediction
effect. By observing the prediction value in the first column
of Table 2, it is found that the R2 evaluation values of the
other six methods are all greater than 0.99, which shows that
the six methods have a better prediction effect on stable and
regularly changing time series. The results show that the six
methods are effective for the prediction of stable and regular
time series. In order to show the prediction effect of these
methods intuitively, we show them in the form of a graph.
In order to reduce the number of pages, here we choose the
prediction result graph of one of the six methods to display,
as shown in Figure 5. In order to make the displayed result
graph clear and distinguishable, only the last 300 predicted
results are displayed in the result graph.

Observing the KR experimental results in Table 2, it is
found that the prediction effect of this method for the time
series data of wind speed is better than others. However,
the prediction effect for the time series data of sin is very poor.
Comparing the changes in wind speed and sin time series,
we can find that the changes in sin time series aremore regular
and stable, while the changes in wind speed time series are
more rapid than others. It shows that the KR method is
more suitable for time series prediction with drastic changes.
In Table 2, comparing the experimental results of the KRwith
that of the BRR method, it is found that the prediction effect
of BRR method is better than others.
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FIGURE 5. Prediction results of BRR method for sin time series.

By observing the prediction results of NuSVR in Table 2,
it is easy to find that the prediction effect of this method
on sin time series data is better than that on wind speed
time-series data. NuSVRmethod is not effective in predicting
the time series of wind speed with drastic changes. This
shows that NuSVR is not suitable for time series prediction
with irregular and unstable changes. According to table 2,
only BRR and our proposedmethod BRR-EEMD can achieve
excellent results for both wind speed time series and sin time
series. In addition, other methods are not suitable for time
series prediction with irregular and unstable.

C. ANALYSIS OF EXPERIMENTAL RESULTS BASED ON
ARTIFICIAL SIMULATION DATA
In order to verify the correctness of our proposed method,
we first use the artificial simulation experiment data of sin
time series to test our method. In order to obtain sufficient
and effective experimental results, the artificial simulation
experimental data cannot be too small. However, in order to
reduce the experimental time, the artificial simulation exper-
imental data cannot be too much. Therefore, the length of sin
simulation time series we selected is 8000.

Before discussing the experimental results of the actual
wind speed data in the meteorological field, this paper first
discusses the experimental results of forecasting the sin
time series artificial simulation data by using our proposed
BRR-EEMD method in this paper. The simulation experi-
ment results verify the correctness and effectiveness of our
proposed method.

Observing the sin data column of Table 2, the evalua-
tion value of the BRR-EEMD method is equal to or bet-
ter than that of the BRR method. RMSE and R2 of the
BRR-EEMD method are equal to or better than the BRR
method. Especially on the RMSE index, the proposed method
improves the experimental effect by 6.1% compared with
the traditional method. Although the MAE evaluation value
of the BRR-EEMD method is slightly lower than that of
the BRR method, it can almost be ignored because the dif-
ference between them is tiny. In conclusion, our proposed
BRR-EEMD prediction method has a better comprehensive
effect than the BRR method, which shows that our proposed
prediction method is correct and effective.

FIGURE 6. Prediction results of BRR-EEMD method for wind speed time
series.

D. ANALYSIS OF EXPERIMENTAL RESULTS BASED ON
REAL DATA
In order to verify the practicability of the proposed
BRR-EEMD prediction method, we use the wind speed time
series in the meteorological field in the experiment. The time
series of wind speed is a natural phenomenon, which is not
interfered with by human beings. However, the change of
time series of wind speed is quite intense, and the sudden and
sharp change occurs from time to time. The time series of
wind speed has the characteristics of complexity, instability,
and drastic change.

Observing the wind speed data column of Table 2, the eval-
uation value of the BRR-EEMD method is equal to or bet-
ter than that of the BRR method. RMSE and R2 of the
BRR-EEMD method are equal to or better than the BRR
method. On the RMSE and R2 index, the proposed method
improves the experimental effect by 12.18% and 1.6% com-
pared with the traditional method, respectively. Although the
MAE evaluation value of the BRR-EEMD method is slightly
lower than that of the BRR method, it can almost be ignored
because the difference between them is very small. In con-
clusion, the proposed BRR-EEMD prediction method has a
better comprehensive effect than the BRR method, which
shows that the proposed prediction method has good practical
application value. Fig.6 shows the BRR-EEMD prediction
results of wind speed time series.

By observing Table 2, it is easy to find that the prediction
results of the BRR-EEMD proposed method in wind speed
and sin time series data are better than that of the BRR
method. There are two main reasons for such good experi-
mental results. On the one hand, the proposedmethod decom-
poses the wind speed and sin time-series data through EEMD,
which makes the complicated original wind speed and sin
time series data decompose into more regular and stable sub-
sequences. Moreover, the prediction results of subsequences
are more accurate. On the other hand, although the changes
in wind speed and sin time series are complex, they can
be decomposed into many regular and stable time series
using the proposed method. In order to clearly understand
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FIGURE 7. Wind speed time-series change and EEMD decomposition.

the change of wind speed time series and its EEMD decom-
position results. Figure 7 shows the EEMD decomposition
results of wind speed time-series data. The first subgraph at
the top of Figure 7 is the fluctuation graph of the original
wind speed time series, and the other subgraphs are EEMD
decomposition subgraphs of wind speed time series. It is
easy to see that the lower EEMD decomposition subgraph is
simpler, more regular, and more stable. In theory, it is easier
to predict for these simpler, more regular, and more stable
subgraphs, and the prediction effect is better than that of the
original.

VI. CONCLUSION AND FUTURE WORK
In this paper, we proposed a hybrid method for short-term
time series forecasting based on EEMD and BRR. The
method is based on the idea of divide and conquer of com-
plex problems, combined with EEMD and Bayesian Ridge
Regression. EEMD is used by the proposed BRR-EEMD
prediction method to decompose complex time series into
several relatively simpler, more regular, and more stable sub-
sequences. Then the BRR method is used to predict the value
of each subsequence. The prediction results of several subse-
quences are fused to form the prediction results of the original
wind speed time series. In order to verify the effectiveness
and practicability of the proposed method, two representative
time series data are selected for testing in the experiment.
Experimental results show that the proposed method has an
excellent comprehensive effect.

The research of time series analysis and prediction method
has developed rapidly. However, its effect cannot meet the

high requirements of practical application in some fields in
many aspects, and there are many problems to be solved.
Based on the research work in this paper, there are still many
contents to study. In the future, we intend to study many
prediction methods and machine learning methods system-
atically. We hope to propose some new methods based on
these methods and EEMDmethod and improve the prediction
effect of time series, to apply them to the actual field correctly
and effectively.
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