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ABSTRACT An analysis model for an optical waveguide microcantilever sensor is developed combining
the optical and mechanical models. An improved optical waveguide microcantilever sensor with a buffer is
provided and taken as an example to explore using the analysis model. A systematic and detailed discussion
about the couplers for the input waveguide to optical waveguide cantilever and the optical waveguide
cantilever to the output waveguide of the improved waveguide cantilever sensor is presented. The sensitivity
of an improved optical waveguide cantilever sensor is evaluated by analyzing the input/output waveguide,
buffer, microcantilever, and gap. An improved optical waveguide microcantilever sensor by adding a buffer
shows a sensitivity of 5.7× 10−4nm−1, which is improved by 51.3%, compared with a conventional optical
waveguide microcantilever sensor. The design of an optical waveguide cantilever sensor is a trade-off of
different design parameters. These will be helpful for the study of an optical waveguide cantilever sensor.

INDEX TERMS Optical waveguide cantilever, buffer, analysis model.

I. INTRODUCTION
Nano-mechanical sensors [1] have become paramount tools
as transducers for highly sensitive biomolecule detection,
such as viruses [2], proteins [3], cancer cells [4], and
small molecules [5]–[7]. It performs real-time detection
and readout by changing the mechanical behavior of the
transducer. As a kind of nanomechanical sensors, inte-
grated optical waveguide microcantilever-based sensors have
received increasing attention [8]–[11] due to the advantages
of high sensitivity, small size and easy integration for mul-
tiple detection [12]–[15]. In an optical waveguide cantilever
sensor, the optical waveguide cantilever (OWC) works for
the mechanical response generation and light propagation
as an optical waveguide, the sensor detects the mechanical
response by observing the output optical power of the optical
waveguide cantilever with different bending displacements
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in return [13]. As a relatively new nanomechanical cantilever
sensor, the researchers focus on the material of the optical
waveguide microcantilever sensors to improve the perfor-
mance [16]–[21]. However, few detailed analysis has been
performed for the nanomechanical microcantilever sensors
on optical waveguides.

In this paper, a detailed analysis of nanomechanical
microcantilever sensors on optical waveguides was devel-
oped using mechanical and optical models. A finite-element
method (FEM) was employed to analyze the nanome-
chanical microcantilever sensors. We took an improved
optical waveguide cantilever system [22] as an exam-
ple to explore the analysis. Following this introduction,
in Section II, the principle of the optical waveguide can-
tilever sensor was presented, the model for the optical
waveguide cantilever was developed. Section III provided
a discussion about the results and their comparison with
the conventional structure. The conclusion was described in
Section IV.
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II. THEORY
The overall structure of an improved optical waveguide can-
tilever sensor [22] is depicted in Fig.1, which is comprised
of an input waveguide (IW), a buffer, an optical waveguide
microcantilever (OWC) and an output waveguide (OW). The
IW and OW are grown on the silicon substrate by the silicon
nitride(nSi3N4 = 2.0) core and silicon oxide(nSiO2 = 1.46)
cladding. The buffer is formed by extending the IW to OWC.

FIGURE 1. The structure of an improved optical waveguide
microcantilever sensor: (a) 3D view, (b) lateral view.

The optical waveguide microcantilever sensor works on
the dependence of the coupling efficiency between waveg-
uides with their misalignment concerning each other. The
light emitted by the laser after propagating through the input
waveguide is coupled into the buffer, which can reduce the
scattering loss and increase the coupling efficiency [22].
Then, light from the buffer couples into OWC. Finally, light
exiting the OWC free-end is captured by OW through a
gap distance. The optical power captured by OW will vary
with the change of free-end displacement of the OWC in the
vertical direction. Therefore, high sensitivity detection of the
OWC deflection can be acquired with high integration.

The measurement of OWC chip with several cantilevers is
based on a single laser-single acquisition channel in order to
evaluate the optical response of each cantilever. A microflu-
idic cell is needed to integrate the OWC chip with a flow
cell enabling reagents to be introduced to the cantilevers in
a reproducible way, and subsequently removed to waste. The
OWC chip, mounted with the microfluidic cell, is placed
between the light source and the acquisition photodiode sys-
tem. The microfluidic cell is mounted on a motorized single
axis platform to select the microcantilever to be evaluated or
to perform a sequential detection of the response of several
microcantilevers in the OWC chip [23].

Sensitivity is the primary determinant to evaluate an opti-
cal waveguide cantilever sensor, which can be improved
by enhancing the mechanical deflection and reducing the
optical losses for the coupling from IW to OWC and OWC
to OW. The analysis model of an optical waveguide can-
tilever sensor should include the mechanical and optical
models.

A. OPTICAL MODEL
In order to increase the sensitivity of an optical waveguide
cantilever sensor, the OWC should be single-mode in the
vertical direction [24]. The modes are the form of light prop-
agation in the optical waveguide. The single-mode OWC in
the vertical direction is decided by the relationship between
the effective refractive index and the mode, which can be
obtained from the eigenvalue equation for the asymmetric
planar waveguides in transverse electric(TE) modes [25]:

V
√
1− b = mπ + tan−1

√
b

1− b
+ tan−1

√
b+ a
1− b

(1)

where V is the normalized waveguide thickness, b is the
normalized waveguide refractive index, a is the asymmetric
of the waveguide, m is the order of light guided mode.

The optical-sensitivity is defined as the derivative of the
coupling efficiency from OWC to OW across the gap and the
bending displacement of the OWC [23]:

Sens =
∂0

∂x
(2)

where 0 is the coupling efficiency from OWC to OW.
The coupling efficiency between waveguides can be calcu-

lated using the overlap integral [26]:
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where Eg(x,1z) is the electric field distribution of the light
exiting the OWC at the distance of 1z, and Ey(x) is the dis-
tribution of the electric field of the output waveguide. In this
study, only vertical direction deflection of the waveguides in
TE mode is considered.

B. MECHANICAL MODEL
The mechanical bending of OWC is another influence on the
sensitivity. The OWC is initially suspended horizontally and
its surface serves as the functional area. The surface stress1δ
occurs when molecules interacts on the surface of the OWC,
which ultimately leads to the bending deflection [24], [27]:

1y ≈
3K (1− ν)

E
(
Lc
Tc

)21δ (4)

where K is a constant that depend on the OWC material
and geometric characteristics, ν is the Poisson ratio, E is the
Young modulus, Lc and Tc are the OWC length and thickness
respectively.

III. RESULTS AND DISCUSSION
Based on (1)-(4), a finite element method was executed for
the analysis of an improved optical waveguide microcan-
tilever sensor.The analysis model for an optical waveguide
microcantilever sensor was combined by the optical and
mechanical models. The FEM [28] is chosen as the numerical
method, which is suitable for the complicated waveguide
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structures and also applicable to the stress analysis of optical
waveguides. In the FEM, the domain of the problem is dis-
cretized into small elements. The solution is approximated in
each element and it is connected at the nodal points to form
the solution model in the entire analysis domain. A simple
form of function is adopted to approximate the field in each
element. The possible error in the solution is alleviated by
increasing the number of elements and thus reducing the
element size. All of the element contributions to the system
are assembled to form the functional. The functional essen-
tially consists of the field values at the nodes and boundary
conditions at the peripheral nodes; that is, n-th order linear
simultaneous equations are obtained. The solutions of the
simultaneous equations give the unknown field values to be
determined. Therefore, FEM is applicable to the complicated
domain structures. In the simulation, the optical wavelength
was 660 nm.

A. THE EVALUATION OF THE COUPLERS FOR IW TO OWC
AND OWC TO OW
The working principle of the sensor was based on the
coupling between the waveguides. The sensor included two
couplers of IW to OWC and OWC to OW. The sensor was
symmetrical for IW stage and OW stage. The structure of IW
was same with OW.

The light from the laser is coupled into the IW. Compared
with the multi-mode, IW in single mode has lower losses for
the optical propagation. The effective refractive indices with
the thickness of IW/OW are shown in Fig.2(a) for m = 0,
1, and 2. It can be observed that the thickness of IW/OW
should be less than 230 nm for single-mode working. The
coupling between IW and OWC was also evaluated as shown
in Fig.2(b), IW/OW thickness should be smaller as possible
for less optical losses. However, thinner IW has poor coupling
with the fiber of an input laser. Considering the fabrication
technology, we designed the thickness of IW and OW to be
80 nm.

FIGURE 2. (a) The effective indices with the thickness of IW/OW. (b)The
output optical power at the end of the OWC with the IW thickness.

In the coupler of IW to OWC as shown in Fig.1, a buffer
by extending the IW is added to reduce the scattering loss
by mitigating changes of the optical mode. Fig.3 shows the
optimal buffer length of minimal coupling losses with the
thickness of OWC. One can see that the buffer length is
decided by the thickness of OWC. The optical coupling mode
is tranformed at the connection of IW and OWC. As the

FIGURE 3. The optimal buffer length for the minimal coupling losses at
different OWC thickness.

increase of the OWC thickness intensified the coupling tran-
sition, the longer buffer is needed to alleviate this transition.
However, the buffer cannot be too long, or it will affect the
mechanical response of the OWC.

The light is coupled to the OWC after passing through the
buffer. The OWC was evaluated based on the coupling of
IW to OWC. The output power at the end of OWC with the
thickness of OWC is shown in Fig.4 for three modes (m = 0,
1 and 2) with the IW thickness of 80 nm, 140 nm, and 200 nm.
One can observe that the cut-off thickness of OWC is 300 nm
for the 1st mode and 600 nm for the 2nd mode. For higher
sensitivity, the OWC must be single mode in the vertical
direction. Hence, the OWC thickness should be smaller than
300 nm. Actually, thinner OWC means higher sensitivity.
However, too thin waveguides are difficult to support its
weight and fabricate. The OWC thickness of 200-300 nmwill
be desirable for the design of an optical waveguide cantilever
sensor. Also, it can be seen that a thinner input waveguide
indicates better coupling to the OWC. Fig. 4(b) indicates the
electric field distribution for the OWC thickness of 200 nm,
500 nm, and 800 nm. It is obvious that the thickness of 200 nm
has better optical propagation.

FIGURE 4. (a) The output optical power of OWC varies with its thickness
under different IW thickness.(b)The electric field distribution of the
sensor with the OWC thickness of 200 nm, 500 nm, and 800 nm.

After propagating in the OWC, the light travels through
a gap and will be captured by OW. The gap has a direct
impact on the sensitivity. The relationship of the gap with the
output power captured by OW is shown in Fig.5 for the OWC
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FIGURE 5. The output optical power of OW with the gap distance.

thickness of 200 nm, 250 nm, and 300 nm. The light captured
by the OW is reduced with the gap distance because it faded
away quickly in the transversal direction after leaving the end
of the OWC. Smaller gap or thinner thickness of OWC has
better output power efficiency. This means better sensitivity.

B. THE PERFORMANCE OF AN IMPROVED
NANOMECHANICAL WAVEGUIDE MICROCANTILEVER
SENSOR
In essence, the principle of the sensor is depended on the
bending of OWC. In the detection process, the OWC would
bend by surface stress, a mechanical model was used to
simulate the deflection of OWC. The bending displacement
of different forces F(N ) under the uniform-load is plotted
in Fig.6. It is obvious that longer and thinner OWC always
has better bending displacement.

FIGURE 6. The bending displacement at the end of the OWC with
different forces F (N) under the uniform-load for Lc/Tc (OWC length to
thickness) of 0.3, 0.45 and 0.6.

Based on Eq.2, the optical sensitivity is decided by the
coupling efficiency of OWC through the gap to OW. The sen-
sitivity was obtained by calculating the derivative of the cou-
pling efficiency and deflection displacement. The coupling
efficiency is a crucial bridge for the design of the structure
and optical sensitivity. Fig.7 shows the coupling efficiencies
and the sensitivities for OWC thicknesses(Tc) of 200 nm and
300 nm with and without a buffer under various bending
deflections, respectively. The results without the buffer are
consistent with previous research [13], which means that our
model are effective.

FIGURE 7. The coupling efficiency of optical waveguide cantilever sensors
with and without a buffer for (a) gap of 1 µm and (b) gap of 2 µm. The
sensitivity for (c) gap of 1 µm and (d) gap of 2 µm.

One can observe that the increase of gap distance and
the OWC thickness is accompanied by the decrease of the
coupling efficiency and the sensitivity. Actually, too short
gap distance or too thin OWC are difficult to achieve in the
actual production. Therefore, the gap distance of 1µm and
2µm, the OWC thickness of 200nm and 300nm are selected
for the analysis. More importantly, one can find that an opti-
cal waveguide cantilever sensor with a buffer can obviously
increase the efficiency and the sensitivity, compared with a
conventional sensor without a buffer. For 300 nm-thick OWC
and 1µm gap, the sensitivity can be increased by 51.3 %. The
results indicate that the detection performance of the sensor
can be improved by adding the buffer.

IV. SUMMARIZES
In this paper, an analysis model for an optical waveguide
microcantilever sensor was developed. An improved optical
waveguide microcantilever sensor was taken as an example
to explore the analysis model. The IW/OW was discussed,
thinner IW/OW had better coupling with OWC, but poorer
coupling with the fiber of a laser, an 80 nm-thick IW/OWwas
chosen as a compromise considering the fabrication technol-
ogy. The buffer of an improved optical waveguide sensor was
analyzed, the optimal buffer length for different OWC thick-
ness was presented. The optical waveguide microcantilever
was studied, thinner and longer OWC was always desirable,
however, too thin OWC was difficult to support its weight
and fabricate. In a word, our analysis showed that an optical
waveguide microcantilever sensor with a buffer can improve
the performance, compared with a conventional waveguide
sensor without a buffer. The design of an optical waveguide
microcantilever sensor was a trade-off for different factors.
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