
Received March 11, 2020, accepted March 25, 2020, date of publication March 30, 2020, date of current version April 15, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2984022

Multi-Class Disturbance Events Recognition
Based on EMD and XGBoost in ϕ-OTDR
ZHANDONG WANG1, SHUQIN LOU 1, SHENG LIANG 2, AND XINZHI SHENG2
1School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China
2School of Science, Beijing Jiaotong University, Beijing 100044, China

Corresponding author: Xinzhi Sheng (xzhsheng@bjtu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61775014.

ABSTRACT A novel pattern recognition method based on Empirical Mode Decomposition (EMD) and
extreme gradient boosting (XGBoost) is proposed to recognize the disturbance events in phase sensitive
optical time-domain reflectometer (ϕ-OTDR) to reduce nuisance alarm rate (NAR) and improve real-time
performance in this paper. Eleven typical eigenvectors are extracted from components obtained by EMD of
the disturbance signals andXGBoost is selected as a classifier to identify different type of disturbance signals.
Five kinds of disturbance events, including watering, knocking, climbing, pressing and false disturbance
event, can be identified, effectively. Experimental results show that NAR is 4.10% and identification time
is 0.093 s. The recognition accuracy for the five patterns is 97.96%, 95.90%, 91.10%, 94.84% and 99.69%,
respectively. The effectiveness of the proposed method is evaluated by using confusion matrix and decision
boundary visualization. Experimental results demonstrate that our proposed pattern recognition method
based on XGBoost has better performance in recognition rate and recognition time than other commonly
used methods, such as support vector machine (SVM), Gradient Boosting Decision Tree (GBDT), Random
Forest (RF) and Adaptive Boosting (Adaboost).

INDEX TERMS Phase-sensitive optical time-domain reflectometer (ϕ-OTDR), extreme gradient boosting
(XGBoost), nuisance alarm rate (NAR), empirical mode decomposition (EMD), pattern recognition, decision
boundary visualization.

I. INTRODUCTION
Recently, fiber-optic distributed disturbance sensors based on
phase-sensitive optical time-domain reflectometer (ϕ-OTDR)
have drawn intensive attention due to their low loss, simple
structure, chemical stability, anti-electromagnetic interfer-
ence. Due to advantages of high spatial resolution, high sen-
sitivity, long-distance transmission capability and accurate
location of disturbance, ϕ-OTDR has a potential application
in the field of perimeter security [1], [2], speed monitoring
and localization of trains [3], pipeline security [4], [5], and
vibration measurement [6]–[8].

However, in the practical ϕ-OTDR monitoring system,
external environment interference and artificial non-
destructive interference often cause false alarms, resulting
in a high nuisance alarm rate (NAR) [9]. Generally, there
are two strategies used to reduce NAR. One is to improve
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the hardware structure and performance [10]. For instance,
the monitoring system adopt a combined structure of
ϕ-OTDR and fiber-optic interferometers i.e. Mach-Zehnder
Interference [11] or Michelson Interferometers [12]. These
schemes can efficiently reduce NAR, but hardware structure
become more complicated and thus the system cost increases
significantly.

Another is to select and optimize pattern recognition
methods to improve the recognition accuracy of disturbance
events. In 2015, a method based on morphological feature
extraction of time-space domain signals and relevance vec-
tor machine (RVM) classifier was reported [13]. The aver-
age identification rate of three events reached up to 97.8%,
but the recognition time was 0.7 s. In 2017, Xu et al.[14]
used spectral subtraction to reduce wide-band background
noise of signals and support vector machine (SVM) to detect
four disturbance events (taping, striking, shaking, and crush-
ing). The average identification rate was 93.8% and identi-
fication time was below 0.6 s. Subsequently, they reported

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 63551

https://orcid.org/0000-0001-8425-2157
https://orcid.org/0000-0002-8251-5758
https://orcid.org/0000-0003-1770-471X


Z. Wang et al.: Multi-Class Disturbance Events Recognition Based on EMD and XGBoost in ϕ-OTDR

a pattern recognition method based on convolution neural
network (CNN) and SVM in 2018 [15]. Through replac-
ing the soft-max classifier in CNN with a nonlinear SVM
classifier or a linear SVM classifier, the identification rate
exceeded 93.3%. In 2019, Wang et al. [16] used relevant
vector machine (RVM) based on a 7-dimensional feature vec-
tor extracted by wavelet energy spectrum analysis to identify
three disturbance events (walking through the fiber, striking
on the fiber, and jogging along the fiber). A classification
macro-accuracy of 88.60% was finally obtained through 10-
fold cross validation. But the accuracy of walking through
the fiber and jogging along the fiber were both under 85%.
In the same year, Shi et al. [17] used the data matrix obtained
by bandpass filtering and grayscale conversion preprocessing
of the original spatiotemporal signal as the input of CNN.
By simplifying the structure of GoogLeNet, the running
memory was reduced and running speed was improved. The
recognition rate of five types of events reached 96.67%. It can
be seen that a higher identification rate can be achieved
through the selection and optimization of feature extraction
and classifier. However, it is still a challenge to find the
optimal features and high-performance classifier to further
improve the identification rate and reduce the identification
time.

Considering non-stationarity features of the disturbance
signal in ϕ-OTDR, EMD is often used to deal with non-
stationarity signals [18]. By EMD analysis, the disturbance
signals can be decomposed layer by layer according to the
frequency characteristics and then the feature vector can be
extracted. Meanwhile, the XGBoost algorithm can be used to
reduce the identification time as it converges fast and supports
parallel operations.

In this paper, we propose a novel pattern recognition
method based on the combination of EMD energy analysis
and XGBoost algorithm to reduce NAR and shorten recogni-
tion time of disturbance events in ϕ-OTDR.We firstly explain
the pattern recognition system based on ϕ-OTDR briefly, and
then describe the basic principles of EMDenergy analysis and
XGBoost used in this system. The feature vectors are deter-
mined by EMD energy analysis. Finally, the XGBoost will be
used to identify the disturbance signals. In order to verify the
effectiveness of the proposed method, we set up an ϕ-OTDR
experimental system with the length of 25.05 km sensing
fiber. Five kinds of disturbance events, including watering,
knocking, climbing, pressing, and false disturbance event
(false), are considered for identification.We evaluate the clas-
sification model by using confusion matrix and performance
parameters, and use decision boundaries to compare the clas-
sification performance with other methods by visualizing the
classification in a two-dimensional feature space. In the rest
of the paper, we introduce the pattern recognition method
based on EMD energy analysis and XGBoost in Section II.
The design of experiment system is described in Section III.
The experimental results and discussion are presented in
Section IV, and Section V provides some conclusions and
ideas for future work.

FIGURE 1. The flow chart of a new pattern recognition method.

II. PARRERN RECOGNITION BASED ON XGBoost
ALGORITHM
In this paper, we propose a pattern recognition method with
the combination of EMD and XGBoost in ϕ-OTDR. The pro-
posed pattern recognition method includes three steps: data
processing, feature extraction and pattern recognition of dis-
turbance events in ϕ-OTDR, as shown in Fig. 1. The first step
is to acquire and process the data from ϕ-OTDR. The original
signal can be obtained by normalizing the data collected by
data acquisition card in the experimental system to eliminate
the effects of the data itself, and then its difference signal can
be obtained by first-order difference processing. The second
step is to extract feature vector of the original normalized data
and differential signal by using EMD energy analysis. Then
XGBoost is chosen as the classifier to recognition five types
of signals in pattern recognition step.

A. EMPIRICIAL MODE DECOMPOSITION
EMD is an adaptive decomposition algorithm for process-
ing signals [19]. Compared with the wavelet decomposition
method [20], it does not need to set the basis function in
advance. The signal can be decomposed into a finite number
of the time-domain Intrinsic Mode Functions (IMFs) accord-
ing to the time scale characteristics of the data itself. The flow
chart of EMD energy analysis shown in Fig.2.

According to the EMD theory, the signal X (n) can be
expressed as the sum of all IMF components IMFl(n) and
residual component, resL(n).

X (n) =
L∑
l=1

IMFl(n)+ resL(n) (1)

FIGURE 2. The flow chart of EMD energy analysis.
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where IMFl(n) is the l-layer decomposition signal, L is the
total number of decomposition levels, and resL(n) is the
remaining signal after L-layer decomposition.
The short-time energy can reflect the change of different

signal energies. The short-term energy value E of each com-
ponent can be calculated as follows.

El =
N∑
n=1

IMF2
l (n)

EL+1 =
N∑
n=1

res2L(n),

l = 1, 2, . . . ,L (2)

where El represents the energy of IMFl , EL+1 represents the
energy of res and N represents the length of components of
the signal.

Two feature vectors Eo and Ed can be obtained by per-
forming EMD energy analysis on the original signal and
differential signal, which can be expressed as.

Eo = [Eo1 ,E
o
2 , · · · ,E

o
Lo ,E

o
Lo+1] (3)

Ed = [Ed1 ,E
d
2 , · · · ,E

d
Ld ,E

d
Ld+1] (4)

where Lo and Ld are the decomposition levels of the original
signal and differential signal, respectively.

The final feature vector E = [Eo,Ed ] is obtained by cas-
cading Eo and Ed , and the number of features is Lo+ Ld+2.

B. EXTREME GRADIENT BOOSTING
The choice and design of the classifier is an important part in
the pattern recognition since it can improve the classification
accuracy and reduce recognition time.

The XGBoost algorithm [21] is improved and introduced
as a robust decision tree by Chen based on the idea of a
gradient boosting machine [22], which can handle complex
data at high speed and accuracy. The feature E in ϕ-OTDR
system and their corresponding signal types constitute a data
set D = {Ei, yi}Ni=1, where yi is the type of signal corre-
sponding to feature Ei and N is the number of signal types.
K additive functions will be used to predict the output values
of a tree ensemble model as follows.

ŷi =
K∑
k=1

fk (Ei) , fk ∈ F (5)

where ŷi is predicted values andF is the regression trees space
which is expressed as:

F = {f (E) = Wq(E)}(q : Rm→ T ,w ∈ RT ) (6)

where q denotes for the structure of each tree; T denotes
for the number of leaves in the tree, and fk is a function
that corresponds to an independent tree structure q and leave
weight w.
To reduce errors of ensemble trees, the objective function

is calculated in the XGBoost model as below.

L(t) =
n∑
i=1

l(yi, ŷ
t−1
i + ft (Ei))+�(ft ) (7)

where l is a differentiable convex objective function to deter-
mine the error between predicted and measured values, t
denotes the repetitions in order to minimize the errors and
� is regression tree complexity penalty function:

�(fk ) = γT +
1
2
λ ‖w‖2 (8)

where γ and λ are the penalty coefficients.
In this paper, for the best performance of XGBoost, K in

equation (5) is 70. The max_depth, colsample_bytree and
min_child_weight of structure q in equation (6) are 4, 0.8 and
2.7, respectively [23], [24]. CART tree [25] is chosen as the
regression trees F in equation (6). In equation (7), softmax
and Mean Squared Error (MSE) are chosen as the objective
function L and loss function l, respectively. γ and λ in
equation (8) is 0 and 1, respectively.

C. THE CLASSIFIER PERFORMANCE
To evaluate the effectiveness of classifier, the concept of
confusion matrix and decision boundary are introduced.

Confusion matrix is a concept from machine learning,
which contains information about actual and predicted clas-
sifications given by a classification system [26]. A confu-
sion matrix has two-dimensions, in which one dimension
is indexed by the actual class of an object and the other is
indexed by the class that the classifier predicts. Fig.3 presents
the basic form of confusion matrix with the classes A1, A2,
and An for a multi-classification task. In the confusionmatrix,
Nij represents the number of samples actually belonging to
class Ai but being classified as class Aj.

A number of measures of classification performance can
be defined based on the confusion matrix. Some common
measures include accuracy, precision, recall and traditional
F-score [27].

Accuracy (Acc) is the proportion of the correctly classified
sample number to all sample number.

Acc =
n∑
i=1

Nii

/
n∑
i=1

n∑
j=1

Nij (9)

FIGURE 3. Confusion matrix representation.
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Precision (P) is a measure of the accuracy provided that a
specific class has been predicted. It is defined as

Pi = Nii

/
n∑

k=1

Nki (10)

Recall (R) is a measure of the ability of a prediction model
to select instances of a certain class from a dataset. It can be
expressed as

Ri = Nii

/
n∑

k=1

Nik (11)

The traditional F-score (F) is the harmonic mean of preci-
sion and recall, which can be expressed as

Fi =
2× Pi × Ri
Pi + Ri

(12)

A class can also be separated from other classes by visu-
alizing the decision boundary in a classification task [28].
In this paper, we will choose the two most important fea-
tures according to the importance of the features to build
a two-dimensional feature space. By visualizing decision
boundaries, we can intuitively see the distribution of different
patterns in the feature space and the classification effect of
different classifiers such as SVM [29], GBDT [30], RF [31]
and Adaboost [32].

III. SYSTEM
A. EXPERIMENT SETUP
The structure of ϕ-OTDR disturbance sensing system is
shown in Fig.4. This system uses a 1550nm continuous laser
as light sourcewith a linewidth of 10 kHz, which is thenmod-
ulated into a laser pulse sequence with a pulse width of 500 ns
by the acousto-optic modulator(AOM). The optic pulse is
amplified by an erbium-doped fiber amplifier (EDFA)and
injected through a circulator into a single-mode sensing fiber
with a total length of 25.05 km. The Rayleigh backscattered
light goes back to a photodiode(PD) via the circulator, which
is then pre-amplified by an electronic amplifier (AMP) and
converted to a digital signal by an analog-to-digital converter
(ADC). Finally, the digital signal is collected into computer
to be processed and classified. Meanwhile, the disturbance
alarm and location can be obtained in real time.

There are five kinds of real disturbance events involving
watering (pouring water perpendicularly from a container
with a capacity of 300 mL, 50 cm above sensing fiber to
simulate rain environment), knocking (knocking the sensing

FIGURE 4. The structure of ϕ-OTDR disturbance sensing system.

FIGURE 5. The temporal waveforms of normalized signals for five kind of
events at the location of 0.9 km.

fiber by using a rod with a radius of 2 cm to simulate stress
damage), pressing (using a tire with a radius of 30 cm rolled
over the sensing fiber to simulate non-destructive human
disturbance such as vehicle passing), climbing (climbing the
fence with sensing fiber to simulate destructive human distur-
bance) and a false disturbance event (induced by the noises
which may lead to false alarm ) in our experiment. We set up
three disturbance locations of 0.9 km, 6.5 km and 21.5 km
in the experiment and collect the signals of five disturbance
events in each disturbance location simultaneously.

B. SIGNAL PROCESSING AND GROUPING
Data normalization is crucial for feature extraction and event
identification for its ability to eliminate the effects of the
data itself and overcome the over-fitting problem. Hence,
the original signals are normalized in space-domain by L2
normalization. The normalized time-domain waveforms of
the five event patterns at the location of 0.9 km are shown
in Fig.5. Moreover, we perform a first-order differential pro-
cessing on the signal because the differential signal can reflect
the changing characteristics of the original signal for further
signal analysis and feature extraction. The first-order differ-
ential signals are shown in Fig.6.

Before extracting feature values, the signal needs to be
divided into several data samples with length N. N is set
as 33 sampling periods (13.2ms) according to the temporal
period of the error disturbance signal. To ensure the con-
tinuity of the signal and increase the number of samples,
it requires partial overlap between adjacent data samples.
Since each data sample must have its own separate portion,
the overlap length is set to one-third of the sample length
(4.4ms). The numbers of samples for five kinds of events at
each location is shown in Table 1.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS
A. DETERMINATION OF IMFS FOR FEATURE
EXTRACTION
In order to improve the accuracy of recognition and
reduce NAR, it is necessary to determine the number of
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FIGURE 6. Intensity of the first-order differential for five kind of events at
the location of 0.9 km.

TABLE 1. The numbers of samples for five kinds of events at each
location.

decomposition layers of EMD. In this part, 250 samples from
five kinds of disturbance events at the location of 0.9 km
are obtained, 60% (150 samples) of the whole samples are
divided randomly for training samples and the other 40%
(100 samples) for testing samples.

Fig.7 shows the average accuracy of XGBoost based
on different decomposition levels for original and differen-
tial signals. It can be found that the recognition accuracy
increases with the increase of decomposition layers for both
original signal and differential signal. The accuracy is approx-
imate to a constant until the decomposition levels exceed
5 layers for the original signal and 4 layers for differential
signal. In fact, the more the decomposition levels are, the
higher the recognition accuracy is. But the time for feature
extraction also increases with the increase of decomposi-
tion layers. Considering the tradeoff of recognition time and
recognition accuracy, we choose five decomposition levels
for the original signal and four for differential signal. So, Lo

is 5 and Ld is 4 in the following test, and final number of
features is set to 11.

According to separation degree of the 11 features, we select
one of the six original signal features E6

o and one of the
five differential signal characteristics E1

d in which the five
disturbance events have obvious distinctions, and the selected
2 features are shown in Fig.8. As shown, the point and its
color in Fig.8 represent the signal sample and its correspond-
ing category, respectively.

The feature extraction time and average recognition accu-
racy at the location of 0.9 km of different methods are shown
in Table 2.

FIGURE 7. The average accuracy of XGBoost based on different
decomposition levels for the original and differential signals.

FIGURE 8. The two features for the five disturbance events.

It can be seen that our proposed method achieves the
highest accuracy, and the time of feature extraction is slightly
higher than wavelet energy spectrum. This is mainly because
in our experiment, we use wavelet energy spectrum method
to decompose the signal into two layers instead of six layers
in ref [16] to obtain the highest recognition rate.
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TABLE 2. The feature extraction time and average recognition accuracy of
different methods.

TABLE 3. The identification results.

B. PATTERN RECOGNITION
A total of 750 samples are obtained from five kinds of distur-
bance events at three locations. Then, 60% (450 samples) of
the whole samples are divided randomly for training samples
and the other 40% (300 samples) for testing samples. The
identification process is repeated 100 times to obtain an
average result, and identification accuracy (Acc) is shown
in Table 3.

In order to further analyze performance of the classifier,
the confusion matrix is obtained in Fig.9-10. On one hand,
Fig.9 shows the five-category confusion matrix. The values
on the diagonal are the results of correct classification. The
identification rate of each disturbance signal exceeds 90%.
On the other hand, the two-category confusion matrix based
on alarm events (including climbing, knocking) and non-
alarm events (including watering, pressing, false disturbance)

FIGURE 9. The five-category confusion matrix.

FIGURE 10. The two-category confusion matrix.

TABLE 4. The performance measures.

are shown in Fig.10. The identification rate of the non-alarm
events is as high as 98.25%, and alarm events is 94.23%.

Simultaneously, the Precision (P), Recall rate (R) and
F-score (F) are summarized in TABLE 4. It can be seen
that the F of watering, knocking, climbing, pressing and
false disturbance is 95.91%, 96.62%, 93.59%, 95.14% and
98.40%, respectively.

We compare our proposed methods with several existing
methods in the same dataset of disturbance signals, including
Linear SVM, radial basis function SVM (RBF SVM), GBDT,
RF and Adaboost. The recognition accuracy and recognition
time of different recognition methods are shown in Table 4.
Our proposed method obtains the highest value of 95.90% in
terms of recognition accuracy and the recognition time of our
method is 0.093 s.

The comparison of our proposed methods with other clas-
sifiers can also be illustrated by visualizing the decision
boundaries. The distribution of five events at the location
of 0.9 km in feature space is shown in Fig.11 (a), in which
the horizontal and vertical axes represent the features Eo6 and
Ed1 introduced in section IV. A respectively; five kinds of
color points correspond to five different disturbance signals
where blue, yellow, red, purple and green points represent
‘watering’, ‘knocking’, ‘climbing’, ‘pressing’ and ‘false’ sep-
arately. It can be seen from Fig.11(a) that watering (marked
in blue) and false (marked in green) are more concentrated in
feature space than other signals and thus the recognition rate
of watering and false disturbance is higher than other signals.
There are overlapping parts between watering and climbing
(marked in red), as well as between knocking (marked in
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FIGURE 11. The distribution of five events (a) at the location of 0.9 km in
feature space, and classification results by using visualization of decision
boundaries with Linear SVM(b), RBF SVM(c), RF(d), Adaboost(e), GBDT(f)
and XGBoost (g).

yellow) and pressing (marked in purple), which explains why
climbing event is identified as watering with a 5.4% probabil-
ity and knocking event is identified as pressing with a 3.29%
probability in Fig.9. Therefore, it can be more intuitive to
display the level of recognition rates for different disturbance
events by using visualization of decision boundaries.

We compare classification results with our proposed
method and other classifiers including Linear SVM, RBF
SVM, RF, AdaBoost and GBDT by using visualization of
decision boundaries, as shown in Fig.11 (b-g), in which the
different colored dots indicate that different types of signals
are the same as in Fig.11 (a) and the areas with crimson,
pale-yellow, brown, light blue and dark blue are separately
identified by the classifier as watering, climbing, knocking,
pressing and false. For the overlapping parts of ‘watering’ and
‘pressing’, Linear SVM, RBF SVM and GBDT all classify
them as ‘watering’ (marked in crimson), and for the over-
lapping parts of ‘knocking’ and ‘pressing’, Linear SVM and
GBDT classify them as ‘pressing’ (marked in light blue),
and RBF SVM classifys them as ‘knocking’ (marked in
brown). It can be seen from that Linear SVM, RBF SVM

TABLE 5. The recognition accuracy and recognition time of different
recognition methods.

and GBDT cannot identify the two events with overlapping
parts.Moreover, our proposedmethod can limit the categories
of centralized distribution like ‘false’ (marked in green) to
a smaller area than RF and Adaboost, which can effectively
identify the category.

V. CONCLUSION
In order to reduce NAR of ϕ-OTDR, a pattern recognition
method based on EMD and XGBoost is proposed in this
paper. Considering non-stationarity of the signal, EMD is
used for feature extraction. eleven features are extracted
from normalized signals and normalized differential signals.
Taking into account the impact of external environment on
the system, we investigate the identification of five kinds
of disturbance events including watering, knocking, climb-
ing, pressing, false disturbance for ϕ-OTDR system with a
total length of 25.05 km. The identification rates of five
events (watering, knocking, climbing, pressing and false) are
97.96%, 95.90%, 91.10%, 94.84% and 99.69%, respectively.
Furthermore, the classifier performance is analyzed with the
help of confusion matrix. Moreover, the decision boundary
visualization of our method and Linear SVM, RBF SVM,
RF, Adaboost and GBDT is obtained. Experimental results
demonstrate that our proposed XGBoost method has better
performance than other methods above. This method is useful
to further improve the performance of ϕ-OTDR system.
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