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ABSTRACT Large-scale deployment of renewable energy sources in power systems is basically motivated
by two universally recognized challenges: the need to reduce as far as possible the environmental impact
of the massive increase of energy request and the dependency on fossil-fuel. Renewable energy sources
are interfaced to the network by means of interfacing power converters which inherently exhibit zero
inertia differently from the conventional synchronous generators. This matter jointly to the high level of
time variability of the renewable resources involve dramatically frequency changes, recurrent frequency
oscillations and high variability of frequency profile in general. The need of a fast estimation of time
variability of the power system inertia arises at the aim of predicting critical conditions. Based on the
analysis of some actual data of the Italian Transmission Network, in this paper the authors propose an
autoregressive model which is able to describe the dynamic evolution of the power system inertia. More
specifically, the inertia is modeled as the sum of a periodic component and a noise stochastic process
distributed according a non-Gaussian model. The numerical results reported in the last part of the paper,
demonstrating the efficiency and precision of estimation of inertia, allow justifying the assumptions of the
above modeling.

INDEX TERMS Power Systems, renewable energy sources, rotational inertia, auto-regressive models,
statistical inference, stochastic process.

I. INTRODUCTION
The containment of frequency deviations within assigned
ranges is of vital importance for electrical interconnected
systems. Thanks to their stored kinetic energy, synchronous
generators inherently contribute to the ability in counteracting
the system frequency changes [1], [2]. The increasing power
generation by renewable energy sources (RESs), such as wind
and solar generation plant, is commonly associated to the
reduction of the whole system inertia [2]–[6]. This kind of
generation systems are interfaced to the electrical network by
means of static converters which are in most cases controlled
independently of the system frequency, this involving the
unrequired effect of inertia lowering. This may be also inter-
preted as the result of the partial or full decoupling between
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the electrical machine speed and the network frequency. It is
not trivial to put in evidence that RES production is random
and intermittent by nature. It has to be highlighted the mas-
sive tendency in mitigating this phenomenon by improving
the inertia characteristics through the optimal control of the
power converters, in such a manner that the subsystem con-
stituted by the converter and the electrical generator behaves
like a synchronous generator [7], [8].

In this contest the inertia estimation arises a major chal-
lenge for the secure operation of interconnected power sys-
tems. It is mandatory to introduce on-line tools able to mon-
itor the system inertia in real time through methods which
allow facing with the unavoidable uncertainties implied by
renewable generation sources. In [9] a feasible technique
is described in order to perform a robust estimation based
on the information related to the production units and syn-
chronous condensers. The estimation is performed in terms
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of kinetic energy instead of inertia and could be affected by
some uncertainties. Estimation procedures are also presented
in [10]–[13] again based on the measures of frequency tran-
sients provided by synchronized phasor measurement units.
By taking into account the effect of the electrical distance
between the measurement unit and the location of the event,
methods for the accurate calculation of the frequency tran-
sient events have been then adopted, such as a moving aver-
age filter [11], the analysis of the instantaneous nature of the
inertia [8], [12], low-pass Butterworth filter [13], [14]. The
method proposed in [15] uses the electromechanical oscil-
lation response measured with phasor measurement units to
estimate the equivalent inertia of the system on the basis
of the classical swing equation. Extended Kalman filter-
based method is also adopted for the inertia estimation of
synchronous generators: in [16] the sensitivity of the method
to the assumed time of disturbance is discussed. Based on
the data provided by the phasor measurement units, on-
line estimation methods are also proposed in [17] and [18].
A statistical approach is proposed in [19], where an on-line
estimation method based on relatively small frequency vari-
ation was presented. A Bayes estimation method is proposed
in [5]. In [20] an algorithm is proposed for the on-line inertia
estimation through a first-order nonlinear aggregated power
system model combined to dynamic regressor and mixing
procedure. Based on a Gaussianmixture model with temporal
dependence encoded as Markov chains, a method is proposed
in [21] for the on-line estimation of the system inertia. In [22],
an on-line estimation method for the inertia characteristics of
power systems is proposed based on the synchronized mea-
surements data of the change in frequency and active power.
In [23] a methodology based on an autoregressive moving
average exogenous input model is proposed, which includes
the accurate time window identification, starting from the
start of the disturbance. In [24] an on-line-estimation method
is proposedwhich requires the injection of an additional prob-
ing signal used to identify in real time the time-varying and
nonlinear equivalent inertia constant in power systems with
complex heterogeneous components. In the approach pro-
posed in [25], the real time estimation of power system inertia
is obtained as time response of system identified models to
a specific input and is based on the system identification.
Some of the approaches discussed for the on-line estimation
methods are summarized in Tab. 1.

As shown in the literature, the direct estimation method
is the one based upon the calculation of the rate of change
of frequency which, in case of reduced synchronous inertia
could activate disconnection of generation systems and loads,
even jeopardizing the grid stability. The assessment based
upon the rate of change of frequency could be unsatisfactory
since it requires the precise knowledge of the instant at which
the contingency starts. Furthermore, the swing equation pro-
vides useful information only over a restricted time interval,
since they do not allow to take properly into account the
governor actions of the power system synchronous genera-
tors [20]. Another crucial aspect is related to the diversity

TABLE 1. Some approaches for On-line estimation of the inertia.

of the frequency behavior according to the location of the
measurement system. In this regard, it is easy to argue that a
reliable estimate of the power system inertia cannot be based
upon a single measurement, and that the most proper choice
is the combination of various measurements, evaluating the
dynamic behavior of the center of inertia of the frequency.
To overcome the issues of the methods discussed, in this
paper it is proposed a method which uses a stochastic process
to describe the system inertia. The process is obtained by a
statistical analysis of the system inertia data which can be
recursively updated in view of an on-line estimation. At this
aim, efforts have been devoted to the proposal of a novel
method based on the statistical estimation of the character-
istics of the system inertia by focusing on the case of high
penetration of RESs. In particular, the proposed method can
capture the dynamic evolution of the power system inertia
on the basis of the analysis of actual data. Starting from the
identification of the parameters, the inertia is modeled as the
sum of periodic components and a noise stochastic process
distributed according to a non-gaussian model.

The contributions in this work are as follows:

- the proposal of a new statistical method for the on-
line estimation of the power system inertia based on the
recursive observation data of the selected area network;

- based on the classical time series theory, the proposed
method uses a probabilistic model to characterize the
system inertia with high variations caused by the pres-
ence of large penetration of RESs;

- the spectral analysis is performed with respect to the
actual data, thus allowing the identification of the case
of time-varying harmonics which permits to describe the
inertia through a simple stochastic model;

- the statistical analysis on the actual data allows rep-
resenting the inertia dynamics as the sum of periodic
components and a noise stochastic process distributed
according to a non-gaussian model.

The rest of the paper is organized as follows. Theoretical
background is reported in Section II. In Section III and IV the
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dynamic estimationmodel is presented, focusing on the pecu-
liarities of both low and high penetration of RESs, respec-
tively. In Section V the numerical application is presented.
Our conclusions are drawn in Section VI.

II. PRELIMINARY CONCEPTS
The inertia constant is a parameter related to the ability in
counteracting the frequency changes due to the unavoidable
power unbalances occurring in power systems. The mecha-
nism of opposition is due to the kinetic energy gained by the
rotating masses of the synchronous machines and the rotating
loads. The rotational energy Ekin of a single synchronous
generator is given by the well-known formula:

Ekin =
1
2
J�2

n (1)

where J is the moment of inertia of the group constituted by
the synchronous machine and the turbine and �n is the rated
rotor angular frequency. The inertia constant H , expressed
in s, for a single synchronous machine is currently defined
as:

H =
Ekin
S

(2)

where S is the rated power of the generator and inertia con-
stant H denotes the time duration for which the group can
provide its rated power solely with its stored kinetic energy.

The dynamic of a single synchronous group is properly
described by the swing equation:

2H
d
dt

(
f
fn

)
=
fn
f
Pm − Pe

S
(3)

with f (fn) the frequency (nominal frequency) and Pe(Pm) the
electric (mechanic) power.

The definition of the inertia constant can be directly
extended to a power system with nG machines, once the iner-
tia constants Hk (k= 1, . . .nG) and the corresponding rated
powers SB,k (k = 1, . . . nG) have been assigned; in this case
the system inertia constant (Hsys) can be evaluated as:

Hsys =
nG∑
k=1

HkSB,k
SB

(4)

with SB the total rated power of the nG generators, that is:

SB =
nG∑
k=1

SB,k (5)

In the case of actual power networks that consist of many
interconnected synchronous generators, a powerful concept is
the center of inertia frequency, fCOI , defined as follows [26]:

fCOI =

∑n
k=1 Hk fk∑n
k=1 Hk

(6)

with fk the frequency of the kth generator. The variable fCOI is
introduced by the observation that the inertia estimation can-
not be performed on the basis of a single frequency measure-
ment. However, it is often considered more useful to avoid

the need of making recourse to the frequency measurements,
by exploiting the knowledge of the total kinetic energy,Ekin,T ,
of the whole power system expressed in MWh and given by:

Ekin,T = HsysSB =
nG∑
k=1

HkSB,k (7)

Ekin,T can be directly evaluated by knowing the position
of the circuit breaker of each production unit. As clearly
described in [27], this calculation requires that a SCADA
system gives information about the synchronous machines
status, thus permitting the direct estimation of the overall
system kinetic energy.

With the aim of defining the inertia of a power system
comprehending RESs, in the following it is assumed that
the renewable-based generators interfaced to the network do
not contribute to the kinetic energy. Hence, the inertia of the
whole system can be coherently defined as:

Hsys =

∑nG
k=1 HkSB,k
SB + SR

(8)

being SR the total amount of active power injected by the
renewable energy generators. This quantity can be considered
a stochastic process (SP), i.e., it exhibits the characteristic of
random variability and time variability.

III. LOW RENEWABLE PENETRATION: A KALMAN
FILTER-BASED ESTIMATION METHOD
In the previous section, based upon the general theory of the
power system inertia, it has been derived that the estimation
of the inertia is linked to the ratio between the installed power
of renewable sources and that corresponding to the rotational
generators. As discussed in [5] and [27], by introducing the
parameter ρ:

ρ =
SR
SB

(9)

the inertia can be directly evaluated through a linear approx-
imation as a function of the above ratio ρ. More in depth, the
inertia of the system at the time instant t = j1t ,Hsys,j, can be
directly related to the value to the parameter ρj = SR,j/SB,j,
through the approximated linear relationship:

Hsys,j = a− bρj (10)

where a and b are positive constants that depend on the system
parameters, such that Hsys,j is maximum (e.g., Hsys,j = 3.5 s)
when ρj = 0, and, theoretically, Hsys,j is minimum (e.g.,
Hsys,j = 0) when ρj = 1.
Indeed, (10) can be justified by introducing the weighted

mean value of the constant inertia values Hk of the rotating

machines, H =
nG∑
k=1

HkSB,k/SB (which is the same of (4)

in the case all the generators are rotating machines), thus
resulting:

Hsys =

∑n
k=1 HkSB,k
SB + SR

=
HSB

SB + SR
=

H
1+ ρ

(11)
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By adopting the Mc Laurin expansion in (11), i.e.,
(1+ x)−1 ≈ (1− x) as x → 0, it is deduced that for low
values of the ρ, the inertia of the whole system Hsys can be
described, as a first order approximation, as:

Hsys ∼= H (1− ρ) (12)

It is worth to remark that when SR � SB, ρ → 0 and the
total system inertia constant can be approximated by (12).

The proposed recursive estimation exploits the probabilis-
tic knowledge of the RES and its evolution in time, which
is generally available, especially in very short time opera-
tion. With reference to a power system having both syn-
chronous generators and RES generators, the SP of their
generation powers are denoted by

{
SB,j; j = 1, 2, . . .

}
and{

SR,j; j = 1, 2, . . .
}
, respectively.

On the basis of actual data of typical transmission systems,
it can be assumed that the succession of the logarithms of
each SP – i.e. of both sequences

{
SB,j; j = 1, 2, . . .

}
and{

SR,j; j = 1, 2, . . .
}
– follows a dynamic linear model [28],

which is often adopted, with good accuracy, for the SPs of
electrical load in very short time applications [5]. This model
is supposed to generate the generic ‘‘load’’ values – that in
this application refer to SB,k and SR,k – at time instant t = j1t
according to the basic dynamic linear model equations, herein
reported:

Xj+1 = Xj + ξj
Zj = Xj + ηj (13)

being the SPs
{
ξj; j = 1, 2, . . .

}
and

{
ηj; j = 1, 2, . . .

}
white

Gaussian noise sequences. The first relationship of (13) refers
to the ‘‘load’’ evolution from the state at j to j+1. The latter is
a simple linear model linking the observation or measurement
Zj to the true state Xj. The above assumptions lead to a
straightforward application of the Kalman filter approach for
the estimation of the power system inertia.

However, this kind of estimation procedure is valid only
under the assumption of low values of the parameter ρ.
In practical cases, the impact of the renewable could be very
massive and creating abnormal areas characterized by high
values of ρ.

IV. A GENERAL DYNAMIC MODEL OF POWER SYSTEM
INERTIA
A dynamic modeling of power system inertia in case of large
penetration of RES is proposed in this section on the basis of
the classical time series theory and on the analysis of real data
of power system inertia. The aim is to specify a probabilistic
model of which the observed data is a realization. The prob-
abilistic model is developed on the basis of numerical tests
performed with respect to a suitable area of the Italian power
system.

A. ANALYSIS OF ACTUAL DATA
The data used in this paper refer to information made avail-
able by the Italian TSO, Terna S.p.A. [29] and are related

FIGURE 1. Actual data of the values that ρ assumes in the selected area
of the Italian transmission network.

FIGURE 2. Actual values of ρ and of kinetic energy for the selected area
network.

to an area which has been considered isolated at the aim
of verifying the goodness of the dynamic modeling. The
available data refer to the:

- total demand;
- production per type of energy source;
- production from RESs; and
- data of the inertia constant for each type of the energy
source.

These data refer to a time horizon of one month sampled
at 15 minutes. In Fig. 1, the values assumed by the parameter
ρ in an area of the Italian transmission system is reported.

Fig. 1 clearly puts in evidence that the values that ρ
assumes are very variable, by ranging from values slightly
than zero up to values higher than 0.7, while its mean value
assumes the value 0.2. In this scenario, the inertia estimation
performed by exploiting the linearmodel (12) and theKalman
filter (13) – can involve local inacceptable errors in cases
when ρ is large. Fig. 2 reports the profiles of both kinetic
energy and the parameter ρ. Fig. 3, reports the values of
kinetic energy corresponding to the assumed values of param-
eter ρ.
It is worth to note that during most of the time (larger than

85%) ρ ≤ 0.4 and only in a few percentages of cases (lower
than 2%) ρ ≥ 0.6. This means, that the assumption of linear
model can be considered still valid at the purpose of explain-
ing the correlation between the involved variables in qual-
itative way. The more general estimation method, however,
which overcomes the assumption of linearity, is described in
the next sub-section.
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FIGURE 3. Measured values of ρ and corresponding values of the kinetic
energy of the selected area network.

FIGURE 4. Time varying inertia and ρ of the selected area network.

At the aim of determining the total inertia of the selected
area, the kinetic energy is primarily evaluated by the knowl-
edge of both the inertia time constant of the synchronous
generators installed in the selected area network and the
individual generator breaker position, available by an existing
SCADA system. Further information inherent to the dynamic
evolution of the renewable amount allows for determining the
so-called ‘‘measured’’ values of inertia, shown in the Fig. 4.
In other word, the measured values of power system inertia
are built from (8), where the right-hand member is effectively
measured [28]. In Fig. 4, high correlation is clearly exhibited
between Hsys and the parameter ρ: the valleys of the system
inertia Hsys correspond to the peak values of the parameter ρ,
that is the peak values of the power produced by the renewable
energy resources.

A large correlation between the system inertia and the
renewable power production SR is also registered, while a
slight level of correlation can be measured between the total
inertia and the rotating power, SB. This can be motivated by
the formula (12), Hsys ∼= H (1−SR/SB). Since the correlation
coefficient is a measure of the linear dependence between
variables, indeed, it is obvious the linear dependence from
SR while this circumstance does not hold for Hsys and SB.1

1It is opportune to remark that, with reference to the relation
Hsys ∼= H (1 − SR/SB), that is to say Z = k(1 − X/Y ), Z may be weakly
correlated (linearly) to Y while, obviously, even if heavily dependent on Y .
A simpler example of the above is the following: let (QW ) a pair of random
variables, such that W = Q2, then they are heavily dependent. Nonetheless
if, f.i. Q is uniformly distributed in the real interval [−1, 1], so that Q has
the expected value and all its odd moments equal to zero, then W (being
W = Q2) and Q are uncorrelated although no statistically independent.
Indeed, E(QW ) = E(Q3) = 0, which is also the product of the means. This
implies that the correlation coefficient is zero, i.e. the two random variables
are uncorrelated.

FIGURE 5. Time varying inertia and SR (a) and SB (b) of the selected area
network.

This is confirmed in Fig. 5, where the combined plot of Hsys
with SR (Fig. 5.a) and SB (Fig. 5.b) are reported.

B. GENERAL ESTIMATION MODEL
The spectral analysis performed with respect to the data
referring to Fig. 4 puts in evidence the presence of a particular
case of time-varying harmonics, characterized by changes
of only amplitudes and phases (the fundamental frequency
and, consequently, the harmonics frequencies are fixed) [30].
The inertia process can be described by the simple stochastic
model:

Hsys (t) = s (t)+ Z (t) (14)

where s (t) is the sum of time-varying harmonics and Z (t) is
the non–periodic stochastic component of the process Inertia.
Hence, the function s (t) can be defined as:

s (t) = a0 +
n∑

h=1

ah(t) cos (ωht)+ bh(t)sin(ωht) (15)

Due the low number of significant harmonics, the Goertzel
technique exhibits recognized more efficient performances
with respect to the classical Fast Fourier Transform. As well
known, it is based upon the employment of a second-order
infinite impulse response filter for estimating the parameters
of the generic harmonic [31].

The discretized version of (14) becomes, with the obvious
meaning of the symbols:

Hsys,j = sj + Zj (16)

where it was assumed the time t = j1t . At the aim of
analyzing the statistical properties of the above process, based
upon an adequate statistical data analysis, it is worth to note
that Zj is weakly stationary since its mean function µz,j is
independent of time and the covariance function γz,j+h,j is
independent of time for each lag h = 1, 2, . . .
A deep analysis of the available data puts also in evidence

that Zj is an SP non-normal distributed. At the aim of a
feasible and accurate description of Zj, the authors propose an
auto-regressive model whose innovations have non-normal
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underlying distribution. More specifically, the Logistic distri-
bution is adopted as underlying distribution, as it results the
most suitable from classical statistical tests.

Under the assumption of a Logistic underlying distribution,
the following first-order autoregressive model is proposed:

Zj − φ̂zZj−1 = µ̂z + âj (17)

where φ̂z is a proper parameter, µ̂z is the estimate of the mean
value of Zj and âj is distributed according to the symmetric
Logistic distribution.

As it is well-known [31], the estimation of the parameters
φ̂z and µ̂z can be obtained by exploiting the following rela-
tionship:[

µ̂z

φ̂z

]
=

[
ns

∑
yj−1∑

yj−1
∑
y2j

]−1 [ ∑
yj∑

yjyj−1

]
(18)

where ns is the number of samples and yj is given by the dif-
ference of the inertia and the periodic function sj. In the case
we assume the symmetric logistic distribution, an estimate of
the parameters φ̂z and µ̂z can be performed by starting from
the well-known likelihood function, L (φz, µz, βz) [32]:

L (φz, µz, βz) = (1/βz)ns
ns∏
j=1

e−Xj(
1+ e−Xj

)2 (19)

with:

Xj = (1/βz)
(
Zj − φzZj−1

)
− µz (20)

where βz is the parameter of the symmetric Logistic distribu-
tion which is related to the variance of âj:

Var
(
âj
)
=
π2

3
β2z (21)

By equating the partial derivatives of the log-likelihood
function with respect to the unknowns µz, φz and βz to zero:

∂lnL (φz, µz, βz)
∂µz

= 0

∂lnL (φz, µz, βz)
∂φz

= 0

∂lnL (φz, µz, βz)
∂βz

= 0 (22)

the following equations system is obtained:

ns − 2
ns∑
j=1

1

1+ eXj
= 0

ns∑
j=1

Zj−1 − 2
ns∑
j=1

Zj−1
1

1+ eXj
= 0

ns −
ns∑
j=1

Xj + 2
ns∑
j=1

Xj
1

1+ eXj
= 0 (23)

whose solution provides the estimate of the parameters µ̂z, φ̂z
and β̂z.

FIGURE 6. Amplitude of the harmonics of the time varying inertia of the
selected area network.

Eventually, the proposed on-line estimation method can be
summarized as follows:

- based on the set on the available data of inertia, their
periodic function sj is derived;

- the set of data yj are derived as the difference of the
inertia data and the periodic function sj;

- evaluation of the parameters of the Zj SP according to the
proposed auto-regressivemodel with innovations having
a symmetric Logistic underlying distribution;

- estimate of inertia time variation is obtained
through (14).

V. APPLICATION TO THE REAL CASE
In this section the application of the proposed method for the
on-line estimation of the power system inertia is reported.
The data used to test the time series approach proposed in
Section IV is that reported in Fig. 4.

The selected area under investigation is an islanded sys-
tem connected via 400 kV undersea cables; the reason of
this choice is the relatively small extension of the electrical
system and the high penetration level of the installed inverter-
based generation. Large share of power production derives
from renewable and dispersed generation, which mainly
includes photovoltaic (23%) and wind (16%) systems.

With reference to the data under study (Fig. 4), 2880 sam-
ples (in the following they are referred to as ‘measured sam-
ples’) were used to analyze the inertia behavior and to derive
the inertia estimate. The last 96 samples – which correspond
to the last samples of the available day – where used to test
the estimate at the aim of verifying the proposed method
(in the following they are referred to as ‘test samples’). First
of all, the periodic function sj (j = 1, . . . 2880) was derived
on the basis of a different number of samples. In order to
analyze the features of the periodic components of the signal,
Fig. 6 reports the spectrum of the whole test sample set. In the
figure it is shown that the inertia of the system clearly shows
four main periodic components, corresponding to 24 hours,
12 hours, 6 hours, and 4 hours.

The frequency of the four most relevant periodic
component and their amplitude which corresponds to
a different number of samples are reported in Fig. 7.
In particular, the four main harmonic components are
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FIGURE 7. Harmonic components corresponding to different number of
samples.

FIGURE 8. Periodic function of the system inertia and measured data.

reported corresponding to sample’s number ranging in the
interval [1500, 2880].

As clearly shown in Fig. 7, the four harmonic components
always correspond to the four components highlighted in the
Fig. 6. Obviously, some slight differences are highlighted
due to the continuous variation of the system inertia. It is
interesting to note that the number of harmonics to calculate is
small, thus allowing the estimation of the harmonics’ param-
eters through the Goertzel technique [31]. Once the harmonic
components have been found, the periodic function of the
system sj (j = 1, . . . 2880) is derived. The comparison of the
periodic function and the measured inertia values is reported
in Fig. 8. The difference between the measured data and the
periodic function – that is Zj (j = 1, . . . 2880) – is reported
in Fig. 9.

As already put in evidence in the previous section,
it appears convenient to describe Zj as an auto-regressive
model with innovations with non-normal underlying distri-
bution. At this purpose, the comparison between the classical
Gaussian distribution and the Logistic distribution, reported
in Fig. 10, at a glance put in evidence the better ability in
describing the innovations.

The maximum Likelihood approach presented in the
section IV allows deriving the parameters µ̂, φ̂ and β̂ to
estimate the SP of Zj. It derives µ̂ = −0.0191, φ̂ = 0.6308,
and β̂ = 0.0111.

Based on these values, the estimated values of the system
inertia have been derived for the last day of the available
data (j = 2880, . . . 2976). Both estimated and measured
data are reported in Fig. 11. Fig. 12 reports the absolute

FIGURE 9. Difference between the measured data and the periodic
function.

FIGURE 10. Gaussian and Logistic fitting distributions for innovations.

FIGURE 11. Measured and estimated inertia.

FIGURE 12. Absolute percentage error of the estimated inertia.

percentage error of the estimated inertia compared to the
actual inertia.

The accuracy of the proposed approach is demonstrated
in Fig. 11, which shows that the estimation of the inertia
quite agrees with the actual profile of the test samples. It is
interesting to note that the proposed method allows catching
the variation of the inertia in both decreasing (between hours
725 and 730) and in the increasing (between hours 735 and
740) behaviors of the inertia. This is thanks to the ability
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of the proposed approach to find the periodic nature of the
inertia.

The error reported in Fig. 12 refers to the absolute percent-
age difference between the estimated and measured inertia.
The figure shows that the error always is lower than 8%.With
reference to the whole day, the mean value of this error is
2.5%. This error is aligned with the errors typically occurring
in the on-line estimation methods [9]. Also, it can be noted
that the highest errors occur in the period of the time when
inertia changes.

VI. CONCLUSIONS
On the basis of a deep insight based upon adequate statistical
analyses of available real data, the authors realized that a
simple dynamic model could be adopted for a feasible and
adaptive description of the inertia stochastic process, as a
function of renewable source contribution to the total power
generation, i.e. on the share of synchronous and renewable
– based generators. More specifically, it has been shown in
the paper that the inertia dynamics may be regarded as the
sum of a periodic component and a noise stochastic process
distributed according a non-Gaussian model, and an auto-
regressive model with innovations with Logistic underlying
distribution has been adopted. Statistical inference of such
model has been performed by means of the classical Max-
imum Likelihood approach, and its performances, in terms
of a comparison between measured and estimated inertia has
been successfully illustrated. It is expected that such kind of
studies can have a significant impact on the correct real time
operation of power systems in the framework of the recent
switch towards higher and higher penetration of renewables.
Future works will be devoted to more extensive applications
of the method combined with all the measurements needed
for effective analyses. Also, different scenarios including
contingency and post-contingency events will be analyzed on
the basis of statistical data related to longer time periods.
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