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ABSTRACT Scheduling problems, as one of the classic combinatorial optimization problems are essential
issues in many fields. Various meta-heuristic algorithms have been adopted to solve scheduling problems.
However, parameter control problem is still crucial to the performance of algorithms. In this paper,
we propose a self-adaptive parameter control method based on entropy and security market line, fully
considering the characteristics scheduling problems. It consists of two key parts: locus-entropy strategy and
parameter-control strategy. Firstly, the entropy on each genetic locus is calculated to accurately evaluate the
population status of scheduling algorithms. Then, a parameter-control strategy based on the conception of
security market line is proposed to address the issue that the nature of multipeak in scheduling problems
makes algorithms fall into local optimal solutions. The strategy maintains the solutions of good quality and
eliminate the solutions of poor quality by using locus-entropy as feedback. Through our method, the balance
between exploitation and exploration is kept in algorithms to perform well in scheduling problems with
different dimensions and characteristics. These strategies are tightly linked to adjust parameters adaptively
without introducing new parameters, so that meta-heuristic algorithms equipped with the proposed approach
are able to find a better solution. Moreover, our parameter control method is universal for meta-heuristic
algorithms. The proposed approach is hybrid with genetic algorithm and particle swarm optimization. The
hybrid algorithms are first compared with the standard algorithms in multipeak benchmark functions, then
with other variants of the standard algorithms in real-world single and multi-objective scheduling problems.
The results demonstrate that the proposed approach is valid for different kinds of algorithms to enhance the
performance of solving a variety of scheduling problems.

INDEX TERMS Parameter control, meta-heuristic algorithms, scheduling problems, information entropy,
security market line.

I. INTRODUCTION

Scheduling problems are a kind of combinatorial optimiza-
tion problems encountered in various fields, whose solutions
are widely applied to help decision-makers gain huge benefits
at lower costs under various constraint conditions [1]-[3].
The problems play an important role in relevant industries
seeking to improve task execution efficiency and optimizing
resource allocation.

Meta-heuristic algorithms are generally adopted to solve
scheduling problems [4], [5]. They combine the random
method with a local search to solve complex multipeak
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problems in a short period of time. The idea of meta-heuristic
algorithms is inspired from the survival and habit of animals
in nature or the evolutionary process in human society [6].
However, according to the No Free Lunch (NFL) the-
ory [7], there is not a single algorithm that can solve all
the problems. Many factors should be considered in solving
practical problems. For one thing, the decision space varies
greatly in spatial distribution between different dimensions
and different types of scheduling problems. The population
status cannot be accurately evaluated, reducing the perfor-
mance of scheduling algorithms. For another, the multipeak
property, which makes algorithms fall into local optimal solu-
tions, is one of the most important inherent characteristics of
scheduling problems. Multiple schemes in the decision space
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may correspond to the same solution in the objective space.
As a result, it is difficult to find an optimal solution from all
the permutations and combinations.

Therefore, the parameter control plays a vital role in
scheduling problems. It is one crucial issue in determining
the performance of scheduling algorithms to solve prob-
lems, which has attracted many researchers these years. The
parameter control mechanism is clearly divided into deter-
ministic parameter control, adaptive parameter control and
self-adaptive parameter control [8]. Deterministic parameter
control follows a preset rule to assign new parameter values,
often associated with the running time without any feedback
from the search. Adaptive parameter control monitors the
performance when algorithms are running. The change of
the performance is used as a feedback to guide the param-
eter adjustment. Self-adaptive parameter control combines
the search of optimal parameters with the search of optimal
solutions. The parameters evolve with the solutions simulta-
neously by the method.

The parameter control has been investigated for long, but
there are still many unsolved questions. First, some studies
have focused on using statistical properties, such as aver-
age and variance, as the feedback to adjust parameters [9].
However, these statistics are unstable in a single run of an
algorithm. Therefore, using them as feedback will lower the
accuracy of the parameter control. Second, only the status of
whole population and each individual is taken into considera-
tion. It is far from enough when facing the high-dimensional
real-word problems. The status of some certain genetic loci
must be paid attention to make algorithms perform better.
Third, universal parameter control methods are rare. Most
methods are tailored to specific algorithms. As a result, they
have difficulties in generalization. When the algorithm is
changed, the parameter control method must also be changed,
which is troublesome.

In this paper, we investigate a self-adaptive parameter con-
trol method for scheduling problems. It consists of two key
parts, including a locus-entropy strategy and a parameter-
control strategy. The parameters are adjusted adaptively
based on the entropy of each genetic locus and the conception
of security market line (SML). It is a universal method,
which can be hybrid with meta-heuristic algorithms. Through
the proposed method, the status of algorithms is evaluated
objectively and precisely, and the parameters are adjusted
timely and efficiently. The balance between exploitation and
exploration is kept in algorithms to perform well in schedul-
ing problems with different dimensions and different char-
acteristics. These strategies are tightly linked in adjusting
parameters adaptively without introducing new parameters.
As aresult, algorithms equipped with the proposed approach
release excellent performance and find a better solution to
solve scheduling problems.

The main contributions of the paper are described below.

First, in order to track the status of population objec-
tively and precisely when facing various scheduling prob-
lems with different dimensions and distribution, we propose
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alocus-entropy strategy to evaluate the conditions of different
genetic loci. The entropy is a concept in statistics used to
measure the uncertainty of a random event, and to describe
the average amount of information contained in each mes-
sage received [10]. In meta-heuristic algorithms, each gene
in the next generation is updated by the alleles of several
individuals in the current population. If an allele in the pop-
ulation does not converge or converges prematurely, it will
not be conducive to a better solution in the next generation.
Through the strategy, the phenomenon of prematurity and
non-convergence of certain genetic loci can be prevented by
the locus-entropy. The influence of the randomness of meta-
heuristic algorithms can be avoided.

Second, in order to address the issue that the nature of
multipeak in scheduling problems makes algorithms fall into
local optimal solutions, a parameter-control strategy based on
SML is proposed to adjust all parameters adaptively. SML
reflects the systematic risk of portfolio investment in finance
and represents the relationship between risk and return, which
together determine the price of the security [11]. We convert
the relationship among systemic risk, investor-required rate
of return, and securities pricing in economics into the rela-
tionship among population volatility, the goal of convergence
and the setting of parameters in our method. The exploitation
ability of the genetic loci with less entropy is enhanced while
the genetic loci with larger entropy focuses on exploration
through SML. It can maintain the solutions of good quality
and eliminate the solutions of poor quality. In the meantime,
parameters are set based on SML, according to the perfor-
mance of each individual.

A set of experiments are performed to verify the valid-
ity of the proposed self-adaptive parameter control method.
The approach is hybrid with both genetic algorithm (GA)
and particle swarm optimization (PSO). Firstly, the hybrid
algorithms are compared with the standard algorithms in
multipeak test functions with different dimensions which are
similar to the scheduling problem in the attribute to ver-
ify validity. Then, the algorithms are compared with other
variants of the standard algorithms in both single and mul-
tiobjective real-world problems, including test task schedul-
ing problem (TTSP), flexible job-shop scheduling problem
(FISP) and parallel machine scheduling problem (PMSP).
To compare the performance of these algorithms more fairly,
we use the iterations and the maximum running time as
the termination conditions separately. The results indicate
that the approach helps meta-heuristic algorithms find better
solutions in different types of scheduling problem regardless
of the termination conditions. The larger the scale of the prob-
lems is, the more significant the effect of the improvement is.

The remainder of this paper is organized as follows.
The related work is reviewed in Section 2. In Section 3,
we introduce the concept of scheduling problem. In Section 4,
the Framework of the self-adaptive method based on entropy
and SML is described in detail. In Section 5, the performance
is evaluated in multipeak benchmark functions, and both
single and multiobjective scheduling problems.
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Il. RELATED WORK

There are a wide variety of meta-heuristic algorithms intro-
duced to scheduling problems. Parameters control of these
algorithms is one of the most long-standing big challenges
and the research has never stopped since the last century.
Generally, parameter setting of meta-heuristic algorithms can
be divided into parameter tuning and parameter control [12].
In parameter tuning, the values of the parameters are static
after being set up, while in parameter control, the parame-
ter values are constantly changing when the algorithm runs
[13], [14]. One of the major disadvantages of parameter tun-
ing, compared to parameter control, is the lack of flexibility
and relevance, as population changes dynamically during the
search process while parameters remain unchanged, prevent-
ing the population from being updated accurately. Contrary
to parameter tuning, parameter control is far from being thor-
oughly researched [15]. The methods of parameter control
have generally been classified into three categories since
1999 [8], including deterministic, adaptive and self-adaptive
methods. The classifying method has been widely adopted by
scholars.

Deterministic parameter control refers to adjusting the
parameters according to some deterministic rules, such as
fixed schedules or iterations of algorithms [16], [17]. The
rules adjust the parameters in a fixed and predetermined
way without using any feedback from the search process.
Due to the strong randomness of meta-heuristic algorithms,
it is difficult to predict when the algorithms will converge
before they run, so this method is simple and inaccurate but
less timely and easier to control. Typically, as the number
of iterations increases, the mutation demand is reduced in
the genetic algorithm to promote the convergence of the
algorithm. Joines and Houck proposed a dynamic penalty
function, where the penalties are increased according to an
external cooling scheme [18]. Costa et al. investigated the
potential of a simplistic deterministic control schedule of
monotonous growth or shrinkage to adjust the population
size [19]. For scheduling problems, some deterministic meth-
ods inspired by the Boltzmann distribution were used to
guarantee asymptotic convergence to the global optima [20].
The main disadvantages of deterministic parameter con-
trol are that the method requires a significant amount of
manual setting and the values are dependent of the special
problems [21].

Adaptive parameter control means that the parameters are
adjusted by the state of the algorithm at runtime, such as
the fitness of solutions [22], [23]. The direction and mag-
nitude of the parameter adjustment are determined by tak-
ing one or more states as feedback. The parameter values
are adjusted based on the feedback. The process is shown
in Fig. 1. An interesting model of adaptive parameter control
is presented, in which the optimization process and the con-
trol process are divided into four steps, including feedback
collection, parameter effect assessment, parameter quality
attribution and parameter value selection [9]. McGinley et al.
used the diversity of the population as the feedback to adjust
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FIGURE 1. The basic process of adaptive parameter control.

the tournament size, reaching a bigger tournament size in the
case of a high diversity and a smaller tournament size in the
case of a low diversity [24]. Srinivas and Patnaik proposed
an adaptive approach to control both mutation and crossover
rates in genetic algorithms [25]. To ensure the diversity and
convergence of the population at the same time, the differ-
ences in the parent’s fitness with the best convergence and
the grade of convergence were regarded as the feedback to
define the crossover rates when the offspring is produced. The
disadvantage of this method is that it is hard to establish a
direct connection between the parameters in the next gener-
ation and the parameters in the current generation, leading
to great changes of the parameters and instability of the
algorithms.

Self-adaptive parameter control means that the search for
the optimal solution is combined with parameter adjust-
ment, compared to adaptive parameter control. It was orig-
inally introduced by Rechenberg and Schwefel in 1974 [26].
The method encodes the values of the parameters into the
chromosomes and evolves with the solutions simultaneously
[27], [28]. The feedback mechanism is the core of both adap-
tive and self-adaptive parameter control, directly affecting
the results of parameter control. The feedback collection
mechanisms can be divided into six categories, including
collecting the information of the fitness function, collecting
the difference among solutions based on entropy, collecting
the solution components of a single solution, collecting the
diversity of the solution components in a population of solu-
tions, collecting the violations of constraints and collecting
the computations in the optimization process. In the early
stages of research, Davis proposed that the performance of the
algorithm is estimated as the difference in fitness between a
created solution and its parent [29]. In recent years, Maturana
and Saubion used the weighted sum of the fitness improve-
ment as the feedback of the algorithms [30]. The diversity-
guided evolutionary algorithm used a distance-to-average-
point measure to alternate between the phases of exploration
and exploitation [31].

However, the parameter control methods still face several
difficulties. First, some studies have focused on using statisti-
cal properties, such as average and variance, as the feedback
to control parameters. According to Aldeida Aleti, more than
86% of the methods of adaptive parameter control use the
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fitness improvement of the solutions as the feedback of the
performance of the algorithm [9]. However, the statistics in
these methods are unstable, so that these methods cannot
completely avoid the effects of the randomness of the meta-
heuristic algorithms. Second, failing to adjust the state of
some certain genetic loci and only considering the whole
population or each individual lead to a lack of diversity in
the population. The performance of each gene will directly
affect the quality of the final solution. If the genes of each
individual are not taken seriously, the individual will not
be close to the optimal solution once some of the genetic
loci converge prematurely. Third, the methods of parameter
control are always tailored. The generic control methods are
rarely studied, because little is known about the joint effects
of control mechanisms [21]. Although some scholars have
combined the variation control with the selection control in
the genetic algorithm so that the exploring individuals created
under exploration mode with aggressive mutation are given a
fair chance to survive and reproduce, the parameter control
methods for different meta-heuristic algorithms remain to be
studied [24].

Our method can effectively solve these difficulties to solve
scheduling problems. The locus-entropy is calculated to accu-
rately obtain the state of the population. It is targeted to
individuals compared to deterministic and adaptive parameter
control. Meanwhile, we link the random volatility of the pop-
ulation with systemic risk in finance and use market capital
line theory to adjust the parameters adaptively. Furthermore,
the method provides a trade-off between exploitation and
exploration for algorithms to search for a better solution.

lll. SCHEDULING PROBLEMS

Scheduling problems have been widely applied in various
fields, such as the manufacturing industry, service industry,
cloud computing and Internet of Things. They involve finding
a grouping, selection, ordering, or assignment of a discrete,
finite set of objects that satisfies given conditions, typically
the maximum or minimum. The combination of task sequenc-
ing, instrument allocation, program selection and even task
process in a certain scheduling problem produces a combined
explosion effect, so meta-heuristic algorithms are often used
to find near optimal solutions to these problems.

Three types of problems involved in the paper will be
introduced in turn, including test task scheduling problem
(TTSP), flexible job-shop scheduling problem (FJSP) and
parallel machine scheduling problem (PMSP). Our target
is to minimize the total time as much as possible through
reasonable arrangements for all these problems.

The TTSP means that a fixed number of tasks are tested
on corresponding instruments after being sorted and each
being selected a certain scheme for [32], [33]. As the scheme
is selected, the instrument the task occupies and the time it
spends are determined. Since an instrument can only execute
one task, the total time spent on testing this set of tasks can
be calculated after the sequence of tasks and the selection
of schemes are confirmed. In addition, each task must be
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completed without interruption once it starts and some instru-
ments may be occupied at the same time for one test task.

The FJSP is similar to TTSP. A set of independent jobs is
ready to be processed on certain machines. There are differ-
ent sequences for each job, which can be executed on any
machine [34]. The processing time of each sequence depends
on the selected machine. The order of jobs and the choice of
instruments for each sequence are two key factors that affect
the total processing time.

Compared with the TTSP and FJSP, PMSP is relatively
simple. There are a certain number of jobs and machines.
For each job, only one process should be executed on any
machine.

These three problems can be represented by a unified
mathematical model as follows. The problem description,
variable definitions and constraint conditions are taken into
consideration [35].

A. SETS
The sets of the model are peresented as follows.

J = {Ji}fy: 1: The set of jobs or tasks. (N is the number of
jobs.)

M = {Mk}f: 1: The set of machines or instruments. (H is
the number of machines.)

Si = {s7}"_: The scheme set that can be chosen by task i.
(u; is the schg:rrvl_e number of job or task i.)

0; = {0’]

1. The operation set of task i. ( v; is the

. J= .
operation number of task i.)

B. PARAMETERS AND VARIABLES
Parameters and variables of the model are peresented as
follows.

(i, s7): The combination that task i adopts scheme s

(i.5))

Pt The process time of the j™ operation of (i, s?) on
machine k.
aj.(,;‘si): The allocation variable. If the j” operation of

(i.5))

(i, s7) can be processed on machine &, ay "’ is equal to 1,
otherwise 0.

Stjs,'{‘yi)(r"g’): The setup time of machine k from the j*
operation of (i , s;’) to the ¢ operation of (r, s;')

thg’s" ): The completion time of the j” operation on
machine k.
Yign: The adopted scheme of a task. If job i adopts scheme
Y, i is equal to 1, otherwise 0.

(ils)
X
k, ng’x" ) is equal to 1, otherwise 0.

n
Si’

: If the j"* operation of (i , sf’) is proposed on machine

(.57 (r.s
Rjgk
(i, s7) precedes the ¢™ operation of (r,s”) on machine k,
R](;,:’ st is equal to 1, otherwise 0.
L: A large integer.

’): The priority variable. If the j operation of
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C. CONSTRAINT CONDITIONS

When the scheme s} is chosen by the task i, the (j + N
operation can be started only after the completion of the
" operation. The formula of the Constraint can be expressed
as follows.

(@i.s?) (i.s?) (S) (i.s?) (i.s?)

Frope — Fy, 7+ L\ —agi X ) = Plogige
i=1,....,.N; n=1,...,u; j=1,...,vi—1;
k=1,....M; m=1,...,H (D

Ft;,:’sf) _ Ft +L R(l 5 )(V 5 ) > Pt(r ér)X(V 1)
+St(”)(”')x(”), i=1,... N—1I
r=i+1,...,N; sf’:sil,...,s?";
sf:sl,...,s’r"; j=1,...,vi; g=1,...,vs;
k=1,...,H )

(rs?) _ st (i.s7) (r.s7) (ros7) 5 (ros)
Ftoy " —Fp " + L1 =R, = Pt X
@5 (r, s”) (z s”)7 i=1,.

+St ...N—1;
r_l—l—l,...,N,

s?:sl-l,...,s?i; sSt=sl s =1,
g=1,...,vs; k=1,...,H 3)

As shown in Eq. (2) and (3), any two operations cannot be
processed on one machine at the same time. If the operations
from two tasks are arranged on the same machine, the setup
time of the machine is related to the sequence of operations.

Only one scheme can be adopted to solve each task while
each operation of a scheme can only be assigned to one
machine for processing. The formulas of the Constraint are
presented as follows.

u;
D Vi =1,
1
n=1

Ui
(i-57) 5 (i:57) :
Yoap Xy =Yg, i=1,,

n=1

i=1,...,N 4

N;n=1,...u

j=1,...,viik=1,...H (@)
le(,i"‘f) > le(,’("‘f)xl(,j“i), i=1,...,N;
n=1,...u; k=1,...H 6)
(i.s7) (i) :
Frp ™7 < L-X3™"7, i=1,....N;
n=1,...u;; j=1,...,v;
k=1,...H @)
Eq. (6) ensures that the completion time of the first oper-
ation of each task should be no less than its processing time.
According to Eq. (7), if the j operation of one task is not
assigned to machine &, the completion time of this operation
on this machine is 0.

C,>ZZFt(”) T N )

k=1 n=1
C;i<D;, i=1,...,N )
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F = 00 v =01 X0 = 0,1,

i=1,....N;n=1,...u;; j=1,...,v;

k=1,...H (10)
J(,j;)(”')_01 i=1,...,N—1

r=i+1,...,N; s?:s},...,s?i;

s’}:si,...,s?";

j=1..,vii g=1,...,v;

k=1,....H (11

Eq. (8) determines the completion time of each task based
on other variables. The condition that each task can be com-
pleted before the deadline is ensured by Eq. (9). The range of
variables is defined in Eq. (10) and (11).

D. OBJECTIVE FUNCTION
The makespan is the objective function and can be written as
follws in Eq. (12).

Fopj = min{max(C;)} (12)

IV. THE FRAMEWORK OF THE SELF-ADAPTIVE
PARAMETER CONTROL METHOD BASED

ON ENTROPY AND SML

The framework of the self-adaptive parameter control method
based on entropy and SML is shown in Fig. 2. The core of the
approach includes a locus-entropy strategy and a parameter-
control strategy based on SML. The state of different genetic
loci is evaluated through the locus-entropy firstly to track
the status of population. It avoids the impact of random-
ness of the algorithm and tracks the development of each
gene in time to prevent premature and nonconvergence on
a certain gene, because the entropy is a measure of uncer-
tainty, not specific content. Then, the parameters are adjusted
under the guidance of the conception of SML to maintain
the solutions of good quality and eliminate the solutions of
poor quality. In the strategy, the relationship among systemic
risk, investor-required rate of return, and securities pricing
in economics is converted into the relationship among pop-
ulation volatility, the goal of convergence and the setting of
parameters in SML.

These strategies are tightly linked to adjust parameters
adaptively without introducing new parameters according to
the changes in population status during algorithm iteration.
Meanwhile, the method is universal, which means it can be
integrated with various meta-heuristic algorithms to improve
the algorithms’ capability to find multiple optimal solutions.
Through these strategies, not only the convergence of popula-
tion is accurately tracked, but also the diversity of the popula-
tion is well preserved. The adjusted parameters can guide the
population iteration to find better solutions more effectively
in scheduling problems. The strategies of our method are
proposed in turn in the following subsections, along with the
meta-heuristic algorithm hybrid with the approach presented
in Section 4.3.
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g Parallel Machine
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Algorithms _ _ _
[ pi(t1)-pp p(t—1)—py | pi() —py nu(t) — vy
0 ©)
Other Algorithms A parameter-control strategy based on SML
Meta-heuristic 2 i .
The Framework of proposed Self-adaptive Parameter Scheduling problems

algorithms

Control Method

FIGURE 2. The framework of self-adaptive parameter control in meta-heuristic algorithm based on entropy and security market line.

A. A LOCUS-ENTROPY STRATEGY

The scheduling algorithms find solutions by searching, so the
solutions of each generation are random. It is hard to eval-
uate the status of the population objectively when fac-
ing various scheduling problems with different dimensions
and distribution. The lack of supervision and adjustment
of some genes will affect the performance of the algo-
rithm to solve scheduling problems. The information entropy
provides a fairer way to assess the status of each genetic
locus effectively and ensure the diversity of all loci in our
method.

The concept of entropy originated in physics was used to
measure the degree of disorder of a thermodynamic system.
In information theory, entropy, as a measure of uncertainty,
is the average amount of information contained in each mes-
sage received. The probability distribution of events and the
amount of information of each event constitute a random
variable. The meaning of this random variable is the average
amount of information generated by this distribution. The
higher the entropy, the more information can be transmitted,
and the lower the entropy, the less information is transmitted.
Entropy only takes into account the probability of observing
a specific event, so it can reflect the status of algorithms
objectively. The information it encapsulates is the underlying
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probability distribution, not the meaning of the events them-
selves.

In scheduling problems, the information on a gene of an
individual represents a scheme of a single task, the number
of whose schemes is limited after the genes are decoded.
A method of assessing the status of each genetic locus based
on entropy is provided below. The flow chart is presented
in Fig. 3.

Provided that there are M decision variables in each indi-
vidual, Schememm(i’h), (1 < m < M) is the scheme on the
m'™ gene of the i individual. It can be decoded according
to specific problems. For example, if there are 20 tasks to
be tested and 8 machines available in a test task scheduling
problem, the decision variables of an individual are composed
of 20 genes, as each gene locus corresponds to a task. After
decoding, the scheme Scheme,, (i) on the m™ gene of the
i individual contains the task information of the execution
order and machine used.

According to the decoded schemes, the locus-entropy,
is shown on the right side of Fig. 3. If j is the number of
different schemes of all individuals on the m" genetic locus,
Jj different schemes can be denoted by Num(Scheme,m =
k), (1 < k < j). The probability p_ci, (1 < k < j) of the
scheme Scheme,,» = k can be easily calculated. The entropy
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I Gene, (1)) Geney(ly) Genes(I) Genep.((Iy) Geney(l))
L Gene (L) Geney(1,) Genes(1,) Geney. (1) Geney(l»)
In Gene(Iy) Geney(Iy) Genes(Iy) Geneyy((Iy) Geney(Iy)
Decode the genes The Entropy of a single locus
f_’ Schemey(1;) Schemey (1) Schemep(15) Schemep(Iy)
| L
I, Scheme(l}) Schemey(l;) Scheme(l; l \ / / /
I,  Scheme((l,) Schemey(l,) Schemey(1, Num(Schemey=a) Num(Schemey=b) Num(Schemey,=j)
In  Scheme(Iy) Schemes(Iy) Schemey(Iy P_C1 p_¢ P_Cj

Decision variables

Calculate entropy
of each locus

€_Cnm

J

e o ‘

€ C € C ©_Cm-1

FIGURE 3. The flow chart of assessing the status of genetic loci based on entropy.

of m™ genetic locus can be represented by e_c,,.

i
e_cm =y p_ck -logy(p_cx)
k=1

The average entropy of whole loci can be represented
by e_c.

M

> e_cm
m=1

M

According to the definition of information entropy,
the maximum of e_c,, is log,j, and the minimum is 0. In other
words, once the number of schemes is determined, the range
of e_c,, is also determined. Therefore, the value reflects the
convergence degree accurately. If the value of e_c,, is lower
than @_c, it means that the diversity on m"” genetic locus is
poor and needs to be improved by increasing the exploring
ability on the genetic locus. Otherwise, it means that the
convergence on m" genetic locus should be improved.

e_c=

B. A PARAMETER-CONTROL STRATEGY BASED ON SML

After calculating the locus-entropy, the theory of security
market line is applied to adjust parameters adaptively. The
security market line is a conception in finance, which repre-
sents the relationship between risk and return, which deter-
mines the price of the security. In our method, SML is used
to measure the relationship between system volatility and
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previous generation parameters, which determines the value
of current parameters.

Security market line is the representation of the capital
asset pricing model. It displays the expected rate of return
of an individual security as a function of systematic, non-
diversifiable risk. The risk of an individual risky security
reflects the volatility of the return from security rather than
the return of the market portfolio. The risk in the market port-
folio reflects the systematic risk. SML is a line on which every
point represents a certain portfolio composed of only risk-
free assets and the market portfolio. The difference among
these portfolios lies in the proportion invested in the market
portfolio, which in turn determines the risk and return. Every
correctly priced asset should find its risk and return profile
in accordance with that of a point on SML. SML can be
easily used to model and derive expected return from the
assets or portfolio. The definition is shown in the following
formula.

Ri = Ry — Bi(Ry — Ry)

R; is the expected return on the security. Ry is the risk-free
rate and represents the y-intercept of the SML. B; is a non-
diversifiable or systematic risk. It is the most important factor
in SML. Ry is expected return on market portfolio. Ry — Ry
is known as market risk premium.

Bi, as an important factor in the SML equation, is a measure
of the volatility, or systematic risk, of a security or a portfolio
in comparison to the market as a whole. The market can
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FIGURE 4. A parameter-control strategy based on SML.

be considered as an indicative market index or a basket of
universal assets.

If B; = 1, it means that the stock has the same level of risk
as the market. A B; greater than 1 represents an asset riskier
than market. A B; less than 1 represents an asset less risky than
market. Although B; provides a single measure to compare
the volatility of an asset with the market, it does not remain
constant with time.

In our method, we convert the relationship among systemic
risk, investor-required rate of return, and securities pricing in
economics into the relationship among population volatility,
the goal of convergence and the setting of parameters. Based
on the conception of SML, individuals with better fitness are
more likely to be retained to the next generation in the popu-
lation, while individuals with poor fitness are more likely to
be changed or replaced in the algorithms, The strategy will
be actively guided to find solutions. A parameter on a single
locus is determined through the following two steps.

Firstly, the average parameter level of the whole population
at each locus is calculated, as shown in Fig. 4(1). The formula
is as follows.

Pit) = pr + Bu(®) - [Pt = 1) = py]

pi(t) is the average parameter level of the whole population
at each locus in " generation. pr is the basic value of the
parameter, and each parameter cannot be less than py. B,(¢)
represents the convergence of the m™ gene locus.

e_c(1)
e_cpm(t)

e_c(t) represents the average entropy of whole loci, while
e_cp(t) is entropy of the m™ genetic locus. If B,,(f) is larger
than 1, it means that the convergence on the gene locus is
better and the diversity needs to be improved, so p;(¢) on the
m'™ genetic locus in the 1 generation will be much larger.

:Bm(t) =

VOLUME 8, 2020

Otherwise, if §,,(¢) is less than 1, it means that the diversity
on the gene locus is better and the convergence needs to be
improved, so p;(t) will be smaller.

Secondly, the parameter value at the m™ locus of the n™
individual is calculated, which is shown in Fig. 4(2). The
formula is as follows.

P, (1) = pr+B() - [Pi(t) — pr]

Pm, (t) is the parameter value at the m™ locus of the n'"
individual. B(r) represents the volatility of the n”* individual.
The formula is as follows.

0}
0

f(t) is the average fitness of the " generation in the popu-
lation, while f,,(¢) presents the fitness of the n™ individual in
the 1™ generation. The larger A(t) is, the larger DPm, (1) will be.
The strategy helps us keep best solutions of the scheduling
problems and change the value of the poor solutions based
on the information of entropy and fitness value. The method
allows parameters to be adaptively adjusted, so the algorithms
are more likely to find a better solution while maintaining the
balance between exploration and exploitation.

p) =

C. META-HEURISTIC ALGORITHMS HYBRID WITH THE
PROPOSED METHOD BASED ON ENTROPY AND SML

In this subsection, the process of meta-heuristic algorithms
hybrid with the proposed method based on entropy and SML
is presented. The pseudo-code of the whole process is given
in Table 1. The flow chart is shown in Fig. 5.

The structure of the standard meta-heuristic algorithms is
not changed by the proposed method. The proposed method
only uses the information of decision variables and the quality
of each individual for parameter adjustment. As a result,
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Process of meta-heuristic algorithms hybrid with the

Algorithm Process of standard
status meta-heuristic algorithms proposed method based on entropy and SML
End End
Initial / e e / / Initialize the population /
Stage and parameters
Iteration Terminate? Terminate?
Condition
N
Iteration / P — / Evolute or search /
Strategy l
Evaluation
Population ﬁ/ Calculate the fitness / Calculate the fitness /

I
l { Original fitness

’ A locus-entropy strategy

Updated l
parameters

‘ A locus-entropy

A parameter-control strategy

based on SML

The proposed Self-adaptive Parameter Control
Method

FIGURE 5. The flow chart of meta-heuristic algorithms hybrid with the proposed method based on entropy and SML.

TABLE 1. The pseudo code of meta-heuristic algorithms hybrid with the
proposed method based on entropy and SML.

The whole process of meta-heuristic algorithms hybrid with the
proposed method based on entropy and SML.

Step 1: Initialization.

Generate the initial population randomly.

Step 2: Iteration. (¢ is the label of the iteration.)

Fort =1to N.

2.1 Update each individual according to special search operations for
different algorithms.

2.2 Calculate the original fitness by the fitness function.

2.3 Calculate the entropy of each genetic locus and the average
entropy of all loci.

2.4 Update the parameters based on security market line and
the feedback.

End For

Step 3: Termination. Terminate the algorithm and output the best

solution found so far, if the termination condition is satisfied.

the versatility of the method is guaranteed. Each step is
tightly connected, enabling parameters to adaptively adjust
according to the population status.

V. EXPERIMENTS

We have conducted a series of experiments on multipeak
benchmark problems and scheduling problems to evaluate the
proposed methods based on entropy and SML hybrid with GA
and PSO (ESGA and ESPSO). The algorithms equipped with
our method is first compared with the standard meta-heuristic
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algorithms in the benchmark problems to show that it is valid.
Then, our method is compared with some other methods in
three typical scheduling problems to verify the performance,
including FJSP, PMSP and TTSP.

Since the application of meta-heuristic algorithms is
very extensive, different users have different requirements.
In other words, different users have different tolerances for
time and performance. Therefore, to evaluate algorithms
more objectively and fairly, all algorithms are compared at
the same computational time and the same iterations in the
following experiments.

All the noncontrolled parameters are fixed in the experi-
ments. The population size is 100. If the stopping condition
of the algorithm is the computational time, the maximum
computational time is 1 second in the case of removing
the decoding time due to different decoding times for dif-
ferent problems. If the number of generations is used as
the stopping condition, the maximum number of generations
is 1000. In addition, the mutation rate and crossover rate of
the standard GA are 0.1 and 0.9, while the inertia weight and
acceleration factor of the original PSO are 0.9 and 2.

All the experiments are conducted on a 64-bit computer
with two Intel(R) Xeon(R) CPU E5-2620 @ 2.1 GHz and
128 GB of RAM on Windows10 Enterprise Edition. All the
algorithms are implemented in MATLAB 2018a. They are all
serial computing and no parallel computing is used.
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A. EXPERIMENTS ON MULTIPEAK

BENCHMARK PROBLEMS

Six benchmark problems are used to evaluate the perfor-
mance of the proposed method. They are the Ackley function,
Griewank function, Michalewicz function, Rastrigin func-
tion, Schwfel function and Levy function. The features of
these functions are similar with scheduling problems, includ-
ing scalability, separability, multimodality and local optimal-
ity. To measure the effectiveness in problems of different
scales, the experiments are conducts on the benchmarks when
the dimensions are 5, 10 and 30.

The function expression, search range and optimal value
of each multipeak benchmark problem can be found in [36].
Functions become increasingly complicated as the number of
dimensions increases. Here, we use the mean of all the best
fitness values found in 500 times (MBF) as the evaluation
index. ESGA is compared with the original GA, while ESPSO
is compared with the original PSO.

To compare the performance of different algorithms more
intuitively, the MBF at the same computational time and the
same generation is fitted to a curve in the figures, and the
mean of the best fitness found when meeting the termination
condition is marked at the end of the curves. In each figure,
the horizontal axis is the iterations or time and the vertical
axis is the MBF. The solid red line represents the convergence
curve of ESGA or ESPSO, while the blue dashed line repre-
sents the convergence curve of GA or PSO.

1) EXPERIMENT ON GA AND ESGA

When the dimension is 5, the comparisons of the MBFs
between GA and ESGA are shown in Fig. 6 and Fig. 7.
Regardless of using the time or number of iterations as the
termination condition of the algorithm, ESGA always finds
better solutions in all the problems than GA. In the meantime,
the convergence speed of ESGA is faster than that of GA.

FIGURE 6. Comparison of MBFs in the same generation between GA and
ESGA on benchmark problems when the dimension is 5.

In almost all the problems, ESGA approached the optimal
solutions with less than 200 generations and 0.2 seconds.
Among these problems, the Schwfel function exhibits largest
difference in performance between ESGA and GA, while the
Levy function shows the smallest.
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FIGURE 7. Comparison of MBFs in the same time between GA and ESGA
on benchmark problems when the dimension is 5.

When the termination condition is the maximum iterations,
the gaps between ESGA and GA are 5.3529, 0.0376, 0.323,
0.6564, 517.628 and 0.4084 in these functions. When the
termination condition is the maximum computational time,
the gaps between ESGA and GA are 3.3297, 0.0038, 0.1393,
0.2123, 299.3179 and 0.2006. Even though the dimension is
not large, it is difficult for GA to jump out of the local optimal
solutions.

FIGURE 8. Comparison of MBFs in the same generation between GA and
ESGA on benchmark problems when the dimension is 10.

FIGURE 9. Comparison of MBFs in the same time between GA and ESGA
on benchmark problems when the dimension is 10.

When the dimension is 10, the comparisons of MBFs
between GA and ESGA are shown in Fig. 8 and Fig. 9. The
MBFs of ESGA are still close to the optimal solutions for
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these problems. It means that ESGA avoids falling into the
local optimal solutions in most cases and constantly search
for the global optimal solution. Meanwhile, our strategy will
not suppress the convergence of the population. Although the
dimension has become larger, ESGA can lock down to the
optimal solutions and stay stable with less than 600 gener-
ations and 0.4 seconds. The gaps between ESGA and GA
are further widened under all situations. For the Schwfel
function, since the search space of the function is much
larger than the other functions, ESGA performs especially
better than GA. The differences of MBFs between them
reach 1354.1082 in the same generation and 628.9495 in the
same time. Although GA shows a downward trend, it is very
difficult to find satisfactory solutions.

When the dimension is 30, the comparisons of MBFs
between GA and ESGA are shown in Fig. 10 and Fig. 11. The
difference between the performance of the two algorithms is
apparent. The advantages of ESGA are further magnified in
the high-dimensional test functions.

FIGURE 10. Comparison of MBFs in the same generation between GA and
ESGA on benchmark problems when the dimension is 30.

FIGURE 11. Comparison of MBFs in the same time between GA and ESGA
on benchmark problems when the dimension is 30.

When the termination condition is the maximum itera-
tions, the smallest gap between two algorithms is 1.4671,
while the largest difference between the two algorithms is
5991.5344. When the termination condition is the maximum
computational time, the smallest gap between two algorithms
reaches 0.2792, while the largest difference between the two
algorithms reaches 2872.2453. ESGA ensures the users find
better solutions with less time.
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FIGURE 12. Comparison of MBFs in the same generation between PSO
and ESPSO on benchmark problems when the dimension is 5.

FIGURE 13. Comparison of MBFs in the same generation between PSO
and ESPSO on benchmark problems when the dimension is 5.

2) EXPERIMENT ON PSO AND ESPSO

When the dimension is 5, the comparisons of MBFs between
PSO and ESPSO are shown in Fig. 12 and Fig. 13. From
the figures, we can see that the MBFs of both PSO and
ESPSO are close to the optimal solutions. When the stop-
ping condition is the maximum iterations, the MBF of
ESPSO is better than that of PSO on five of these func-
tions, while the performance of PSO is better on the Ackley
function. Both algorithms converge quickly, but ESPSO is
faster. The smallest gap between them is ten to the negative
eleven.

When the stopping condition is the maximum time, ESPSO
approaches the optimal solution faster than PSO. The dif-
ference between their MBFs is less than ten to the negative
four on four of these functions. For the Ackley and Rastrigin
functions, the performance of PSO surpasses the performance
of ESPSO after 0.4 seconds, but the difference is very small.
ESPSO still performs better on the other functions.

Tracing the reason why PSO performs better than ESPSO
on the Ackley and Rastrigin functions, we think that the
functions are simpler than the other functions and that the
search ability of PSO is already strong. For simple problems,
the requirements of diversity in the algorithms are not strict.
ESPSO has a strong ability to jump out of the local optimal
solution, so the algorithm will still ensure the diversity of
the population during the convergence process. This will
inevitably have a certain impact on ESPSO for simple
problems.
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FIGURE 14. Comparison of MBFs in the same generation between PSO
and ESPSO on benchmark problems when the dimension is 10.

FIGURE 15. Comparison of MBFs in the same generation between PSO
and ESPSO on benchmark problems when the dimension is 10.

When the dimension is 10, the comparisons of MBFs
between PSO and ESPSO are shown in Fig. 14 and Fig. 15.
All the results are consistent on these functions. The MBFs
are improved by 1.1801, 0.0216, 0.5053, 0.5053, 0.0043 and
0.2165 through ESGA in the same iterations, while the
MBFs are improved by 0.0028, 0.0000016, 0.0292, 0.3244,
0.0003 and 0.0056 in the same computational time.

The MBFs found by ESPSO tend to be steady on almost
all functions in fewer than 200 generations and within
0.4 seconds, whereas PSO still does not find the satisfactory
solutions to make the algorithm converge when the stopping
condition is met.

When the dimension is 30, the comparisons of MBFs
between PSO and ESPSO are shown in Fig. 16 and Fig. 17.
The gap between ESPSO and PSO increases gradually as the
number of dimensions becomes bigger.

The differences between the MBFs obtained by ESPSO
and PSO in the same iterations are further expanded
to 11.0212, 26.6251, 10.7784, 127.0589, 2421.7254 and
43.2527. The gap between ESPSO and PSO is enlarged as
the time increases. Until the curve of PSO becomes stable,
the difference between them is reduced but still large.

B. EXPERIMENTS ON DIFFERENT

SCHEDULING PROBLEMS

The test task scheduling problem (TTSP), flexible job-
shop scheduling problem (FJSP) and parallel machine
scheduling problem (PMSP) are three different types of
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FIGURE 16. Comparison of MBFs in the same generation between PSO
and ESPSO on benchmark problems when the dimension is 30.

et 7' 73

FIGURE 17. Comparison of MBFs in the same generation between PSO
and ESPSO on benchmark problems when the dimension is 30.

scheduling problems. Both the single and multiobjective
problems of these three problems are tested separately
below. The mathematical model of TTSP is employed from
[33], [371, [38], including the instances 20x 8,30x 12,40x 12
and 50 x 15. The instances 15 x 3, 15 x 4,20 x 3 and 20 x 4
of FISP are from [38], [39]. Furthermore, the mathematical
model of PMSP and the test instances are derived by [38], [40]
including the instances 20 x 10, 30 x 10,40 x 15 and 50 x 15.
The instance n x m represents that this problem contains n jobs
and m machines.

In the experiments on scheduing problems, ESGA is com-
pared with not only the standard GA but also linear increasing
crossover rate GA (LGA) and GA of entropy-based range
parameter control (EARPCGA). In the same time, ESPSO
is compared with the standard PSO, linear decreasing inertia
weight PSO (LPSO) and PSO of entropy-based range param-
eter control (EARPCPSO).

LGA and LPSO are based on the same parameter control
method [41]. They are the most widely applied GA and
PSO variants, which tend to explore the search space at
early stage of the evolution and exploit at later stage of the
evolution. EARPCGA and EARPCPSO are based on another
parameter control method [42]. Their main contribution is
that parameters with good performance are clustered based
on the entropy to determine the distribution of the parameter
in next generation.
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TABLE 2. Comparison of the performance among different algorithms on TTSP when the stopping condition is iterations.

Instance 20 X 8

Instance 30 X 12

Instance 40 X 12

Instance 50 X 15

BV SR MBF BV SR MBF BV SR MBF BV SR MBF
GA 30 0.02 32.05 36 0.06 37.95 45 0.01 48.09 63 0.01 68.09
LGA 30 0.03 31.91 36 0.07 37.90 45 0.01 48.02 63 0.03 67.05
EARPCGA 30 0.10 31.69 35 0.14 37.71 45 0.03 47.97 62 0.03 67.43
ESGA 29 0.11 31.51 33 0.18 37.31 43 0.08 47.28 62 0.08 66.74
PSO 30 0.06 31.83 36 0.02 38.90 46 0.01 48.91 62 0.02 67.48
LPSO 30 0.07 31.80 35 0.03 38.79 45 0.04 48.46 62 0.01 66.96
EARPCPSO 30 0.07 31.68 35 0.13 37.67 45 0.08 47.68 61 0.02 66.18
ESPSO 29 0.10 31.68 34 0.17 37.55 43 0.22 47.61 59 0.07 65.73

TABLE 3. Comparison of the performance among different algorithms on FISP when the stopping condition is iterations.

Instance 15 X 3

Instance 15 X 4

Instance 20 X 3

Instance 20 X 4

BV SR MBF BV SR MBF BV SR MBF BV SR MBF
GA 79 0.01 88.10 69 0.02 71.79 122 0.01 133.67 147 0.01 160.75
LGA 78 0.02 87.85 68 0.02 77.30 121 0.02 132.52 146 0.02 160.43
EARPCGA 74 0.04 87.46 64 0.03 76.99 118 0.04 132.44 141 0.02 160.04
ESGA 74 0.10 84.66 61 0.20 73.63 114 0.09 128.65 138 0.13 155.73
PSO 79 0.01 87.64 73 0.01 83.64 125 0.01 138.27 139 0.05 158.37
LPSO 78 0.03 87.51 69 0.05 81.64 123 0.03 136.78 139 0.07 154.82
EARPCPSO 77 0.03 87.07 63 0.15 76.49 115 0.10 131.43 137 0.11 153.87
ESPSO 64 0.05 86.11 62 0.19 76.32 114 0.13 130.47 136 0.13 153.12

The crossover rate of LGA starts from 0.6 and decreases
linearly to 1. The inertia weight of LPSO is set to 1.4 and lin-
early decreases to O when the algorithm stops running. Both
of the crossover rate Pc and mutation rate Pc of EARPCGA
are adjusted, their thresholds are [0.5, 1] and [0, 0.5]. The
inertia weight w and acceleration factor ¢ of EARPCPSO
are the control parameters, their thresholds [0.5, 1.5]
and [1.5, 2.5].

1) SINGLE-OBJECTIVE SCHEDULING PROBLEMS
Minimizing the makespan of the scheduling problems is the
optimization target of a single-objective problem. The eval-
uation metrics for the performance of algorithms on single-
objective scheduling problems includes the best value (BV),
the success rate to find the satisfactory solutions (SR) and the
mean of all the best fitness values found in 500 times (MBF).
The comparison of the performance among different algo-
rithms on TTSP when the stopping condition is iterations is
shown in Table 2. In instance 20 x 8, the MBFs of these
algorithms are very close, but the BV of ESGA and ESPSO
is better than that of the other algorithms. The SRs of GA
and LGA are poor, only 0.2 and 0.3, respectively. In instance
30 x 12, the BVs of ESGA and ESPSO are at least 2-unit
time faster than those of other algorithms. The SR of ESGA
is higher than that of GA, LGA and EARPCGA by 12%,
11% and 4%, respectively, while the SR of ESPSO is higher
than that of PSO, LPSO and EARPCPSO by 15%, 14%
and 4%, respectively. The performance of EARPCGA and
EARPCPSO is not bad. In instance 40 x 12, the advantages of
ESGA and ESPSO are significant in all indicators. the SR of
ESPSO is especially outstanding. In instance 50 x 15, the BV
of ESPSO is the only one less than 60. The SR of ESGA and
ESPSO is at least 5% higher than the SR of other algorithms.
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As the examples become more complex, the superiority of
ESGA and ESPSO becomes more significant.

The comparison of the performance among different algo-
rithms on FJSP when the stopping condition is iterations is
shown in Table 3. In instance 15 x 3, all indicators of ESGA
and ESPSO are already ahead of the other algorithms. The
BV of ESPSO is 64, better than the BVs of other algorithms
by atleast 10. In instance 15 x 4, the MBF of ESGA is higher
than that of GA, LGA and EARPCGA by 4.16, 3.67 and
3.36, respectively, while the MBF of ESPSO is higher than
that of PSO, LPSO and EARPCPSO by 7.32, 5.32 and
0.17, respectively. Although the performance of EARPCPSO
is close to that of ESPSO, ESGA is still not as good as
EARPCGA. In instance 20 x 3 and instance 20 x 4, ESGA is
always the best algorithm, followed by ESPSO. EARPCPSO
is close to ESPSO but not as good.

The comparison of the performance among different algo-
rithms on PMSP when the stopping condition is iterations is
shown in Table 4. The performance of ESGA and ESPSO
is remarkable in all the instances. They have many advan-
tages over other algorithms in all indicators. In instance
20 x 10, the SR of ESGA is higher than that of GA, LGA
and EARPCGA by 53%, 50% and 43%, respectively, while
the SR of ESPSO is higher than that of PSO, LPSO and
EARPCPSO by 64%, 64% and 58%, respectively. In instance
30 x 10, the BV of ESGA is 21, and the BV of ESPSO
is 22. However, the BVs of other algorithms are only between
26 to 28. The MBFs of the algorithms based on entropy
and rules of nature are at least 2-unit time better than the
other algorithms. In instance 40 x 15, although the BV of
EARPCPSO is close to the BV of ESPSO, the performance
of these algorithms is still far worse than the performance of
ESGA and ESPSO in the other indicators. In instance 50 x 15,
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TABLE 4. Comparison of the performance among different algorithms on PMSP when the stopping condition is iterations.

Instance 20 X 10

Instance 30 X 10

Instance 40 X 15

Instance 50 X 15

BV SR MBF BV SR MBF BV SR MBF BV SR MBF
GA 17 0.08 19.21 27 0.02 29.96 41 0.02 45.82 54 0.03 58.99
LGA 14 0.11 19.09 27 0.07 29.79 40 0.03 45.53 52 0.06 58.82
EARPCGA 13 0.18 18.63 26 0.06 29. 65 38 0.09 44.74 50 0.08 58.23
ESGA 12 0.61 16.86 21 0.54 27.18 34 0.47 41.54 45 0.47 54.51
PSO 19 0.05 21.69 28 0.02 32.50 44 0.01 53.65 60 0.01 66.55
LPSO 17 0.05 21.28 27 0.02 31.45 44 0.03 50.55 55 0.16 63.66
EARPCPSO 15 0.11 20.71 26 0.17 31.12 38 0.18 47.63 53 0.23 58.40
ESPSO 13 0.69 18.70 22 0.36 29.04 37 0.43 44.52 47 0.53 57.53

FIGURE 18. The MBFs of different genetic algorithms in the same
generation and the same time.

FIGURE 19. The MBFs of different particle swarm optimizations in the
same generation and the same time.

only the values of BV for ESGA and ESPSO are less than
50 and their SR is approximately 50%.

The MBFs of different large-scale problems among dif-
ferent algorithms in the same generation and the same time
are fitted into convergence curves and the figures are shown
in Fig. 18 and Fig. 19. The experiments are carried out in the
largest scale instances of the different scheduling problems.
In Fig. 18, the blue line, red line, brown line and gray line
represent the convergence curve of GA, ESGA, LGA and
EARPCGA respectively. In Fig. 19, they represent the con-
vergence curve of PSO, ESPSO, LPSO and EARPCPSO.

The conclusions of the two figures are consistent. When
the termination condition is the number of iterations, the per-
formance of ESGA and ESPSO is the best, which is followed
by that of EARPCGA and EARPCPSO. The performance of
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GA and PSO is the worst. However, When the termination
condition is the maximum computational time, EARPCGA
and EARPCPSO are considered to be the worst algorithms.
The performance of LGA and GA is similar, and so is the
performance of LPSO and PSO. ESGA and ESPSO are still
the best algorithms in any case.

When the termination condition changes, the performance
of EARPCGA and EARPCPSO is greatly affected. This
is because the principle of EARPCGA and EARPCPSO is
complex. Clustering and other operations in the method are
time consuming. Therefore, EARPCGA and EARPCPSO
have no advantages over other algorithms at the same time
when the termination condition is the maximum computa-
tional time. In contrast, the calculations in ESGA and ESPSO
are very simple and include more targeted adjustments to
parameters.

2) MULTI-OBJECTIVE SCHEDULING PROBLEMS

In addition to minimizing the makespan, the load on the
machines is taken into account at this time. The load on the
machines should be kept as small as possible while look-
ing at minimizing the makespan. Therefore, the objectives
of the problems are minimization of both the makespan
and the average load. The evaluation metric for the per-
formance of algorithms is the hypervolume (HV) indicator
[43], [44]. For solving the multiobjective problems, NSGA-II
and MOPSO are used as the multiobjective forms of GA
and PSO. NSGA-II hybrid with the proposed methods
based on entropy and SML (ESNSGA-II) is compared
with the original NSGA-II, linear increasing crossover rate
NSGA-II (LNSGA-II) and NSGA-II of entropy-based range
parameter control (EARPCNSGA-II) in different scheduling
problems. MOPSO hybrid with the proposed methods based
on entropy and SML (ESMOPSO) is compared with the
original MOPSO, linear increasing crossover rate MOPSO
(LMOPSO) and MOPSO of entropy-based range parameter
control (EARPCMOPSO).

The results of the HV metric are presented in
Tables 5 and 6. The comparison of different genetic algo-
rithms in the same generation in different scheduling prob-
lems is shown in Table 5. When the termination condition
is iterations, ESNSGA-II performs the best, followed by
EARPCNSGA-II. The original NSGA-II is the worst algo-
rithm among them. All experimental results are consistent.
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FIGURE 20. Nondominated solutions of different NSGA-II algorithms in the same generation and the same time.

TABLE 5. HV of different NSGA-II algorithms in the same generation in
different scheduling problems.

Instance NSGA-II LNSGA-II EARPCNSGA-II ESNSGA-II

T 20X 8 19902 23814 2790.5 3068.4
T 30 X 12 26349 32127 4067.8 4334.7
S 40 x 12 38152 40913 4575.7 5002.5
P 50 X 15 3635.6 4163.2 4974.3 5764.0
F 15X 3 40273  4109.7 4639.2 5469.6
J 15X 4 4380.1 45278 4865.5 5651.5
S 20x3 71575 7654.6 8417.1 9663.4
P 20 x4 68241 75957 8170.6 9317.0
P 20 X 10 7303.6  7796.4 7903.1 8811.7
M 30 X 10 5454.4  5915.7 6327.6 7321.1
S 40 X 15 28847.5 32179.0  34084.6 42060.7
P 50 X 15 22382.6 34953.7 39029.7 44185.8

As the scale of the problem increases, the gap between
the algorithms gradually widens. On TTSP, the HV of
ESNSGA-II is better than that of other algorithms by 1078.2,
678 and 277.9 in instance 20 x 8, while their gap has
widened to 2128.4, 1600.8 and 789.7 in instance 50 x 15.
On FJSP, the gap has changed from 1442.3, 1359.9 and
830.4 to 2492.9, 1721.3 and 1146.4. On PMSP, the gap
has changed from 1508.1, 1015.3 and 908.6 to 21803.8,
9232.1 and 5156.1. Although EARPCNSGA-II is not bad,
compared with ESNSGA-II, the gap is still very obvious.
It means that the set of solutions found by ESNSGA-II is the
best from both convergence and diversity viewpoints.

The comparison of different particle swarm optimizations
in the same generation in different scheduling problems is
shown in Table 6. We can obtain the same result as in Table 5.
The solutions obtained by ESMOPSO is of higher quality
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TABLE 6. HV of different MOPSO algorithms in the same generation in
different scheduling problems.

Instance NSGA-II LNSGA-II EARPCNSGA-II ESNSGA-II
T 20 X 8 20587 21709 2581.4 2848.3
T 30 X 12 2539.6 28754 3424.3 4060.2
S 40 X 12 3635.6 4127.6 4792.9 5011.9
P 50 X 15 40152  4467.9 5135.0 5664.8
F 15 x 3 38102 41655 4819.6 5005.7
J 15X 4 46933 4810.6 5440.1 5762.0
S 20X 3 7659.7 8096.1 8807.6 8944.9
P 20 x4 73882 81004 8823.9 9258.8
P 20 X 10 70233  7657.5 8348.6 8678.7
M 30 X 10 5899.9  6105.9 6743.5 6943.3
S 40 x 15 30953.4 33234.8 36446.8 38087.1
P 50 x 15 276129 31353.2  35306.3 40737.8

than by the other algorithms. On TTSP, the value of
HV in ESMOPSO is 789.6, 677.4 and 266.9 more than that
in MOPSO, LMOPSO and EARPCMOPSO, respectively,
in instance. When the scale increases to, the differences
between them become 1649.6, 1196.9 and 529.8 respectively.
The difference between ESMOPSO and EARPCMOPSO is
not very big on FJSP and MPSP, but the HV of ESMOPSO is
the best in all instances.

The nondominated solutions of different algorithms in the
same generation and the same time are shown in Fig. 20 and
Fig. 21. The experiments are also carried out in the largest
scale instances of the different scheduling problems. The
abscissa of these figures is the shortest completion time, and
the ordinate is the load. Red dots, magenta snowflakes, cyan
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FIGURE 21. Nondominated solutions of different MOPSO algorithms in the same generation and the same time.

circles, and blue plus are used to indicate the Pareto frontier
points found by ESNSGA-II, EARPCNSGA-II, LNSGA-II
and NSGA-II in Fig. 20. They are used to indicate the
Pareto frontier points found by ESMOPSO, EARPCMOPSO,
LMOPSO and MOPSO in Fig. 21.

The nondominated solutions found by ESNSGA-II and
ESMOPSO are far better than the solutions by the other
algorithms. EARPCMOPSO is close to ESMOPSO only on
FISP and PMSP when the stopping condition is iterations.
However, when the stopping condition is computational time,
the performance of EARPCNSGA-II and EARPCMOPSO
becomes very poor. They are not even as good as the original
algorithms in most of the instances. We believe that the reason
for this result is that the process of their method is too time
consuming and not as effective as our method.

C. SUMMARY

Although different algorithms have different performances
when facing different types of problems, the algorithms
hybridized with our parameter control strategy perform bet-
ter than the standard algorithms and other two parameter
adjustment algorithms. The advantages of our method are
not evidently reflected in low-dimensional problems, but the
superiority becomes obvious as dimension goes higher. More
importantly, our method performs well under different termi-
nation conditions of algorithms, bringing great convenience
to different kinds of algorithm users. The reason is that our
method analyzes the status of not only the whole population
but also each gene locus, which makes parameter adjustment
more targeted and on time. In addition, our method has a very
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simple calculation process, so it does not consume too much
time.

For almost all benchmark problems, the results indicate
that different kinds of meta-heuristic algorithms hybrid with
the proposed method based on entropy and SML are better
than other algorithms. Our proposed method is suitable for
different dimension and different type of benchmark func-
tions. In addition, when the dimensions of the test functions
are small, the gap between them is not obvious. However,
as the number of dimensions increases, the performance of
our method is better than others. When facing complex func-
tions, our self-adaptive method of parameter control makes
it easy for the algorithms to jump out of the local optimal
solution and approximate the global optimal solution. In the
meantime, the convergence speed of our algorithm is very
fast, so that a good solution is guaranteed to be found in a
short time.

For scheduling problems, the results illustrate the differ-
ences in the quality of solutions for different algorithms. The
proposed approach is more competitive than other methods in
all the metrics. Our method can find satisfactory solutions in a
short time and keep exploring at any stage of algorithms, so it
is very valuable in practical applications. In multiobjective
problems, the nondominated solutions found by our method
are more forward and more balanced. Our method can solve
the realistic scheduling problem well.

VI. CONCLUSION
In this paper, we proposed a self-adaptive parameter con-
trol method based on entropy and security market line for
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scheduling problems. It adjusts the parameters according to
the theory of security market line in finance and uses the
entropy of each gene locus as feedback when adjusting the
parameters. It brings the following advantages. First, since the
value of the information entropy is independent of the content
of the information, it provides a possibility to objectively
evaluate the status of the population and adjust the parameters
self-adaptively when the randomness of the algorithms is
strong. Second, the status information for each locus can be
tracked by the entropy so that the imbalance in the develop-
ment of each gene position can be effectively solved. The
status in algorithms can be measured accurately in differ-
ent type of scheduling problems with different dimensions.
Third, the theory of security market line is applied to address
the issue that the nature of multipeak in scheduling problems
makes algorithms fall into local optimal solutions. It main-
tains the solutions of good quality and increase the possibility
that the solutions of poor quality change. An analogy is
drawn between the system risk of the portfolio in finance
and the diversity of the population in the algorithm, and the
relationship between the parameters and the population state
is established. Fourth, our method is universal, so that it
can be hybrid with various meta-heuristic algorithms. This
brings convenience to the users of the algorithms. Further-
more, our method will not consume too much time, so the
satisfactory solutions will be found in a short time, whether
the termination condition of the algorithms is the number
of iterations or computational time. The experiments illus-
trate that our method is applicable to different meta-heuristic
algorithms. In the meantime, it can solve different scheduling
problems.

Further work will focus on validating our method on
more algorithms to test the versatility. According to the cur-
rent experiments, it also improves the performance of other
algorithms, but the extent of the improvement needs to be
verified. In addition, more real-world problems should be
taken into consideration. Furthermore, exploring other kinds
of parameter control methods is a trend deserving further
research. Finally, visualizing the whole process of parameter
control is also essential for users to keep track of the status of
algorithms.
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