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ABSTRACT Rare objects such as white dwarf+main sequence (WDMS) and cataclysmic variables (CVs)
are very important for studying the evolution of the galaxy and the universe. The large amount of spectra
obtained by the large sky surveys such as the Sloan Digital Sky Survey (SDSS) are rich sources of these rare
objects. However, a considerable fraction of these spectra are low-S/N spectra. These low-S/N spectra contain
similar useful information as the high-S/N spectra, and making better use of these spectra can significantly
improve the chance of finding rare objects. Nevertheless, little research has been done on them. In this study
we propose a novel method based on the combination of PCA (Principal Components Analysis) and CFSFDP
(Clustering by Fast Search and Find of Density Peak) to search for rare objects from low-S/N spectra.
The PCA first extracts principal components from high-S/N spectra to generate general feature spectra and
reconstructs low-S/N stellar spectra with these general feature spectra. Then the CFSFDP calculates the Local
Density p and the Distance § of the reconstructed spectra, and select the outliers through the decision graph
quickly and accurately. We first apply our method to spectra in SDSS stellar classification template library
with adding white gaussian noise to search for rare objects (carbon stars, carbon white dwarfs, carbon_lines,
white dwarfs and white dwarfs magnetic). Then we apply our method to observed spectra with different
low-S/Ns from SDSS and compared with Lick-index+K-means and Support Vector Machines (SVM). The

experimental results show that our method has a higher efficiency compared to other methods.

INDEX TERMS SDSS, stellar spectra, machine learning, rare object search.

I. INTRODUCTION

Detecting and analyzing rare objects are important for study-
ing the Galactic and extra-galactic structure and evolution.
Cataclysmic variables (CVs), for example, is critical to under-
stand many astrophysical problems such as black holes and
supernovae type Ia [1]. Multi-object spectroscopy has greatly
improved the observation efficiency and large data sets have
been obtained from wide-field spectroscopic surveys. Such
large data sets provide us with more samples to search for
rare objects.

Traditional methods of searching for rare objects are
mainly colour-colour (CC), colour-magnitude (CM) dia-
grams and atmospheric parameters, and so on, where var-
ious types of objects (like stars and galaxies) appear in
separate areas due to differences in observed colours and
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parameters [2]. CVs are close binary systems that is com-
posed of a white dwarf and a late-type main-sequence com-
panion. They are central to our understanding of compact
binary evolution. P. Szkody et al have identified 285 CVs
from SDSS Early Data Release (EDR) with using photo-
metric criteria [3]. Since CVs white dwarfs are relatively
hot objects (Teff <10000 K), A. F. Pala et al used effective
temperatures of white dwarfs as a probe of cataclysmic
variables evolution [4]. M. R. Kennedy et al presented
X-ray emission-line measurements to verify a CVs [5].
R. Ridden-Harper identified CVs candidates from the
K2/Kepler Campaign 11 field equivalency by using
width (EW) and light curve [6]. A. S. Oliveira et al found
13 previously unreported CVs by exploiting magnitudes
from CRTS [7]. J. J. Wallace et al extract light curves for
4554 objects from K2 superstamp observations and found
72 new variables [8]. A white dwarf (WD) primary and
a main-sequence (MS) companion star are referred to as
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white dwarf4+main sequence (WDMS) binaries, which is
considered to be possible progenitors of Type Ia supernova
and important for cosmological studies. J. J. Ren et al
presented the data release (DR) 5 catalogue of WDMS
from LAMOST. The catalogue contains 357 WDMS that
have not been published before [9]. F. M. Jimenez-Esteban
presented a catalogue of 73221 white dwarf candidates
extracted from Gaia-DR2 catalogue by using the astrometric
and photometric data [10]. M. Perpinya-Valles et al reported
the discovery of J1953-1019, the first resolved triple white
dwarf system based on Gaia DR2 photometry and astrometry
combined with the follow-up spectroscopy [11], and many
other authors also detect the WDMS from various astronom-
ical data [12]-[16]. In addition, Lei et al identified 294 hot
subdwarf stars from LAMOST DRS [17] and 182 single-lined
hot subdwarf stars by using atmospheric parameter and spec-
tral lines from LAMOST DR6 and DR7 [18]. Wang et al.
proposed a method based Lick-index for excavation and
analysis of outliers from massive stellar spectra [19]. Li et al.
used spectral lines to find six new Oe stars and four new BOe
stars in LAMOST DRS5 [20].

Today’s various sky survey projects contain the order of a
million catalogued sources each, which means that the tradi-
tional ways of dealing with the resulting catalogues by direct
human inspection are not practicable. Therefore, machine
learning methods have emerged for searching for rare objects
from these survey projects [21]-[28].

The quality of the spectra obtained by large sky surveys
such as SDSS and LAMOST [29]-[32] has been significantly
improved. However, the low-quality spectra still occupy
a considerable proportion. These spectra show significant
quality defects such as large noise, unobvious spectral line
features, low signal-to-noise ratio (S/N), continuum anoma-
lies, and splicing anomalies. Among them, low-S/N spectra
account for a great part. The processing and analysis of these
low-S/N spectra are of great significance for the improvement
of spectral utilization, multi-band cross-validation and the
discovery of rare celestial bodies.

Due to the difficulty of analyzation, little work has been
done on the low-S/N spectra. Difficulties mainly include two
aspects: (1) the features of the low-S/N spectra are usually
hidden in the background noise, which are difficult to detect,
and they are easy to fall into overfitting when training low-
S/N samples and the accuracy will be affected; (2) good
method to evaluate the results of denoising is absent. To deal
with the first problem, we randomly select high-S/N spectra
covering varies subclasses of the spectra from SDSS DR14.
Then we apply PCA to these spectral samples to build a
general feature spectral library, and utilize the general feature
spectral library to reconstruct the low-S/N spectra. To deal
with the second problem, we collect a set of stars each of
which has both high-S/N and low-S/N spectra. We apply
the PCA to the low-S/N spectra to reduce the noise, and
then compare it with the corresponding high-S/N spectra to
evaluate the effect of denoising. In addition, most of existing
studies are supervised methods that can only detect some
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specific types of rare objects at a time, and they require
large time and space complexity. As an unsupervised method,
our method is faster than other methods due to avoiding the
selection of cluster centers.

The structure of the paper is as follows. Section II
reviews the related work about rare objects in astronomy.
Section III introduce the method and principle used in the
paper. In Section IV and Section V, we discuss the imple-
mentation of the method. We use this method to search
for CVs and compare to lick-index+K-means and Support
Vector Machines (SVM) in Section VI. Finally, we give our
conclusions and the application prospect of this method in
Section VII.

Il. RELATED WORK

Rare objects search based on machine learning in astronomy
could be summarized in two aspects: supervised learning
and unsupervised learning. In this section, we summarize the
recent research trend and describe some approaches that are
usually used for rare objects search in astronomy.

A. SUPERVISED LEARNING

Supervised learning algorithms that employ existing label
data to learn feature efficiently that can be used to detect
outliers, like Line Regression, Artificial Neural Networks
(ANN), SVM and Random Forest. In supervised learning,
most algorithms detect rare objects by measuring uncertainty
and classification probability [33], [34].

Linear Regression method is one of the simplest meth-
ods, but it can only capture linear features. ANN are a set
of algorithms with structures that are vaguely inspired by
the human brain. The flexible structure and non-linearity of
ANN make it popular in Astronomy [35]-[37]. However,
ANN have many hyper-parameters, and they usually require
a large amount of data to train on. SVM is one of the most
popular supervised learning for outlier detection, especially
one-class SVM. However, one-class SVM is suitable for
data with a handful of features, so it can be only applied to
derived features of astronomical observations such as images,
light-curves, or spectra. In addition, the kernel shape and
free parameters need to be chosen for the resulting decision
function [20], [38], [39]. Random Forest is trained to pre-
dict the class of previously unseen objects according to the
classification probability [21]. For example, an object that is
classified as a star with a probability of 0.65 is probably more
anomalous than an object that is classified as a star with a
probability of 0.85. Therefore, the outliers are usually defined
as ““shout the loudest” [40]. The Random Forest generalizes
well to previously unseen data. The main disadvantage of
Random Forest is its inability to take into account feature and
label uncertainties.

B. UNSUPERVISED LEARNING
Unsupervised learning of rare object search can be roughly
divided into clustering analysis and dimensionality reduction.
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In clustering analysis, one can define outliers that have
a large distance from other objects. In general, Euclidean
distance is used as metric, but, in some cases, it might not
result in an optimal performance. Therefore, other metrics
should be considered, such as the unsupervised Random For-
est based distance [41], cross correlation based distances [42]
and cosine distance. K-means method is one of the most
widely used clustering methods. It is often used in astronomy
to study stellar and galaxy spectra, X-ray spectra, asteroids
spectra, and so on [18], [43], [44]. However, K-means is
not optimized to detect outliers, which needs to randomly
select k objects as the initial centroids and repeat iteratively
until reaching convergence. In addition, there are also some
other clustering algorithms that have been applied to various
astronomical problems, such as Hierarchical clustering and
Gaussian Mixture Models [45]-[48].

In astronomy, another way of outlier detection is dimen-
sionality reduction. Principal component analysis (PCA) has
been widely used in the field of astronomy. Whitney et al.
used PCA for spectra classification and error analy-
sis [49], [50]. Singh et al. and Qin et al. used PCA to per-
form stellar spectra classification, respectively [51], [52].
Williamson et al. used PCA to detect outliers in stripped-
envelope SN spectra [53]. While PCA is widely in astronomy,
it allows for negative values in the feature spectra. However,
in most astronomical applications, negative feature spectra
are not physical, because we only have a sum of positive flux
contribution from different sources, and there is no negative
flux. Therefore, in many cases astronomers use nonnegative
matrix factorization (NMF), instead of PCA [40]. However,
PCA usually outperforms the NMF by a large margin when
applied to outlier detection. In addition, auto-encoder and
tSNE are also popular dimensionality reduction methods for
detecting outliers [54].

Although many machine learning methods are used to
search for rare objects in astronomy, there are little spe-
cific approach used to search for rare objects from low-S/N
spectra.

ill. METHODOLOGY

In this section, we propose a hybrid method of PCA and
CFSFDP as our proposed method. This method first introduce
the PCA to reconstruct the low-S/N spectra, and then use the
clustering method called CFSFDP to detect rare objects from
these reconstructed spectra.

A. SPECTRA RECONSTRUCTION BASED ON PCA
PCA uses orthogonal conversion to transform a set of poten-
tially related variables into a set of linearly independent vari-
ables (called principal components) [55].

We suppose Z = (Z1, Za, -+ , Zu), where ZI' = (zi1, - - ,
Zim). We an compute the matrix

Zs = BZD ™!, )
where
1
B=E — -Dy )
n
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is the centering matrix, E is an identity matrix, and Dy is a
matrix with all of its elements equal to 1; D is a diagonal
matrix

D = diag{||GZll, - - - , |IGZg)|l} 3)

i.e. its diagonal element is ||GZ;|| (i = 1,2, -+ , d), where
21
_ 22i

Zoy=| . 4
Zni

and G = (1,---,1). Then we can renew Z with Zs. After

renewing Z, we need to compute the eigenvalues of covari-
ance matrix Z7 Z, whereZ” is the transpose of the matrix Z.
We let E, x,n be the eigenvector matrix of the convariance
matrix Z7 Z. Then the principal component matrix P can be
obtained by

P=ZE. &)

We now show how to obtain the reconstruction of data by
using the first k£ principal components. From Eq. (5) we have
Z = PE~'. If we set the last m — k rows of E~! to be
zero, we can obtain a matrix E*. We let Z* = PE*. Then
Z* is the reconstructed matrix of Z using the first k principal
components. If we define p;; to be the element in the ith row
and jth column of P, Z* to be the ith row of X* and the
Jjthrow of E*, and then we have Z* = Z};l piE i*

B. CFSFDP: NEW FAST CLUSTERING METHOD
BASED ON DENSITY PEAKS
Rodriguez proposed a method for fast clustering based on
density peaks [56]. The method considers that cluster centers
should have the following two characteristics:

(i) The density is higher than adjacent points

(i1) The distance from points with higher density is far.

We suppose x; (i = 1, 2, - - - , n) are from the sample set S,
and define two variables p; and §; for these data

Definition 1: (Local Density p;): The Local Density p; is
defined as follows

pi= Y x(dy—d) (6)
Jels/{i}
where the parameter d, is the cutoff distance, and the function
x(x) is
x <0

1
%(X)ZIO £>0 )

It can be seen from Eq. (6) that p; denote the number of
points whose distance from x; is less than d..

Definition 2: (Distance §;): Let {g;}?_, be the indices of
{0i}i_;, such that

pq1 zquZ"'zqu (8)
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Then the distance §; is defined by

min{dg,q} i>2
= Ymax{s } i=1 ®)
) qj

In this way, (p;, 8;) can be calculated for each data point x;
in S, and then the decision graph is drawn with the horizontal
axis p and the vertical axis §. Then the points located at upper
right corner of the decision graph are the cluster centers, and
the points located as the upper left corner of the decision
graph are the outliers [56].

C. THE PROPOSED METHOD

We propose a method to search for rare stellar spectra from
low-S/N stellar spectra by synthesizing the above two meth-
ods. The steps are as follow:

(1) For all low-S/N stellar spectra, spectra reconstruction is
performed using the PCA. In this paper, the general feature
spectra are extracted from various types of high-S/N spec-
tra by PCA, and then used to reconstruct various types of
low-S/N spectra.

(i1) The local density and distance of these reconstructed
spectra are calculated according to the CFSFDP method.
Then we draw a decision graph based on density and local
distance, and the points on the upper left will be considered
as rare objects. As described in the original literature [56],
one can choose distance § so that the average local density p
is around 1% to 2% of the total number of points in the data
set. However, for the distance that is used to select outliers,
there is no exact discussion in the original literature, so it is
a hyperparameter. In this paper, we take 1/30 of the average
value of p to select outliers through experiment.

IV. SPECTRAL DENOISING EXPERIMENT

A. THE DATA

All the experimental spectra are taken from SDSS DR14. The
SDSS is currently one of the largest spectroscopic surveys,
which started observations in 1998 and has completed three
different phases. The fourth phase, named SDSS-IV, is now
underway [57]. SDSS DRI14 is the second release of the
SDSS-IV. It has provided more than 2.54 million spectra,
including 928 859 stellar spectra. Among them, the spectra
with S/N<10 account for about 20%. There have been a
number of research around them [58]-[62].

Our data consists of two sets. The first set comprise the
template spectra, which are taken from SDSS stellar classifi-
cation template library. It contains a total of 36 template spec-
tra built on the SDSS observed spectra (see Table 1). Each
template spectrum covers a logarithmic wavelength range
from 3.5781 to 3.9672 with a sampling resolution of 0.0001.
The second set consists of the observed spectra selected from
SDSS DR14. The detailed information of these spectra are
listed in Table 2.

The observed spectra are from the SDSS DR14. The
detailed information of these data sets are listed in Table 2
and Table 3. Among them, the data in Table 2 is used for
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TABLE 1. The spectral type of the SDSS template library.

Spectral Type Subclass Number
Main sequence O, B,AF,G, KM 31
WD WD 1
WD magnetic ‘WD magnetic 1
Carbon Carbon 1
Carbon_lines Carbon_lines 1
Carbon WD Carbon WD 1

TABLE 2. The spectral type of observed spectra library for extracting
feature spectra.

Subclass Number  Proportion
O (S/N>30) 215 10.02%
B (S/N>40) 231 10.77%
A (S/N>95) 205 9.56%
F (S/N>105 291 13.57%
G (S/N>95) 267 12.45%
K (S/N>105) 154 7.18%
M (S/N>60) 223 10.40%
Carbon (S/N>30) 157 7.32%
CV (S/N>45) 144 6.71%
WD (S/N>45) 176 8.21%
WD magnetic (S/N>20) 34 1.59%
L (S/N>20) 48 2.24%

extracting general feature spectra and building the general
feature spectral library, and the data in Table 3 is used for
search experiments. Based on PCA, the following steps are
used to build the general feature spectral library and denoise
low-S/N stellar spectra:

(1) All the spectra are selected.

(ii) The wavelength is unified to 3800-9000 A with a step
size of 1 A (the total number of sampling points is 5201) [63]
and the flux after interpolation is obtained.

(iii) PCA is performed on all fluxes, and the first k feature
spectra with a cumulative variance contribution rate (CVCR)
exceeding 99.99% are selected. The CVCR is defined as
follows:

k
2zt M

n
Zj:l )\’J
where Zle A; represents the first k feature spectra and

Z]’Ll Aj represents all feature spectra. (iv) The new spectra is
denoiseded using the first k feature spectra obtained in (iii).

CVCR = (10)

1) THE GENERAL FEATURE SPECTRAL EXTRACTION AND
RECONSTRUCTION OF TEMPLATE SPECTRA

According to the above steps, 36 spectra in the SDSS stel-
lar classification template library are taken as input. After
PCA, the first 18 feature spectra with variance contribution
ratio over 99.99% are selected (see Fig. 1). Owning to the
space limitation, only the first 6 feature spectra are shown
in Fig. 2. Various spectra contained in the template library can
be reconstructed by using the general feature spectra obtained
from the above steps. In order to compare the reconstruction
effect, the first 1, 3, 9 and 18 feature spectra are selected to
reconstruct two randomly selected template spectra(AQ, F5).
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TABLE 3. The SDSS observed spectra used for searching for rare objects.

Data Set Name S/N  Number of norm

al spectra®  Number of rare spectra®

1-2 2220 12

2-3 3374 12

Data Set 1 3.4 2039 12
4-5 3788 12

1-5 9815 8

Data Set 2 11-15 12064 6
31-35 12108 7

1-2 7167 8

2-3 14671 6

Data Set 3 3.4 15057 6
4-5 11936 8

2 The normal spectra refer to O, B, A, F, G, K, M-type.
b In Data Set 1, the rare spectra refer to Carbon, Carbon WD and CVs, but it refers

to CVs in Data Set 2 and Data Set 3.

The results are shown in Fig. 3. It can be seen that the
residual spectrum hardly contains any feature, so the effect
of reconstruction is excellent.

10 0.9905 0.9975 0.9%9 0.99%8 0.99%9

Percentage
o

-

[ PG1 PG3 PGI5 PGI8

PC6 PC9
Principal Component (PC)

FIGURE 1. The first 18 principal components of SDSS template spectra
and their variance contribution ratio.

Normalized Flux

5000 %00 4000 5000 000

wavelength(A) wavelength(A)

FIGURE 2. The first 6 feature spectra of 36 SDSS template spectra. The
first row represents the first 2 feature spectra, the second row represents
the 3rd and 4th and the third row represents the 5th and 6th feature
spectra.

In order to verify the denoising effectiveness on low-S/N
spectra, the above two template spectra (as shown in Fig. 3)
are selected, and added Gaussian white noise such that
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S/N=1,3,5,7,9and 11. As shown in Fig. 4 and Fig. 5, the red
line is the original spectra, the grey background is the spectra
after adding noise, and the blue line is the denoised spectra.
The comparison of red line and the blue line shows that this
method is very effective to acquire high-S/N spectra through
denoising the corresponding low-S/N ones.

2) THE GENERAL FEATURE EXTRACTION AND
RECONSTRUCTION OF OBSERVED SPECTRA

Traditional PCA performs feature extraction on only a spe-
cific type of spectrum, and only reconstructs this type of
spectrum using corresponding features. However, our method
performs feature extraction on randomly selected various
types of high-S/N spectra from SDSS DR14, so our feature
spectra can be used as the general feature spectra library for
denoising low-S/N spectra. Since we extract feature spectra
from the high-S/N spectra, we can retain the spectral infor-
mation as much as possible.

We randomly select 2 144 stellar spectra of various types
with S/N>20 from SDSS DR14 as the observed spectra.
Table 2 shows their subclass distribution and Fig. 6 shows
their S/N distribution. The first 221 feature spectra, whose
cumulative variance contribution rate exceeds 99.99%, are
selected to build the general spectral feature library (see
Fig. 7). Due to the space limitation, only the first 6 feature
spectra are shown in Fig. 8. In order to verify the effectiveness
of PCA for reconstructing real low-S/N spectra, we apply it
to the following two sets of spectra randomly selected from
SDSS DR14.

One set contain five different low-S/N spectra with
S/N=1.80, 3.71, 5.53, 7.60, 9.59, and 11.69 (see Table 4).
After denoising, they are compared with the corresponding
template spectra. Due to the inaccuracy of subclass in the low-
S/N spectra, we select the corresponding template spectra by
SSE (sum of squared errors):

N
SSE =Y (Fri — Fr)* (11

i=1
where FR is the fluxes of the reconstructed spectra, FT is the
fluxes of the template spectra, and N is their wavelength with
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FIGURE 3. Reconstruction comparison. In both left and right panels, the reconstruction with the first one (solid blue curves), three
(solid green curves), nine (solid cyan curves), eighteen (solid red curves) principal components are plotted, the solid black lines are
the original spectra of A0-type (left panel) and F5-type (right panel), and the soild dimgray lines are the residual spectra i.e. the
resconstruction with the first eighteen principal components minus original one.

TABLE 4. Six low-S/N spectra from SDSS DR14.

Plate MJD  FiberID Class Subclass R.A.(J2000) Decl.(J2000) S/N
1343 52790 13 STAR K7 16:56:23.2 30:26:20 1.80
1072 52643 268 STAR K7 02:19:51.7 -00:18:35 3.71
1509 52942 632 STAR K7 02:35:42.6 00:27:54 5.53
1663 52973 491 STAR K7 23:23:37.7 53:06:10 7.60
1123 52882 305 STAR K7 00:30:17.1 -00:25:31 9.59
1130 52669 484 STAR K7 00:52:16.4 00:14:29 11.69

Flux

SIN=7

Flux

SIN=11

Flux

000 000 7000

wavelength(A)

%000 5000 7000 000 000

w0 w00
wavelength(A)

00 a000

FIGURE 4. Denoising effect of A0-type spectra with different S/Ns. The
first row represents the denoising effect of spectra with S/N=1 and 3,
the second row represents the denoising effect of spectra with

S/N=5 and 7, and the third row represents the denoising effect of spectra
with S/N=9 and 11.

a fixed step of 1 A. We choose the template spectra with the
smallest SSE for comparison. Fig. 9 shows the comparison
of the denoised spectra and the template spectra. The second
set contains six pairs of spectra, each of which with the same
right ascension (R.A.) and declination (Decl.) consists of a

66480

Flux

Flux

Flux

000 5000 6000

wavelength(A)

000 5000 6000 7000 000 2000

wavelength(A)

7000 000 2000

FIGURE 5. Denoising effect of F5-type spectra with different S/Ns. The
first row represents the denoising effect of spectra with S/N=1 and 3,
the second row represents the denoising effect of spectra with

S/N=5 and 7, and the third row represents the denoising effect of spectra
with S/N=9 and 11.

high-S/N spectrum and a low-S/N one (see Table 5). Many of
the spectra from the Catalog Archive Server (CAS) database
have been observed many times, and many spectra with
different S/Ns are generated due to the variable conditions
at the time of shooting. So we could compare the denoised
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TABLE 5. Six groups spectra with the same R.A. and Decl. from SDSS DR14.

R.A.(J2000) Decl.(J2000) Plate MJD  FiberID  Class  Subclass S/N
- . 1180 52095 549  STAR  A0p 1.99
03:20:59.9 00:45:06 413 51821 545  STAR A0 29.34
— - 2872 54468 312 STAR K7 7.49
H:11:17.4 18:53:57 5979 54533 314 STAR K7 21.38
2872 5468 15 STAR B6 319
11:21:40.2 18:36:14 9405 54533 4 STAR B6 27.58
- — 3397 54864 57 STAR GO 1.96
07:54:50.0 26:44:31 3227 54893 58 STAR F2 21.27
— — 1119 52562 497  STAR K7 5.02
00:21:20.9 00:04:03 1119 52581 486  STAR K7 20.38
1119 52562 333 STAR 5 6.47
00:15:52.4 00:46:13 1545 53734 333 STAR F5 28.67
160 1PC 2PC
140
120
100
3pC 4pc

Frequency
s o
5 8 8

N
S

FIGURE 6. S/N distribution of 2144 stellar spectra.

1.0 0.9972 0.9982 0.9993 0.9998 0.9999

Percentage
i=4
S

=)
IS

0 PCt PC10 PC15 PC30 PC100 PC221
Principal Component (PG)

FIGURE 7. Cumulative variance contribution rate.

low-S/N spectra with the corresponding high-S/N ones to
verify denoising effect. The Fig. 10 shows the comparison
results. It can be seen from the results of Fig. 9 and Fig. 10 the
denoised spectra are considerably less noisy and the residual
spectrum contains no major features, so PCA can effectively
denoise the low-S/N spectra.

V. RARE OBJECT SEARCH EXPERIMENT

In this section, we use the CFSFDP method to search for rare
objects from the above two sets of spectra (template spectra
and observed spectra).

A. SEARCHING FOR RARE OBJECTS FROM

THE TEMPLATE SPECTRA

We randomly select O, B, A, F, G, K and M-type spectra
from the above template library as normal spectra (the normal

VOLUME 8, 2020

Normalized Flux

5pPC 6PC

4000 5000 5000 7000 2000 000 4000 5000 5000 7000 2000 %00

wavelength(A) wavelength(A)

FIGURE 8. The first 6 feature spectra of 2144 SDSS stellar spectra. The
first row represents the first 2 feature spectra, and the second row
represents the 3rd and 4th feature spectra and the third represents the
5th and 6th feature spectra.

spectra refer to O, B, A, F, G, K, M-type in our experi-
ments, except where indicated), and randomly add Gaussian
white noise to simulate 1000 low-S/N spectra. Then we
randomly select carbon, carbon WD, carbon_lines, WD and
WD magnetic-type spectra from the above template library
as rare ones, and also add Gaussian white noise to simulate 5
low-S/N spectra.

These simulated low-S/N spectra are denoised with PCA,
and then these denoised ones are clustered by the CFSFDP
to search for rare objects. The cutoff distance in CFSFDP
is data-dependent, which is usually given by experience.
So different spectra are processed with different cutoff dis-
tances. The Fig. 11 shows search results with different cutoff
distances in the simulated spectra with S/N=1, and Fig. 12
shows the search results in the simulated spectra with S/N=1,
2, 3, 4. We use two metrics to measure the experiment results,
that is, the recall rate (RR) and the candidate ratio (CR):

TP

R=—— (12)
TP + FN

where TP represents the number of true rare objects, FN
represents the number of false normal objects and TP + FN
represents the number of all rare objects.

RS

CR = —
N

(13)
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FIGURE 10. Comparison of various low-S/Ns reconstruction spectra and the corresponding high-S/Ns original ones. The legend is

the same as in Fig. 9.

where RS represents the number of candidate spectra after
retrieval and TS represents the number of original spectra.
Therefore, the higher the RR, the better the experimental
effect, and the smaller the CR, the better the experimental
effect. From Fig. 12, we find that our method can perfectly
separate the rare objects from the normal spectra, which
demonstrates the effectiveness of our method in finding the
rare objects.
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B. SEARCHING FOR RARE OBJECTS FROM THE
OBSERVED SPECTRA

In this subsection, we apply our method to the observed spec-
tra. We randomly select normal spectra, and randomly select
Carbon, Carbon WD, and CVs spectra as the rare spectra from
SDSS DR14. According to the above criterion, 11421 spectra
with 1<S/N<5 are selected (see Data Set 1 in Table 3), and
then are denoised with the first 221 general feature spectra.
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As shown in the Fig. 13, the red points are the rare
stellar spectra, and the blue ones are considered as the
normal spectra. For the spectra with 1<S/N<5, most rare
objects can gather on the upper left corner of the deci-
sion graph. However, some of rare objects are mixed
with the normal ones, so the results are not as good
as the ones of the template spectra. The reasons may
be: (1) the real noise may differ from simulated Gaus-
sian white noise; (2) the low-S/N stellar classification
in SDSS may not be very accurate (eg. RA=07:54:50.0,
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Decl.= +26:44:31 in Table 5), so the normal spectra and
rare spectra may have errors. However, it can be seen from
the data (see Table 6) that the proposed method can greatly
reduce the number of rare object candidates, which can
greatly improve the subsequent search efficiency of rare
objects.

Due to the classification errors of low-S/N spectra in
SDSS, the credibility of the experiments is likely to be
reduced. So we used CVs to further explore the effectiveness
of our method in the following section.
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TABLE 6. Search result of the observed spectra with 1<S/N<5.

S/N  Total Number® Number of Candidates® RR CR

1-2 2220 684 100%  30.8%
2-3 3374 691 91.67%  20.5%
3-4 2039 1091 91.67%  53.5%
4-5 3788 877 100%  23.2%

a Number of total spectra for each S/N.
b Number of candidate spectra for each S/N.

VI. CV S SEARCH VERIFICATION

In this section, we use the method to search for the CVs, and
analyze from different aspects. These CVs are chosen from
285 identified CVs [3]

A. SEARCH UNDER DIFFERENT S/N S

We search for CVs from spectra with different S/Ns (see Data
Set 2 in Table 3). The search results are plotted in Fig. 14.
From Fig. 14, we can see that almost all the CVs (red dia-
mond) can be gathered on the upper left corner of the decision
graph. The specific informations are shown in Table 7.

TABLE 7. Search results of three groups of spectra with different S/Ns.

S/N  Total Number® Number of Candidates’ RR CR

31-35 12115 30 100%  0.16%

11-15 12070 275 100%  2.28%
1-5 9823 3300 5%  33.59%

a Number of total spectra for each S/N.
b Number of candidate spectra for each S/N.

Nevertheless, it can be noticed from the bottom panel
in Fig. 14 that there are two CVs that are mixed into the
normal spectra. That may be because the S/N of these spectra
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is too low, so the denoising effect is not very well. However,
beside from the two spectra, the CR can reach 33.59%, and
the RR can also reach 75%. But this CR is still worse than
the previous two groups (31<S/N<35 and 11<S/N<15).
In order to further study this discrepancy, the spectra with
1<S/N<S5 are further analyzed in detail.

B. DETAILED SEARCH UNDER 1<S/N<5
In this section, we divide the 1<S/N<5 into 4 groups, and
reselect the corresponding spectra from SDSS DR14. The
specific spectra informations are shown in Data Set 3 of
Table 3. The results are shown in Fig. 15.

From Fig. 15, we could see that almost all the CVs (red
diamond) are gathered on the upper left corner of the decision
graph. The specific informations are shown in Table 8.

TABLE 8. Search results of four groups segment spectra with 1<S/N<5.

S/N  Total Number® Number of Candidates? RR CR

1-2 7167 1007 75% 14.03%
2-3 14671 4250 83.33%  28.9%
3-4 15057 3300 66.67% 26.8%
4-5 11936 1149 87.5% 9.62%

a Number of total spectra for each S/N.
b Number of candidate spectra for each S/N.

As can be seen from the above analysis, for the spectra
with 1<S/N<S5, the RR and CR obtained by the disassembled
analysis are basically much better than the mixed analysis in
Section VI-A. The problem may be caused by the wide range
of data distribution. From this perspective, the analysis results
could be greatly improved by further subdividing the S/N for
all spectra, especially very low-S/N ones.

VOLUME 8, 2020



M. Wu et al.: Rare Object Search From Low-S/N Stellar Spectra in SDSS

IEEE Access

0.51
0.4
0.3
0.2

0.1

*  usual
rare

e

31=5/N=35

0.0 1

2000

<]
=
(=3
=]
S

*

+ usual
® rare

3000 4000 5000

11=S/N=15

[=l=]
(=2
Or-t'n't
3

500 1000 1500

2000 2500 3000 3500 4000

1.5

* usual
rare

1.0

0.5

1=S/N=5

0.0+

1000 1500

2000 2500 3000 3500

I

FIGURE 14. Search results of CVs with three different S/Ns. The cutoff distances from top panel to bottom panel are 0.005, 0.003,
0.05, respectively. The blue and red markers represent the normal and rare stellar spectra, separately.

161
1.4
1.2 -
1.01 ¢

usual
rare

0.6
0.4
0.21
0.01

0 1000 2000 3000 4000 5000
1.6

1.4

121 E * usual
1.0 & rare

3=<S/N=4

e

0.6 |
0.4
0.2 1
0.0

0 1000 2000 3000 4000 5000 6000 7000
0

6

O 0.8

1.754 -
1.504

1.254 « usual 2=<S/N=3

® rare
1.00

0.75
0.50+
0.25 1
0.00 1

0 1000 2000 3000 4000 5000 6000 7000
)

141 ,

129 « N 4=S/N=5

usual
rare

0.6
0.4
0.2
0.0+

0 500 1000 1500 2000 2500 3000 3500 4000
0

FIGURE 15. Search results of CVs of four segment spectra with 1<S/N<5. The cutoff distances of the top left, top right, bottom left
and bottom right panels are 0.3, 0.1, 0.08, 0.05, respectively. The blue and red markers represent the normal and rare stellar

spectra, separatively.

C. COMPARISON OF METHOD PERFORMANCE

In order to verify the advantages of the proposed method
in processing the low-S/N spectra, we compare our method
with the commonly used search method in this subsection.
Because there are few methods to specifically handle low-
S/N spectra, we only select the Lick-index based method
and SVM for comparison. The Lick-index is not sensitive
to S/N [64], so it is often used to process low-S/N spectra.

VOLUME 8, 2020

As described in [24], for Lick-index+K-means, we set the
number of clusters K to 100. With regard to the SVM, we set
the parameters similar to those described in [65].

The data is same as Section VI-A (see Data Set 2 in
Table 3). Table 9 shows the search result of the proposed
method, Lick-index+K-means, and SVM from the low-S/N
spectrain Data Set 2, respectively. Among these, the proposed
method and Lick-index+K-means are unsupervised method,
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TABLE 9. Comparision of methods.

S/N Total Number Methods CR RR
SVM 0.96% 100%

31-35 12115 Lick-index+K-means 5.03% 100%
Proposed method 0.25%  100%

SVM 2.36% 75%

11-15 12070 Lick-index+K-means 8.35% 75%
Proposed method 2.28%  100%

SVM 45.55% 50%

1-5 9823 Lick-index+K-means  53.65% 25%

Proposed method 33.59% 5%

while SVM is supervised method. These results indicate that
our method obtains better search results compared to the other
methods. That is, our method is able to not only get the
maximum recall rate (RR), but also get the minimum candi-
date rate (CR), especially in extremely low-S/N. In addition,
as an unsupervised method, our method is faster than other
methods due to avoiding the selection of cluster centers.

VIl. CONCLUSIONS

In this study, we propose a new method of denoising the
low-S/N spectra and discovering the rare objects from low-
S/N spectra based on PCA and CFSFDP. Different from
traditional denoising methods, we apply PCA to a spectral
data set composed of various high-S/N spectra to extract
the general spectral features, and denoise various low-S/N
spectra accurately based on these general features. Based
on the accurately denoised spectra, we use the fast cluster-
ing method CFSFDP to discover the rare objects from the
low-S/N spectra. The main conclusions of this study are as
follows:

(1) The main difference between our method and tradi-
tional method is that we extract the features from the high-
S/N spectra and build the general spectral feature library. This
method avoid the possibility that we extract some unuseful
features. The result shows that this method can accurately
denoise various low-S/N spectra.

(2) Based on the accurately denoised spectra and the fast
clustering method CFSFDP, we can efficiently discover the
rare objects such as the WD and CVs from the low-S/N
spectra.

(3)The proposed method is based on the idea that clus-
ter centers are characterized by a higher density than their
neighbors and by a relatively large distance from points with
higher densities. This idea forms the basis of a clustering
procedure in which the number of clusters arises intuitively,
outliers are automatically spotted and excluded from the
analysis. It avoids multiple iterations and greatly improves the
operation speed, especially when processing large amounts of
data.

However, the method proposed in this paper also shows
the following limitations, which will be further studied in the
follow-up study.

(1)The main idea for finding low-S/N outliers is to fit a
PCA on high-S/N stellar spectra, and then apply these feature
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spectra to reconstruct low-S/N spectra. We assume that the
underlying population of low and high-S/N spectra are the
same. This assumption is not always true, because there could
be objects in the low-S/N sample which are not represented at
all in the high-S/N sample. So these unknown low-S/N could
not be well reconstructed, and they may not be identified as
outliers. Some delicate outliers such as O or B type stars with
weird absorption line ratios could not be found. Our method
can only detect ““outliers that shout the loudest™ as discussion
in [40], such CVs.

(2) As described in the original literature [56], one can
choose ¢ so that the average p is around 1% to 2% of the total
number of points in the data set. However, for the distance
that is used to select outliers, there is no exact discussion in
the original literature, so the value is needed to set according
to different situations.

(3) It is worth noting that after reconstructing, those recon-
struction spectra with large error are excluded. This prob-
lem may be caused by data used for principal component
extraction or other factors, but there are also many important
informations in these excluded spectra. Therefore, this sug-
gests that the spectra pre-processing approaches need further
improvement.

In future, we hope to solve the above limitations and apply
our method to other svrveys such as LAMOST, 2MASS and
LSST, and so on.
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