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ABSTRACT With the rapid development of mobile networks and the proliferation of mobile devices, Spatial
Crowdsourcing (SC) has attracted the interest of industry and research groups. In addition to considering
the specific spatial constraints in the existing research spatial crowdsourcing, each task has an effective
duration, operational complexity, number of workers required, and incentive budget constraints. In this
scenario, we studied the MQC-TA (Maximum Quality and Minimum Cost Task Assignment) problem.
Firstly, the worker incentive model is established. The MQC-GAC algorithm is designed according to
the MQC-TA problem to maximize the task completion quality and minimize the incentive budget. The
algorithm combined the fast convergence of Genetic Algorithm and the positive feedback mechanism of
Ant Colony Optimization Algorithm. Finally, the effectiveness and efficiency of the proposed method are
verified by a comprehensive experiment on the data set.

INDEX TERMS Spatial crowdsourcing, task assignment, MQC-TA problem, MQC-GAC algorithm.

I. INTRODUCTION
In recent years, crowdsourcing has been widely used in busi-
ness, such as the establishment and application of Amazon
Mechanical Turk, crowdflower, crowdcloud and microwork-
ers platforms. At the same time, crowdsourcing is also pop-
ular in image processing [1], database [2], NLP [3] and
other research fields. With the popularity of smart phones
and other mobile devices, task workers carry mobile devices
with perception ability to complete tasks at task sites, and
then form a new crowdsourcing mode, namely spatial crowd-
sourcing [4] (SC). In the spatial crowdsourcing environment,
workers need to arrive at a specific work place to perform
tasks. Such spatiotemporal data are closely related, such as
real-time special vehicle service platform: Didi travel, where
Didi users are task requesters, Didi special vehicle is workers,
workers need to move to the location of Didi users to pick up
passengers to the destination.

In view of the task assignment problem in the spatial
crowdsourcing environment, most of the existing researches
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refer to the comparability between the number of tasks and
the number of workers, and consider the reliability and
spatial-time constraints of the task assignment, such as the
distance from the worker to the task and the validity period
of the task, and design effective methods to maximize the
number of task assignment [6]–[9]. In [10], Zhang et al.
researched the issue of reliability-based task assignment for
spatial crowdsourcing in large labor markets, using worker
credibility to indicate the reliability of successfully com-
pleted assigned spatial tasks, maximizing the maximum
reliability assignment (MRA) and minimize cost assignment
(MCA). Heterogeneous spatial crowdsourcing is a new type
of crowdsourcing system.Heterogeneous spatial crowdsourc-
ing task assignment (HSC-TA) aims to search a set of rep-
resentative optimal assignment schemes for multi-objective
optimization to maximize the coverage of assignment tasks
and minimize the incentive cost [11]. Tang and Zhang [12]
analyzed and solved the task assignment problem of work-
ers mobility. Firstly, they proposed the maximum task
assignment problem based on information gain (IG-MTM).
Secondly, in order to solve complex spatial tasks,
they proposed a feedback cooperation mechanism and
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designed a task assignment algorithm based on feed-
back group cooperation. In a fog-assisted SC architecture,
the fog nodes deployed in the way of privacy awareness.
A task assignment scheme based on bilinear matching
and encryption privacy awareness had been proposed [13].
Liu and Xu [14] researched the problem of online task assign-
ment under perceived budget in spatial crowdsourcing, aim-
ing to maximize the number of task assignment under budget
constraints (workers appear on the platform dynamically),
and designed an improved threshold-based greedy algorithm
(Greedy-OT), which learns results close to the optimal thresh-
old from historical data. Xingsheng et al. [15] proposed
an online threshold algorithm based on assignment time to
solve the problem of poor assignment effect caused by single
consideration of the total effect of task assignment or task
effective time in the existing research. Due to the different
research objects, Tianshu et al. [16] put forward the influence
of spatial location on research spatial crowdsourcing and the
strategy of how to solve the three types of research objects
that appear dynamically in practical application on the basis
of research object workers and spatial tasks. Qi et al. [17]
accorded to the different quality of services (QoS) perfor-
mance of Web services sharing community, and service QoS
is usually context-aware and heavily dependent on spatial and
temporal information, the temporal and spatial information
of QoS data and the locality-sensitive Hashing (LSH) tech-
nology is integrated into the recommendation domain, and
a location-aware and time-aware recommendation algorithm
considering privacy is proposed. All of the above studies
have not considered the global optimal assignment of task.
The MQC-TA problem studied in this paper aims to solve
the optimal matching problem between effective spatial tasks
and online workers in a task assignment cycle by using
MQC-GAC algorithm, so as to maximize task completion
quality and minimize incentive expectations.

II. RELEVANT DEFINITIONS AND PROBLEM DESCRIPTION
A. RELEVANT DEFINITIONS
Spatial crowdsourcing (SC) is composed of a crowdsourcing
platform, task publisher and workers. The task of SC plat-
form is mainly to find the suitable workers to complete the
task, with the goal of improving task coverage and commis-
sion aggregation; task publisher finds the suitable workers
to complete the spatial task of its release with high quality
through the platform with low time and cost; workers need to
efficiently find suitable and capable tasks to obtain rewards
and improve credibility [18]. At present, most task publishers
publish their tasks on the spatial crowdsourcing platform, and
the platform assigns tasks according to the characteristics of
tasks and workers. As shown in the Figure 1 is the spatial
crowdsourcing model of this research:

Firstly, the task requester sets the characteristics of effec-
tive time, geographical location, task completion time, reward
for completing the task and the number of workers required
to complete the task, and submits the task to SC platform;
meanwhile, the workers submit their geographical location,
online time and other characteristics to SC platform. SC plat-
form assigns tasks according to the effective information
provided. As shown in Figure 1, task publishers publish
t1 ∼ t6 different tasks on SC platform.In this paper, the oper-
ational complexity is represented by the time required to
complete the task, and the reward is proportional to the
operational complexity. The task defined in this paper is the
tuple t1 : (lic1, 8 : 00 ∼ 9 : 00, 3min, $3, 3), which
requires three workers to complete the task in the physi-
cal location lic1 between 8:00 a.m. and 9:00 a.m. the task
takes about three minutes, and the workers who complete
the task in the effective period of time will be rewarded
accordingly.
Definition 1: Spatial crowdsourcing worker w: w is the

worker of spatial crowdsourcing task, which is defined as

FIGURE 1. Model of spatial crowdsourcing.
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wj = {Q, lw0cj, prej, numj}, where Q = {rij}(i = 1...n)(j =
1...m) is the set of credibility of worker wj to complete
different tasks. When the position of worker wj(1 ≤ j ≤ m)
at prej time point is lw0cj, W = {w1,w2,w3, . . . ,wm} is all
effective workers in the system, and numj is the maximum
number of accepted tasks.
Definition 2: Spatial crowdsourcing task t: t is a location

related task published by task publishers, which requires
workers to reach a specific physical location to complete.
It is defined as ti(loci, vti, pti, rwi,wj, numi). wj(1 ≤ j ≤ n)
workers are required to arrive at the physical location loci
within the time interval vti = [sti, eti] and complete the task.
When the task is published by the publisher, ti needs pti time
to complete the task and the reward rwi. numi is the number
of workers needed to complete the task ti.

B. PROBLEM DESCRIPTION
In this section, the worker incentive model is established, and
the MQC-TA (Maximum Quality and Minimum Cost Task
Assignment) problem is formally defined.

1) INCENTIVE MECHANISM
With the development of crowdsourcing data manage-
ment technology, people-oriented incentive mechanism has
become an important research hotspot of data management.
How tomotivate the participants and their subjective initiative
to achieve a win-win situation is an important issue for all
enterprises in the society. Yang et al. [19] introduces the
reverse auction mechanism into the research work of group
intelligence perception network, and designs the incentive
mechanism from the perspective of perception platform and
intelligent device respectively. The latter is based on the
auction mechanism, and the incentive mechanism designed
has achieved the excellent characteristics of computational
efficiency, individual rationality, anti deception and so on.
To solve the problem of time-consuming in-situ survey data
collection for building wireless map based on Wi Fi indoor
positioning system, Li et al. [20] proposed two incentive
mechanisms to motivate mobile users to contribute indoor
track. The first mechanism considers the fixed reward of Mu
and incomplete information when the level of privacy sensi-
tivity of CP to each mu is unknown. In order to maximize the
utility of mus and CP profit, the interaction between mus and
CP is attributed to two-stage Stackelberg game. The second
mechanism assumes that the CP knows the data privacy sensi-
tivity level of each mu, and considers the variable compensa-
tion of themu. Jin et al. [21] an incentivemechanism based on
privacy protection is designed. When designing the incentive
mechanism, the characteristics of data fusion and data inter-
ference in the system are taken into account. The incentive
mechanism not only satisfies the common characteristics of
anti deception and individual rationality, but also provides
the approximate optimal guarantee of the total payment of
the auction platform. Zhang et al. [22], the probability of
a vehicle passing a specific route is calculated according to
the historical track of the vehicle in the group intelligence

perception network scene. The perception task is completed
in the uncertain vehiclemoving scene and the incentivemech-
anism is designed. The execution probability of the percep-
tion task is not lower than the given threshold according to
the task assignment result.

In the sptial crowdsourcing scenario of this paper, we con-
sider designing incentive mechanism to improve the opti-
mism of workers and the quality of completing tasks, so that
task publishers can obtain the highest benefits. According
to the credibility set Q = {rij} (i = 1...n)(j = 1...m)
of the worker, we can see the quality of the completion of
different kinds of spatial tasks in the near future. After the
task is completed, the credibility set is updated according to
the completion quality.

This paper designs the incentive mechanism of money
reward and credibility reward and punishment. In a task
assignment cycle, SC platform first selects several candi-
date workers with high reputation for spatial tasks, and then
assigns tasks to the final workers according to the assignment
mechanism designed in this paper. After a worker completes
the task, the task publisher scores the worker according to
the quality of the completed task. rij indicates the credibility
of the worker wj completing the task ti. When the platform
assigns task ti to workerwj, SC platformwill update the credit
score according to the task completion quality and user score
of the worker after each task assignment cycle:

rnij = ∂r
n−1
ij + (1− ∂)2eijr

n−1
ij

(∂ is a constant coefficient, 0 ≤ ∂ ≤ 1) (1)

eij(0 ≤ eij ≤ 1) is the evaluation of the results submitted
by the SC platform. According to the above analysis, if the
workers want to be assigned to the task and get high reward,
they need to continue to complete the task with high quality.
The ultimate goal of SC platform workers is to get remunera-
tion. Giving money reward can motivate workers to complete
assigned tasks with higher quality. If the score is greater than
or equal to the historical average score of the worker, platform
reward will be given, otherwise reputation and remuneration
will be reduced.

2) MODEL ESTABLISHMENT
The purpose ofMQC-TA problem in this paper is to select the
sutiable workers to perform spatial tasks, and to maximize the
quality of task completion andminimize the incentive budget.
Task publishers publish different kinds of tasks, the time
spent on tasks and the number of workers required constitute
different complexity of tasks. In this paper, the complexity
coefficient of tasks is defined to consider the impact of phys-
ical location of spatial tasks and the credibility of workers on
the quality of completed tasks, and its influence coefficient is
defined separately.
Definition 3: Physical location influence coefficient `:

because workers need to reach the spatial task position within
the effective time of the task, the physical distance will
have a certain impact on the quality of completing the task.
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According to the historical path of workers’ daily work,
workers only accept tasks within their own range (within
the r ′ range) considering their own factors. In this paper,
the influence of the coefficient is defined as (6), and the
distance between the current physical location of worker wj
and the physical location of spatial task ti is dist(wj, ti).First,
according to (2):

raddegree = deg ree× PI/180 (2)

The longitude and latitude locwj(latwj , lngwj ) and
locti(latti , lngti ) of wj and ti are converted into locwj
(rlatwj , r lngwj ) and locti(rlatti , r lngti ), where x = rlatwj −
rlatti , y = r lngwj − r lngti and R are the earth radius.
Equation (1) is calculated as follows:

dist(l0cwj, locti) = 2 arcsin

(

√
sin(

x
2
)2 + cos(rlatwj ) cos(rlatti ) sin(

y
2
)2R) (3)

` = 1−max[0,min[log2r ′ (dist(l0cwj, locti), 1)]] (4)

Definition 4: Credibility influence coefficient γ : due to the
uncertainty of workers, there are some adverse factors such as
maximizing the benefits of workers, malicious answers and
so on, which can submit low-quality tasks and cause waste of
human resources. The credibility of workers directly affects
the quality of task completion, so this paper calculates the
credibility of workers according to the quality and quantity
of tasks submitted by workers.

γ (wij) =
1
n

n∑
i=1

(Ri + rnij) (5)

The worker wj gets the score Ri + rnij after completing the
task ti;

Investigation and research show that the total incentive cost
of multiple spatial tasks increases exponentially [23], which
means that the more tasks assigned by workers, the lower the
average bid of each task will have. In order to reduce the total
budget cost, an effective strategy is to assign more tasks to
each worker under the mobile sensing assignment scheme,
and the incentive cost is determined by the task set
Tj = {t1, t2, . . . , tn} to which workers are assigned as

follows:

Cos(Tj) =
1

ea∗(n′−1)
∗

n′∑
i=1

rwi (6)

In this paper, the published reward rwi of task ti is propor-
tional to its processing time pti:

rwi = ∂ ∗ tpi (7)

Cos(Tj) =
1

ea∗(n′−1)
∗

n′∑
i=1

∂ ∗ tpi (8)

The 1/ea∗(n
′
−1) attenuation coefficient decreases with the

increase of tasks. When only one worker is assigned one task,
the incentive cost announces the reward rwi for the task.

Considering the actual situation, if more tasks are assigned
to a worker, the total incentive cost will decrease exponen-
tially. However, in order to balance the workload and avoid
monopoly among workers, each worker should have the max-
imum ability to perform spatial tasks. In this paper, we will
limit the maximum number of tasks assigned to each worker,
and the number of tasks assigned to each worker will meet
the maximum score. With the number of tasks, the platform
will no longer be assigned to the worker. The corresponding
incentive cost can be expressed as follows:

Cos(Tj) =
1

e0.2∗(|Tj|−1)
∗

|Tj|∑
i=1

∂ ∗ tpi

Tj =
∑n

i=1
sij (9)

Tj indicates the number of tasks assigned by the worker wj,
Tj ≤ numj.
To sum up, the following global objective functions are

established:

max
m∑
j=1

n∑
i=1

`γ • sij

min
m∑
j=1

n∑
i=1

Cos(Tj) • sij

s.t.

∀ti ∈ T ,∀wj ∈ W
m∑
j=1

sij ≤ 1, sij ∈ {0, 1} (10)

III. RELEVANT THEORY AND MODEL SOLUTION
A. GENETIC ALGORITHM AND ANT COLONY ALGORITHM
Genetic algorithm (GA) is a computational model of biolog-
ical evolution process which simulates the natural selection
and genetic mechanism of Darwinian biological evolution
by Holland, an American scholar. It is a method to search
the optimal solution by simulating the natural evolution pro-
cess [24]. Each population of genetic algorithm is composed
of N encoded individuals (individuals are chromosome enti-
ties with certain characteristics). Each time, individuals with
larger adaptability are screened out, and after multiple oper-
ations such as combination, crossover, mutation, etc., new
populations are evolved, and approximate optimal solutions
are obtained. The algorithm flow is as Figure 2:

Ant colony algorithm (ACO) is a kind of simulation
optimization algorithm to simulate ant’s foraging behavior.
It was first proposed by Italian scholar Dorigo m and others
in 1991 and first used to solve TSP (traveling salesman
problem) [25]. After that, the basic principle and mathemat-
ical model of ant colony algorithm are studied systemati-
cally [26]. References [27] and [28] solve the task scheduling
in mobile edge computing (MEC), propose an efficient job
caching method, which can better schedule jobs according
to the collected information of adjacent vehicles including
GPS information, and design a scheduling algorithm based on
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FIGURE 2. GA algorithm flow chart.

Ant Colony Optimization (ACO) to solve the task assignment
problem. Figure 3 is the flow chart of ant colony algorithm
solving TSP problem.

B. GENETIC ANT COLONY ALGORITHM
Genetic algorithm (GA) and ant colony algorithm (ACO)
have the advantages of global search and probabilistic ran-
dom search, but they are easy to fall into local optimum.
The search speed of genetic algorithm (GA) is faster. ACO
is a distributed algorithm with positive feedback mechanism.
The disadvantage of genetic algorithm (GA) is that it is easy
to produce many unnecessary iterations in the later stage of
the algorithm, resulting in low accuracy and efficiency. The
pheromone of ant colony algorithm (ACO) accumulates for a
long time in the early stage of research. Figure 4 is the flow
chart of genetic ant colony algorithm:

C. TASK ASSIGNMENT BASED ON MQC-GAC ALGORITHM
In the initial stage of the algorithm, the MQC-GAC algo-
rithm uses the fast and random global search characteristic of
genetic algorithm (GA) to generate the optimal solution of the
initial task assignment as the initial pheromone distribution of
the ant colony algorithm (ACO). On the premise of a certain
initial pheromone distribution, the global convergence ability
and parallel positive feedback of the ACO are used to obtain
the global optimal solution.

Selection, crossover and mutation are the basic genetic
operators in genetic algorithm (GA). Because the selection
of crossover probability and mutation probability directly
affects the performance of the algorithm, the higher the indi-

FIGURE 3. ACO algorithm flow chart.

vidual fitness, the greater the probability of crossover and
mutation. Therefore, this paper adopts adaptive crossover and
mutation, and its probability expression is as follows:

Pcro =


Pcro1∗

1

(Pcro1−Pcro2)+e
—λ′−—λavg

—λmax−—λavg

, —λ′ ≥—λavg

k1∗Pcro1,—λ′ ≥—λavg
(11)

Pvar =


Pvar1 ∗

1

(Pvar1−Pvar2)+e
—λ′−—λavg

—λmax−—λavg

, —λ′ ≥—λavg

k2∗Pvar1,—λ′ ≥—λavg
0.5 ≤ k1, k2 ≤ 1 (12)

—λmax represents the maximum fitness function value in
genetic algorithm (GA), —λavg represents the average fitness
function value;—λ′ represents the larger fitness function value
in the two individuals to be crossed, and —λ represents the
fitness function value of the individuals to be mutated. The
pheromone Volatilization Coefficient ρ(n) of ant colony algo-
rithm (ACO) directly affects the global search ability and con-
vergence speed of the algorithm. In this paper, the coefficient
is designed to be adaptive. The initial value is ρ = 0.999.
when the optimal value of the objective function does not
change significantly after n cycles, the ρ value is reduced to:

ρ′ = rand()/10 ∗ (RAND_MAX + 1)

ρ(n+ 1)

{
(0.9+ ρ′ ∗ ρ(n), ρ(n+ 1) ≥ ρmin

ρmin, other
(13)

VOLUME 8, 2020 68315



Y. Wang et al.: Method for SC Task Assignment Based on Integrating of GA and ACO

FIGURE 4. Flow chart of genetic ant colony algorithm.

TABLE 1. Parameters of MQC-GAC algorithm.

IV. EXPERIMENTS AND ANALYSIS
The Gowalla dataset was used as experimental data for
this study. Gowalla is a location-based social networking
site. Users can share their location information through
check-in, with a total of 196,591 user information and
6,442,890 check-in information. The following is an exper-
imental analysis of proposed mechanism and algorithm for
solveing MQC-TA problem from different perspectives. The
experimental results obtained by averageing after 50 experi-
ments in this article. This experiment runs on a machine with
2.10GHz AMDRyzen 5 3500U processor and 8 GBmemory.

The operating system is windows 10, and the programming
language is Java. Figure 5 to Figure 9 shows the number
of workers, number of tasks, ∂ constant coefficient, number
of algorithm iterations and the effect of simultaneous action
of number of tasks and number of workers on the mass
fraction 1γ . Under the condition of fixed incentive cost,
compared with the SCTAM_PSO algorithm in [5], it can be
seen that the MQC genetic ant colony algorithm proposed in
this paper is more superior and improves the task completion
quality of the work, as shown in Figure 5. As is shown

FIGURE 5. Effect of number of workers on quality score.
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Algorithm 1 MQC-GAC Algorithm
Input: T task set, W worker set
Output: task completion quality score `γ , incentive cost
cos
Step 1: initialize the relevant parameters of genetic algo-
rithm: N = 50, G, Pc = 0.9, Pm = 0.9, ρ = 0.999,iterate
the current algebra generation = 0.
Step 2: calculate the fitness function, i.e. the objective
function (11).
Step 3: choose: Roulette.
Step 4: cross: two point cross, cross probability adaptive
(12).
Step 5:mutation: single point mutation, adaptive mutation
probability (13).
Step 6: compare the fitness value of MQC genetic ant
colony algorithm to obtain the global optimal value.
Step 7: initialize the pheromone of ACO algorithm, and
use step 6 to obtain the optimal solution to initialize the
pheromone of ACO algorithm. Step 6 obtains the sub
optimal solution M = (m1,m2,m3, . . . ,mn) as the ini-
tial pheromone of ant colony algorithm, M mj represents
workerwj. The quality fractionmatrix `γn×n and the incen-
tive cost matrix Cosn×n are defined.
Step 8: calculate transfer probability.
Step 9: calculate the path length of each ant to complete a
journey.
Step 10: update the pheromone concentration of the first
ant in the sub group, and the pheromone volatilization
coefficient ρ(n) is adaptive (14).
Step11: output the optimal value, compare the obtained
optimal solution, if it is the optimal solution, update
the global optimal solution; otherwise, cycle step 8 and
step 9 until the optimal solution or maximum iteration is
obtained.
Step12: output completion quality score `γ and incentive
cost cos.

in Figure 6,with the increase of the number of tasks, the qual-
ity scores of MQC-GAC algorithm and SCTAM_PSO algo-
rithm tend to be balance with the number of effective workers
and fixed incentive costs.The assignment strategy is better
than [5]. Figure 7 shows the effect of constant coefficient ∂
on the quality of task completion. Due to the limitation of
incentive cost, with the increase of coefficient, the rewards
received by workers are related to their own ability, and also
related to the amount of rewards issued by tasks, so the task
completion quality changes.

Figure 8 shows the impact of the number of iterations on
the quality score. The MQC-GAC algorithm proposed in this
paper approaches the optimal value with the increase of the
number of iterations. Figure 9 shows the impact of the number
of workers and tasks on the quality score. The more workers,
the higher the quality of task completion.

FIGURE 6. Effect of task number on quality score.

FIGURE 7. Effect of constant coefficient ∂ on mass fraction.

FIGURE 8. Influence of iteration times on mass fraction.

FIGURE 9. Effect of number of workers and tasks on quality score.

Figure 10 to Figure 13 show the impact of related factors
on incentive cost. SC platform should consider not only
the completion quality of tasks released by task publish-
ers, but also the interests of task publishers and workers.
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Therefore, the establishment of incentive mechanism
improves the enthusiasm of workers, allowing them to
complete tasks faster and with higher quality, and also
has a certain impact on the cost of task publishers.
Figure 10 shows the impact of the number of workers on the
incentive cost. Under the same number of workers and spatial
tasks, the incentive cost of MQC-GA ant colony algorithm
proposed in this paper is lower than that of SCTAM-PSO
algorithm. Figure 11 shows the impact of the number of tasks
on the incentive cost. From the comparative experiment, it can
be seen that with the increase of the number of tasks, the
incentive cost is generally becoming higher, and the incentive
cost generated by the assignment strategy of MQC-GA ant
colony algorithm is higher. This is lower than SCTAM-PSO
algorithm. Figure 12 shows the impact of the number of itera-
tions on the incentive cost. When the number of tasks and the

FIGURE 10. Impact of number of workers on incentive cost.

FIGURE 11. Impact of task number on incentive cost.

FIGURE 12. The influence of iteration on incentive cost.

FIGURE 13. Impact of number of tasks and workers on incentive cost.

FIGURE 14. Impact of number of tasks and workers on run time.

number of workers are fixed, the incentive cost decreases with
the increase of the number of iterations. Figure 13 shows the
impact of the number of tasks and workers on the incentive
cost. Figure 14 shows the impact of the number of tasks and
workers on the runtime at 3000 iterations.

V. CONCLUSION
In addition to considering the specific spatial constraints in
the existing research spatial crowdsourcing, each task has
an effective duration, operational complexity, the number
of workers required and the incentive budget limit, and the
task assignment problem in this scenario is described math-
ematically. The MQC-TA problem was proposed, and the
corresponding objective function is established. MQC-GAC
algorithm is used to optimize the task assignment in this
paper. The genetic algorithm of the algorithm adopts adap-
tive crossover and mutation, and the ant colony algorithm
partially designs adaptive pheromone volatility coefficient.
In the experiment, the real data set is used to prove that
the MQC-GAC algorithm proposed in this paper realizes the
combination of the two algorithms, and improves the global
optimization ability and the speed of searching the optimal
solution of the algorithm. However, the research in this paper
is limited to the task assignment of spatial crowdsourcing
in static scenarios, where both workers and spatial tasks are
assigned under known circumstances. In the future research
work, the real-time factors of workers and spatial tasks will
be taken into account.
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