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ABSTRACT In this research, a soft computing approach based on a Nature-inspired technique,
the Fractional-Order Darwinian Particle Swarm Optimization (FO-DPSO) algorithm, is hybridized with
feed-forward artificial neural network (FF-ANN) to suggest and calculate better solutions for non-linear
second-order ordinary differential equation (ODE) representing the corneal shape model (CSM). The
unknown weights involved in approximate solutions obtained through ANN are tuned with the help of
FO-DPSO. To test the robustness of our approach and conditionality of CSM, we have considered several
cases of CSM with different aspects of the problem. Solutions obtained by Adam’s method are used as a
reference point for the sake of comparison. We establish it that FO-DPSO is a suitable technique for tuning
the unknown weights involved in the solution designed with ANNs. Our results suggest that the proposed
approach is a suitable candidate for solving real-world problems involving differential equations.

INDEX TERMS Non-linear differential equations, meta-heuristics, soft computing, corneal shape model,
feed-forward artificial neural networks, fractional order Darwinian particle swarm optimization.

I. INTRODUCTION
The transparent front part of the eye known as corneal is
represented by its curvature model. Its mathematical model
is called corneal shape model (CSM), and mathematically it
is given in [1] as

(
χ ′√

1+ χ ′2

)′
− cχ +

d√
1+ χ ′2

= 0 in [0, 1],

χ ′(0) = χ (1) = 0.

(1)

where c, d are non-zero constant values. A generalized
n-dimensional form of CSM is given asdiv

(
∇χ√

1+ |∇χ |2

)
= cχ −

d√
1+ |∇χ |2

, in �.

χ on ∂�.

(2)
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Equation (2) is a mathematical description of the shape of
the human corneal [2]–[4]. The bounded domain in � ∈

Rn represents a Lipschitz domain and div
(

∇χ
√

1+|∇χ |2

)
is a mean curvature. As a special case, using values of
d ∈]0, 3

√
3

2

√
c

tanh
√
c [ CSM in (1) is given as,χ
′′
− cχ +

d√
1+ χ ′2

= 0,

χ ′(0) = χ (1) = 0 in [0, 1].
(3)

The special curvature of corneal deflects higher intensity of
lights and protects internal part of the human eye [2]. The eye
cornea is further classified into five types of layers,

(a) Innermost endothelium.
(b) Descemet’s membrane.
(c) Outermost epithelium.
(d) The Stroma.
(e) The Bowman’s layer.
Stroma is formed of cells known as quiescent stromal

cells and well-organized collagen fibrils. Stroma forms 90%
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FIGURE 1. Graphical abstract of our soft computing design.

of thickness for cornea [4], [5]. With the help of stroma,
eyesight is transparent. The collagen diameter, proteoglycans,
orthogonal lamellae and spacing of fibrils play a vital role
in the health of stroma [6]–[9]. Many techniques are used to
handle highly non-linear boundary value problems (BVPs),
we have reviewed a list of such techniques, like, differential
transformmethod [10] Adomian decomposition method [11],

variational iterative technique [12] and Spline interpola-
tion [13]. Problems are also solved by methods involving
Green’s functions. For instance, Malekzadeh et al. [14] revis-
ited the model of freely vibrating, elastic, functionally graded
circular plates with varying thickness. He used Green’s and
Quasi Green’s functions to study his models. Andrade [15]
suggested an approach based on the exact Green’s function

VOLUME 8, 2020 61577



W. Waseem et al.: Soft Computing Approach Based on Fractional Order DPSO Algorithm Designed to Solve the Corneal Model

FIGURE 2. Architecture of the neural network for approximate solution of CSM [41].

for the arbitrary rectangular potentials. Ahyoune et al. [16]
employed a multi-objective Green’s function of 2D and 3D
having different weights to solve quasi-static partial element
equivalent circuits. Problems arising in the fields of oscil-
lation theory, ignition, and electro-analytical chemistry are
solved with the help of a coupled Green’s function together
with an iterative technique. These problems include Bratu
differential equations [17]–[19]. All these procedures have
their effectiveness, exactness, robustness, and other char-
acteristics like the ease of implementation, requirement of
prior knowledge about the problem and weaknesses over
one another. In [20]–[22], they combine ANNs with random
search techniques to tackle biological models represented
through differential equations. These artificial intelligence
schemes are suitable to calculate solutions for the CSM.
Many researchers had worked on the said scheme which
includes solvers are in electromagnetic [23], circuit the-
ory [24], fuel ignition model [25], Thomas-Fermi model [26],
induction of the motor models [27], doubly singular non-
linear systems [27], nanofluidics [28], nanotechnology [29],
nonlinear prey-predator models [30], Troesch’s problem [31],
nonlinear equations [32], optimal control [33], mathematical
modeling and control theory of particle accelerators [34],
signal processing [35], linear and nonlinear fractional order
model [36], financial mathematics [37], physical models sig-
nified nonlinear system of equations [38] and powerfully
nonlinear differential equations with many singularities of
Painleve equations [39]. Recently, the design analysis of
porous fins is studied with the help of a combined proce-
dure CS-ANN in [40]. In [41], a hybrid approach of Particle
SwarmOptimization (PSO) together with the Active set algo-
rithm (ASA), namely PSO-ASA, is used to solve CSM.Keep-
ing this in view, it motivates the authors to design a simple to
implement a single optimization technique that will use fewer

iterations and memory to achieve the best solutions for CSM.
To minimize the mean squared error in the solutions formed
by ANNs, we use an efficient single meta-heuristic technique
named as FO-DPSO to achieve this task. The following fea-
tures of the suggested method is briefly given as:
• We will use ANNs to design approximate solutions for
CSM.Wewill train the unknownweights involved in the
solutions to produce consistent solutions.

• The proposed methodology is efficiently applied for
different cases of the CSM, which shows better perfor-
mance of the scheme.

• We had compared the results of the proposed scheme
FO-DPSO with PSO-ASA numerical technique avail-
able in the literature.

• The statistical analysis has been done for the proposed
scheme and compared the results with other optimiza-
tion techniques based on mean squared error, mean
absolute error, mean absolute deviation and standard
deviation.

• Along with calculating consistent instantaneous solu-
tions, we will concentrate on ease of implementation,
smoothness of algorithm, simplicity, reliability of our
soft computing design for CSM.

• Our approach is based on a single optimization tech-
nique which is effective in term of computational cost
like execution time, function evaluation and number of
iteration as compared to PSO-ASA which is the combi-
nation of two algorithms.

We give the organization of the article as the CSM model is
described in section 2 which comprises ANNs models and
optimization scheme of FO-DPSO. We present performance
metrics in section 3. In section 4, we present the numerical
results and graphical overview of the CSM. The last section
describes the conclusion.
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FIGURE 3. Solution plots for six cases.

II. MATHEMATICAL MODEL
It is often hard to solve a non-linear differential equation
and is often challenging and difficult to handle. To investi-
gate the solution of such a differential equation, we need an
efficient method. In this article, we proposed an ANN-based
method.We have divided our findings into two parts. The first
part contains a mean-squared error based objective function.
While the second part elaborates on the complete process
of the training of unknown weights involved in ANN-based
solutions and utilization of FDPSO. We give the solution
design for the CSM in Fig.1. A flowchart of the whole soft
computing scheme involving ANNs and FO-DPSO is pre-
sented in Fig.2.

A. MODELING OF APPROXIMATE SOLUTIONS BY
UNSUPERVISED NEURAL NETWORKS
Many researchers have found that through artificial neural
networks we can find the approximate solution of different
mathematical models arising in different fields [42]–[44].
In this research, we designed feed-forward ANNs based solu-
tions for the biological CSM which is represented by a dif-
ferential equation. Design of continuous maps which suggest
the approximate solution χ̂ (x) and its mth order derivative
χ̂ (m)(x), are given in equation (4) and (5):

χ̂ (x) =
N∑
i=1

αif (ξix + βi) (4)
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FIGURE 4. Plots of unknown weights for best solutions of six cases.

χ̂ (m)(x) =
N∑
i=1

αif (m)(ξix + βi) (5)

represents the ith component of αi, ξi and βi vectors. More-
over, n represents the number of neurons and m denotes the
mth derivative of the function. In this research, we consider

the log-sigmoid function as an activation function represented
mathematically as f (x) = 1

1+e−x . Using this function equa-
tion (4) and (5) becomes:

χ̂ (x) =
n∑
j=1

αj

(
1

1+ e−(ξjx+βj)

)
(6)
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FIGURE 5. Residual errors in best solutions obtained for six cases.

χ̂ (m)(x) =
n∑
j=1

αj

(
1

1+ e−(ξjx+βj)

)(m)

(7)

In the case of CSM, the second derivative is used and repre-
sented as in equation (8),

χ̂ ′′ =

n∑
j=1

αjξ
2
j

×

 2e−2(ξj×tβj)(
1+ e−(ξjx+βj)

)3 − e−(ξjx+βj)(
1+ e−(ξjx+βj)

)2
 (8)

The combination of the equations given in (6) and equa-
tion (8) formulate the objective function for the system

represented in equation (3). The error function is given as:

min ζ = ζ1 + ζ2, (9)

where, ζ1 is the error function for CSM describes as:

ζ1 =
1
N

N∑
k=1

(
√
1+ χ ′2χ̂ ′′k − c

√
1+ χ ′2χ̂ + d)2

N =
1
h
, χ̂k = χ̂ (xk ), xk = kh (10)

Similarly, ζ2 error in the boundary conditions is given in
equation (11):

ζ2 =
1
2

((
χ̂ ′0
)2
+
(
χ̂N − 1

)2) (11)

VOLUME 8, 2020 61581



W. Waseem et al.: Soft Computing Approach Based on Fractional Order DPSO Algorithm Designed to Solve the Corneal Model

FIGURE 6. Best, mean, and worse values of (a) fitness function (b) MAD (C) TIC (d) ENSE for 100 experiments done for six cases.

B. BASIC DEFINITION FOR FRACTIONAL CALCULUS
Fractional calculus (FC) has attracted the attention of
several researchers [46], being applied in various sci-
entific fields such as engineering, computational mathe-
matics, and fluid mechanics, among others. FC can be
considered as a generalization of integer-order calculus,
thus accomplishing what integer-order calculus cannot.
As a natural extension of the integer (i.e., classical)
derivatives, fractional derivatives provide an excellent
instrument for the description of memory and hereditary
properties of processes. The concept of the Grünwald–
Letnikov fractional differential is presented by the following
definition.

Definition 1: Let 0 be the gamma function defined as [47]

0(k) = (k − 1)!. (12)

The signal Dα[x(t)] given by

Dα[x(t)] = lim
h→0

[
1
hα

+∞∑
k=0

(−1)k0(α + 1)x(t-kh)
0(k + 1)0(α − k + 1)

]
(13)

is said to be the Grünwald–Letnikov fractional derivative
of order α, α ∈ C , of a generic signal x(t). An impor-
tant property revealed by equation (13) is that although
an integer-order derivative just implies a finite series,
the fractional-order derivative requires an infinite number
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FIGURE 7. History plots for values of (a) fitness function (b) MAD (C) TIC (d) ENSE recorded during 100 simulations,
obtained at the end of each experiment, for six cases of CSM.

of terms. Therefore, integer derivatives are ‘‘local’’ opera-
tors whereas fractional derivatives have, implicitly, a ‘‘mem-
ory’’ of all past events. However, the influence of past
events decreases over time. The formulation in (13) inspires
a discrete time calculation presented by the following
definition.
Definition 2: The signal Dα[x[t]] given by [47]

Dα[x[t]] =
1
T α

r∑
k=0

(−1)k0[α + 1]x[t-kT ]
0[k + 1]0[α − k + 1]

(14)

where T is the sampling period and r is the truncation order,
is the approximate discrete time Grünwald–Letnikov frac-
tional difference of order α, α ∈ C , of the generic discrete
signal x(t). The series presented in equation (14) can be
implemented by a rational fraction expansion that leads to a
superior compromise in what concerns the number of terms
versus the quality of the approximation.

C. SEARCH METHODOLOGY OF FO-DPSO
According to recent studies, fractional calculus (FC) attracted
many researchers to apply it in defining and solving prob-
lems arising in engineering [47], applied mathematics,

mechanical/ dynamics, [48], [49]. Grunwald-Letnikov
defined fractional derivative containing fractional coeffi-
cients αεC , a real number, by varying an unknown function
x(t) as in equation (15)

Dα[x(t)] = lim
h→0

[
1
hα

+∞∑
k=0

(−1)k0(α + 1)x(t − kh)
0(k + 1)0(α − k + 1)

]
(15)

where the symbol 0 represent gamma function. It is fur-
ther elaborated that in equation (15), if the derivative is
of integer order, then the series is defined by finite terms.
On the other hand, if α is of fractional order the result is
represented by the infinite term. Therefore, it is interesting
to note that ordinary derivatives are local/instantaneous oper-
ators while fractional operators represent the memory of past
changes. Moreover, the memory of past instances decreases
with time. A derivative for discrete instances is defined in
equation (16),

Dα[x(t)] =
1
T α

[ r∑
k=0

(−1)k0(α + 1)x(t − kh)
0(k + 1)0(α − k + 1)

]
(16)

The term T denotes time intervals of events occurred and
truncated terms are represented by r . Tools existing in
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FIGURE 8. Normal probability plots of fitness values obtained during 100 experiments for six cases.

fractional calculus are useful in irreversible and chaotic
processes, because of their memory keeping characteristics.
Keeping in view the chaotic behavior of swarms in the
Darwinian Particle swarms optimization algorithm, fractional
calculus tools are suitable to keep track of past moves by
swarms. Assuming the inertial weight in FO-DPSO w = 1,
T as 1 and keeping in view the work done in [50], we get the
following expression,

Dα[vnt+1] = ρ1r1(ǧ
n
t − x

n
t )+ ρ2r2(x̌

n
t − x

n
t )+ ρ3r3(ň

n
t − x

n
t )

(17)

Empirical results produced by the algorithm are the same for
r ≥ 4. Also, the computational complexity increases linearly

and thus occupyO(r) memory. Hence for faster convergence,
the fifth term and onwards are truncated. Thus the value
of r is kept as 4. Adding these four terms of differential
derivative the velocity term in FO-DPSO [45] becomes as in
equation (18),

vnt+1 = αv
n
t +

1
2
αvnt−1 +

1
6
α(1− α)vnt−2

+
1
24
α(1− α)(2− α)vnt−3 (18)

+ ρ1r1(ǧnt − x
n
t )

+ ρ2r2(x̌nt − x
n
t )+ ρ3r3(ň

n
t − x

n
t ) (19)
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FIGURE 9. Normal probability plots of MAD values obtained during 100 experiments for six cases.

D. CONVERGENCE THEORY OF FO-DPSO
Experimental results show that the convergence of the algo-
rithm depends upon the fractional order α. However, contrary
to the FOPSO presented in [50], the Darwinian algorithm
easily avoids being stuck in local solutions independently of
the value of α (because it is a particularity of the traditional
DPSO). Moreover, one can observe that, in most situations,
a faster optimization convergence is obtained for a fractional
coefficient α in the range [0.5, 0.8]. Therefore, to evaluate
the FODPSO further, let us then systematically adjust the
fractional coefficient a between 0.5 and 0.8, according to the
expression:

α(t) = 0.8− 0.3
t

2000
. (20)

III. STATISTICAL EVALUATION
In the present study, we give statistical analysis for all
the cases of the CSM, which are based on mean, standard
deviation, and minimum values. Performance matrices like
MAD, TIC, and ENSE are used to test the efficiency of
our approach in each simulation while global performance
matrices like GMAD, GTIC, GFIT, and GENSE are used to
test the global efficiency of our novel approach. We give the
mathematical formulation for these performance matrices in
equations (16-19)

MAD =
1
n

n∑
m=1

|y(tm)− ŷ(tm)| (21)
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FIGURE 10. Normal probability plots of TIC values obtained during 100 experiments for six cases.

TIC =

√
1
n

∑n
m=1 (y(tm)− ŷ(tm))

2√
1
n

∑n
m=1(̂y(tm))2)+

√
1
n

∑n
m=1 (̂y(tm))2

(22)

NSE =

{
1−

∑n
m=1 (y(tm)− ŷ(tm))

2∑n
m=1 (y(tm)− ȳ(tm))

2 , (23)

ȳ(tm) =
1
n

n∑
m=1

y(tm)

ENSE = 1− NSE (24)

GMAD =
1
R

R∑
r=1

(
1
m

m∑
i=1

(∣∣∣h (ti)− ĥ (ti)∣∣∣)) (25)

GFIT =
1
R

R∑
r=1

er (26)

GENSE =
1
R

R∑
r=1

√√√√ 1
m

m∑
i=1

(
h (ti)− ĥ (ti)

)2 (27)

In the case, if a perfect solution approaches then all the values
of MAD, TIC and ENSE become zero.

IV. SIMULATIONS AND RESULTS
In this section, we considered six different cases for the CSM
and performed 100 independent numerical simulations to see
the robustness of our approach.
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FIGURE 11. Normal probability plots of ENSE values obtained during 100 experiments for six cases.

A. CASE 1
By considering c=d=0.1 in equation (3), and choosing the
interval x ∈ [0, 1] becomes as:

χ ′′ − 0.1χ +
0.1√
1+ χ ′2

= 0

χ ′(0) = χ (1) = 0 in [0, 1]

(28)

The fitness evaluation of the case 1 is:

ζ =
1
N

N∑
k=1

(
√
1+ χ ′2χ̂ ′′k − 0.1

√
1+ χ ′2χ̂ + 0.1)2

+
1
2

((
χ̂ ′0
)2
+
(
χ̂N
)2) (29)

B. CASE 2
Taking the values of c = 0.2, d = 0.1 in CSM (3) using the
interval x ∈ [0, 1].

C. CASE 3
Taking the values of c = 0.3, d = 0.1 in CSM (3) using the
interval x ∈ [0, 1].

D. CASE 4
Taking the values of c = 0.1, d = 0.2 in CSM (3) using the
interval x ∈ [0, 1].

E. CASE 5
Taking the values of c = 0.1, d = 0.3 in CSM (3) using the
interval x ∈ [0, 1].
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TABLE 1. AE obtained for case 1, 2 and 3 for CSM.

TABLE 2. AE obtained for case 4, 5 and 6 for CSM.

TABLE 3. Results for global Fitness, MAD, TIC and ENSE for each case of the CSM.

F. CASE 6
Taking the values of c = 0.1, d = 0.4 in CSM (3) using the
interval x ∈ [0, 1].

Best solutions for all cases are given in Fig 3. The unknown
weights involved in calculation of best solutions are visu-
alized in Fig. 4. Also Fig. 5 represents the set of resid-
ual errors for all six cases obtained for best solutions. The
domain of the problem is the interval [0, 1] and by taking
the step size 0.1. From Fig. 3 it is evident that our solutions
and reference solutions are in agreement with each other
for each point. To ensure the stability and effectiveness of
our algorithm we have compared our results obtained from
100 simulations with the reference solutions to decide the
best result for each case of CSM. Fig. 6 depicts the best,
mean and worse values of fitness, MAD, TIC, and ENSE
for all six cases. The values of absolute errors (AE) in tables
1 and 2 lie around 10−11 to 10−14, 10−10 to 10−12, 10−11

to 10−14, 10−10 to 10−12, 10−10 to 10−13 and 10−09 to
10−11 for best solutions. While it ranges from 10−07 to
10−08, 10−06 to 10−07, 10−07 to 10−08, 10−07 to 10−08,
10−07 to 10−08 and 10−06 to 10−08 for mean solutions. For
worst solutions the AE lie around 10−01 to 10−03, 10−01

to 10−03, 10−03 to 10−04, 10−02 to 10−03, 10−04 to 10−05

and 10−04 to 10−05 for all the cases of CSM [41]. All the
result proves very good agreements. In Fig. 7, we present
history plots for values of the fitness function, MAD, TIC,
ENSE recorded during 100 simulations, obtained at the
end of each experiment, for six cases of CSM. It is clear
in the table. 3 that mean values of GFIT are 1.23E-06,
4.32E-06, 1.50E-06, 1.76E-06, 2.97E-06, 2.26E-06 for
cases 1 to 6 respectively. Mean values of GMAD are 4.35E-
05, 5.21E-05, 4.99E-05, 5.08E-05, 8.16E-05, 1.17E-04 for
cases 1 to 6 respectively. Mean values of GTIC are 3.54E-
04, 4.42E-04, 8.79E-05, 2.12E-04, 2.20E-04, 2.33E-04 for
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TABLE 4. Computational cost in terms of CPU time(s), iterations, and function evaluations for each problem of CSM.

TABLE 5. Maximum error obtained using different number of neurons.

cases 1 to 6 respectively and mean values of GENSE
are 2.52E-04, 6.30E-04, 5.27E-04, 8.66E-05, 9.31E-05,
4.76E-05 for cases 1 to 6 respectively. The computational cost
of our procedure is measured in terms of CPU time, iterations,
and function evaluations taken to solve all 6 problems see
table 4. Our approach requires less time, minimum iterations
and function evaluations to achieve results of the required
standard as compared to results reported in [41]. All the inputs
are continuous and as in Fig 3 with small changes in different
terms involved in our mathematical model, the solution is
stable and shows small variations. Thus our model under con-
sideration is well-conditioned. All these global performance
matrices indicate our soft computing design is much compet-
itive as compared to the state-of-the-art techniques. Normal
probability plots see Figs. 8-11 indicate that values of fitness,
MAD, TIC, and ENSE are very small for 100 experiments
considering six cases of CSM.

V. CONCLUSION
The research done in this paper is concluded by the following
remarks,

1) We have designed a new soft computing procedure,
by which we have calculated solutions for the corneal
shape model. Feed-Forward ANNs are used to approx-
imate the general solutions for the CSM model. The
unknown weights involved in the general solutions are
trained by a well balanced Nature-inspired technique
which is named FO-DPSO. This optimization tech-
nique is proved to be a good global search as well as a
local search technique. Fitness functions were defined
based on the residual errors in approximate solutions
which we have tried to minimize by using FO-DPSO.

2) To establish the good performance of the ANN-based
FO-DPSO procedure, we have chosen Adams’s

numerical solver as a reference solution calculator. Dif-
ferent scenarios are considered for CSM. In all cases,
ANN-based FO-DPSO was better in terms of getting
more accurate solutions with less residual errors.

3) Statistical terms like mean, minimum, standard devia-
tions are calculated for results obtained from 100 inde-
pendent simulations with different initial populations.
It was confirmed that our procedure is an important
and suitable candidate for solvingmathematicalmodels
representing real-world problems.

4) In all scenarios of CSM, our procedure was bet-
ter in terms of less number of function evaluations,
mean time value, ENSE, TIC, MAD. This proce-
dure can be used for partial differential equations
and fractional-order differential equations with some
modifications.

In the future, we will implement this technique for different
real-world problemswith fractional derivatives to have a deep
insight. More convergence analysis is required to explain the
FO-DPASO base ANN procedure.

APPENDIX

χ (x)case1 =
0.695831459561791

1+ e−(−0.445461691716731x+0.559464015362682)

+
0.857202437729070

1+ e−(−0.237526067375416t−3.95847296398435)

+
−3.21486042159391

1+ e−(−0.870159531592183x−3.65902542008718)

+
0.734665852064563

1+ e(−0.517619339223332x+1.97547424788769)

+
−0.0102791099323604

1+ e−(−0.429818013212879x+0.0384072956774085)

+
−0.194780517438811

1+ e−(0.798300190831507x+4.99089976751116)

+
0.642716229430733

1+ e−(−1.48666033825261x−4.34661230033876)

+
0.00176645580297596

1+ e−(1.84308030858239x−0.780906274299805)

+
−1.90296667674946

1+ e−(−0.223817599065422x−0.482445193295733)

+
−1.87685224934406

1+ e−(0.726112779383839x−3.42642740470645)
(30)

χ (x)case2 =
−0.274974243710526

1+ e−(0.585914908005785x+2.01062679578643)

+
0.0708536574547530

1+ e−(1.79328228238756x−0.211844967936489)
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+
0.842629748467294

1+ e−(1.74525992098521x+5)

+
−0.116399036336741

1+ e−(−2.24263701983815x−1.88296059313356)

+
0.384028095593582

1+ e−(0.872088417762822x+0.929854833335827)

+
−1.18255492549412

1+ e−(0.269169438317497x+5)

+
1.09529790391014

1+ e−(−0.511879060722408x+1.79064742640828)

+
0.0903768171622611

1+ e−(1.46719482455247x−1.87200278559390)

+
−1.20152474138597

1+ e−(0.774340068680691x−3.36644142561565)

+
−0.644304866967837

1+ e−(0.602622179846140x+2.13305430308015)
(31)

χ (x)case3 =
1.14524767300943

1+ e−(0.497085905477655x+1.03150626269979)

+
−3.09424545649312

1+ e−(0.625183502313801x−0.424807166590887)

+
−0.284406015833670

1+ e−(1.93368666265249x−4.48686677142058)

+
2.54653457465888

1+ e−(0.365930532381210x−0.244781460377318)

+
−2.19028605511111

1+ e−(−0.155198554043503x−2.86809120202160)

+
−0.834562572163173

1+ e−(−0.253520378861498x+3.39441634201052)

+
0.450238261169759

1+ e−(1.33867709748867x+2.92085528357334)

+
0.327267338363910

1+ e−(−1.41662034354300x−2.66993782102434)

+
−0.390319950295860

1+ e−(−1.03169182616878x+0.181013148152516)

+
−0.238081026579067

1+ e−(−1.88662657799308x−4.76981220991832)
(32)

χ (x)case4 =
−0.101394819777945

1+ e−(−0.324135662176636x+0.393000384067753)

+
−0.246237133474045

1+ e−(1.44918683346222x−2.78739450451830)

+
0.303842256080317

1+ e−(1.35102209843720x−0.0165031439973391)

+
0.570447571542129

1+ e−(−1.82308843106756x−3.73701466970324)

+
−2.27559047367201

1+ e−(1.14835598489040x−4.33439259443281)

+
−0.419770900949776

1+ e−(−0.959775771651920x−3.57961995185080)

+
−2.01123549346417

1+ e−(−0.817969935253694x−3.36674549112899)

+
−4.90538524897789

1+ e−(−1.22264924456206x−4.22228174943473)

+
0.584303013011058

1+ e−(−0.743591809789781x−0.0815087248865332)

+
−0.249187667299933

1+ e−(1.27098079114687x−0.486572443190713)
(33)

χ (x)case5 =
−1.65328360998710

1+ e−(0.794356626908655x−1.50745356670287)

+
0.303728749117813

1+ e−(−1.44893547538213x+0.442396978992330)

+
0.0967770715437123

1+ e−(−1.91240500519205x−0.744850660599771)

+
0.598011681888485

1+ e−(−0.246770044909789x−1.66592597570062)

+
0.0278344629630608

1+ e−(0.703194533215742x+0.0450969442192352)

+
−1.23844017594612

1+ e−(0.847420428907692x−3.63939018570850)

+
0.867239186998636

1+ e−(−0.101056136698669x+2.80195342805364)

+
−1.50615470819223

1+ e−(−1.00799846322235x−0.359652017118539)

+
−0.818121427741594

1+ e−(−1.63451487995171x−3.34235608433912)

+
−0.981672246350874

1+ e−(1.22661880304038x−3.80134572115877)
(34)

χ (x)case6 =
−2.24689821707894

1+ e−(0.673951497675586x+0.165082329242494)

+
−0.126706702662168

1+ e−(0.650298520767727x+2.12846296339058)

+
1.06039609262931

1+ e−(−1.78809137415529x+4.99998744679029)

+
−1.71914357460005

1+ e−(−0.970162952685123x−0.114127356658791)

+
0.358351015787281

1+ e−(−1.34392603786262x−0.593102390652443)

+
1.72910571225798

1+ e−(−0.990302197825875x+1.76004772927106)

+
−2.21331926323089

1+ e−(−0.0372728879004384x+0.867050874857976)

+
0.154402171327691

1+ e−(1.22826775877717x+1.58383116761127)

+
−3.65559294557584

1+ e−(−0.633730448276276x−3.90016324810849)

+
1.36826099946251

1+ e−(1.31281713461553x+1.81279094808111)
(35)
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