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ABSTRACT Herd immunity, one of the most fundamental concepts in network epidemics, occurs when a
large fraction of the population of devices is immune against a virus or malware. The few individuals who
have not taken countermeasures against the threat are assumed to have very low chances of infection, as they
are indirectly protected by the rest of the devices in the network. Although very fundamental, herd immunity
does not account for strategic attackers scanning the network for vulnerable nodes. In face of such attackers,
nodes who linger vulnerable in the network become easy targets, compromising cybersecurity. In this paper,
we propose an analytical model which allows us to capture the impact of countermeasures against attackers
when both endogenous as well as exogenous infections coexist. Using the proposed model, we show that a
diverse set of potential attacks produces non-trivial equilibria, some of which go counter to herd immunity;
e.g., our model suggests that nodes should adopt countermeasures even when the remainder of the nodes has
already decided to do so.

INDEX TERMS Cybersecurity, denial-of-service attacks, network epidemics, network security.

I. INTRODUCTION
Malicious software, such as viruses, Internet worms, adware,
spyware and botnets [1], continuously threatens the Inter-
net stability posing a wide variety of challenges to system
administrators and users. Viral models for the diffusion of
malicious software have been part of the mainstream research
in network security tomodel the diffusion of computer worms
[2]–[6]. Such models are very convenient also to capture the
construction of large distributed attack networks known as
botnets [7], [8], which are pivotal for the emerging paradigm

The associate editor coordinating the review of this manuscript and
approving it for publication was Derek Abbott.

of cybercriminality as a service. In fact, botnets are built in a
silent way using epidemic malware diffusion to compromise
millions of terminals by malicious codes (malware) and later
on perform actions without the knowledge of the legitimated
owners. In the last decade, botnets have been leased as sup-
port infrastructure in order to perform various types of crim-
inal activities including, e.g., Distributed Denial of Service
(DDoS) [9] attack campaigns or ramsomware attacks, just
to mention the most spectacular ones. Typically the attacker,
also called the botmaster, takes control of devices either com-
promising them using endogenous infections, i.e., from the
neighbors in a local network, or using exogenous infections
operated from a remote network. Recently, botnets leverage
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a lethal combination of social engineering and software vul-
nerabilities, where the infection of local machines is usually
performed using viral phishing attacks able to hijack a large
base of social network accounts [7], [10] and by leveraging
trojans in order to take control of local machines.

Models for virus propagation have been thoroughly studied
since the seminal work of Kermack and McKendrick [11],
[12], mainly focusing on epidemic thresholds and immu-
nization policies. In the last 20 years, new research lines in
computational epidemiology have unveiled the crucial role of
network topology in the propagation of epidemics [13], [14].
As a consequence, in order to manage network security, sig-
nificant effort has been devoted to understand how computer
viruses spread in a network, and how to efficiently design
countermeasures able to mitigate such threats [15]–[17]. Tra-
ditionally, many countermeasures account for herd immunity,
a form of indirect protection of network nodes from infections
that occurs when a large percentage of devices becomes
immune to an infection, providing a measure of protection
for individuals who are not immune [18]–[21].

In fact, vaccination is one of the most prevalent counter-
measures against the spread of epidemics, since it reduces
the fraction of vulnerable nodes [22], [23]. In the realm of
computer systems, however, there are light and heavyweight
forms of vaccination. Lightweight vaccination is typically
performed through the update of anti-virus software. Such
updates are executed regularly, usually once a day or once
a week, giving rise to the so-called Internet security ‘‘cat and
mouse game’’. Actually, as soon as an anti-virus software
update is released, by using dedicated bot update modules
[24]–[27] botmasters change the signature code of the virus
and its behavior. Novel fully undetectable versions of the
virus are produced and the virus ultimately evolves through
multiple generations [28]–[30].

New releases of anti-virus software need to cope with such
virus evolution, also known as polymorphism. In this context,
networked nodes are typically modeled using a susceptible-
infectious-susceptible (SIS) model [31], according to which
they switch over time between being susceptible (S) to the
malware infection and being actually infected (I), and then
susceptible again after malware removal. Ultimately, most
anti-virus products are subscription-based and deploy regular
updates to anti-virus databases.

Alternative countermeasures against viruses include very
stringent treatments, such as quarantine, e.g., the disconnec-
tion of nodes from the network, clean-state restarts with full
operating system and firmware upgrades, or the execution of
heavyweight anti-virus software [32], [33]. The latter may
detect viruses more promptly compared to their lightweight
counterparts, at the expense of more significant CPU and
memory overhead. For all practical purposes, devices imple-
menting such countermeasures can be assumed to be immune
to the target malware.

Among the challenges faced by system administrators,
we focus on the dilemma involved in applying stringent
countermeasures, whose applicability is often limited by

practical considerations. In fact, although countermeasures
like vaccination or patching are very effective, they typically
cause collateral effects, such as system downtime or slow-
down. In some cases, e.g., in industrial control systems [34],
the resulting performance losses are unacceptable at the busi-
ness level. Therefore, one needs to trade off the benefits of
applying such countermeasures against their corresponding
costs, given the probability of infection in the presence of
strategic attackers [15], [21].

A further major challenge in network security is the typ-
ically autonomous nature of decision making. Given that
devices are interconnected, if the owner of a device or a group
of devices is not willing to pay for stringent countermeasures
and thus decides to take the risks of contamination, neighbors
are directly impacted and other nodes may be indirectly
affected [35]–[37]. Hence, decisions makers face a game in
which the countermeasure strategy selected by a given user
impacts the security landscape of the population as a whole.

Cost–benefit analyses of vaccination programs usually
account for the positive externality of vaccination [21], [38];
i.e., in a population where only a few individuals are not
immune, these individuals benefit from the vaccination that
the others have undergone. Hence, they have less incentive to
incur the relative costs of vaccination. Indeed, their rational
decision is to avoid the crowd, and ignore the vaccine. Such
analyses, however, do not account for exogenous infections
caused by malicious and strategic attackers.

Nowadays, it is possible to scan the whole IPv4 space
in less than an hour, and efficiently detect a few vulnerable
nodes [39], [40]. We refer to attackers performing such port
scans to find vulnerable nodes as strategic attackers, as they
can strategically invest their attack budget towards vulnera-
ble users. Vulnerable users, in turn, must follow the crowd,
i.e., apply a countermeasure although most of the other users
have already done so.

In this paper, we consider the problem of determin-
ing whether to invest in heavyweight forms of protection
accounting for positive and negative externalities of vaccina-
tion. Our goals are:

1) To compute the node infection probability in a network
as a function of the rates of endogenous and exogenous
infection; i.e., we assess the risks of not applying a
stringent countermeasure.

2) To determine the system equilibria; i.e., given the rel-
ative vaccination costs and an estimate of the infec-
tion probability, we determine the expected number of
agents that incur the heavyweight relative vaccination
costs.

To this aim, we propose a simple epidemic model, which
extends the multiplicative SIS model and is amenable to
steady-state closed-form solutions. We assume an attacker
with a limited average infection budget of 3 infections per
time unit. Such power is uniformly distributed among N
nodes that the attacker identifies as vulnerable. Then, each
of such nodes is subject to exogenous infections which occur
at rate 3/N . Such exogenous infections due to strategic
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attackers limited by a budget, investigated in this work, give
rise to a rich set of novel insights in the realm of epidemic
models.

We summarize our key contributions as follows.

1) Analytical model: We propose an analytical model
which captures positive and negative externalities
associated with countermeasures in security games.
It accounts for an attacker with a finite budget, lead-
ing to a threat model wherein the exogenous infection
rate per node decreases as the number of vulnerable
nodes grows. The model is simple and tractable, while
still having expressive power to capture the trade-
offs related to the vaccination of networked nodes
(Sections III-V);

2) Infection probability assessment: We provide sim-
ple closed-form expressions to approximate the infec-
tion probability as estimated by the proposed model.
In particular, one of the proposed approximations is
based on Newton’s Approximation Method (NAM).
The accuracy of the approximation can be arbitrarily
increased at the expense of additional computational
cost (Section VI and Appendix A);

3) Vaccination game and analysis of equilibria: We
pose a vaccination game in which each player selects
a countermeasure as a function of the estimated infec-
tion probability. We investigate system equilibria, indi-
cating two extreme regimes; under the first (second)
one, the infection probability monotonically decreases
(increases) as a function of the size of the vulnera-
ble population, corresponding to a follow-the-crowd
(avoid-the-crowd) behavior (Section VII-A);

4) Simulations: We perform experiments using a detailed
malware simulator inspired by Mirai botnet epi-
demics under different configuration scenarios.We ver-
ify that the proposed model qualitatively captures
the simulated botnet behavior (Section VIII and
Appendix G).

This paper is organized as follows. Section II presents
related work. The considered system is briefly introduced in
Section III. Section IV defines the vaccination game and the
concepts of follow and avoid the crowd in the presence of a
strategic attacker in an epidemic context. After the proposed
model has been described in Section V, Section VI develops
an approximate solution to the model, in closed form. The
system equilibria are analyzed in Section VII. Section VIII
illustrates some properties of the considered system through
simulation experiments and contrast them against our find-
ings obtained using the model, Section IX presents additional
discussion on broader implications of the work and Section X
concludes the paper.

II. RELATED WORK
There is a vast literature on epidemic models, accounting for
transient and stationary aspects [41] as well as endogenous
and exogenous infections [42]–[45].

In this work, we assume that a transition from an
infected to a susceptible state occurs at nodes deploying
lightweight countermeasures. Those transitions reflect that an
infected node, after lightweight countermeasures, becomes
susceptible again for new variants of the same malware. The
use of the SIS model to capture those transitions is standard
in the literature of epidemic models applied to computer
systems.

The classical SIS epidemic model is borrowed from Biol-
ogy. As such, it captures the propagation of non-intentional
viruses. Propagation of malware in a computer network,
in contrast, must capture intentional and targeted infections,
as pointed out in [8], [46], [47].

One way to capture strategic behavior is to extend the
model by exogenous strategic infections. Exogenous infec-
tions have previously been considered in the realm of bio-
logical networks [42], [43], [48]. However, to the best of our
knowledge there is no prior epidemic model using exogenous
infections to account for strategic attackers with a finite attack
budget. In particular, attackers that can scan the whole net-
work in a few hours have been considered by the security
community from a systems-oriented standpoint [39], [49],
[50] but not from an epidemics point of view. One of our
goals is to bridge this gap. To that aim, we consider exogenous
infections per node whose rates depend on the population
size. We are unaware of previous works wherein such threat
model has been considered (see Section III-C).
Network externalities play an important role in the adop-

tion of software and countermeasures. A community of users
of a particular software, for instance, benefits from addi-
tional members [38], [51], e.g., when accounting for inter-
operability or collaboration functionality. In [52], network
externalities play an important role for strategic decisions
taken by each community in an attacker-susceptible environ-
ment. In our work, we assume that increasing the number
of vulnerable nodes implies decreasing the probability of
an exogenous infection towards a tagged, randomly-chosen
node.

Maille et al. [53] have also studied network externalities
related to security countermeasures, but without accounting
for epidemic aspects. Their focus is on financial and eco-
nomic motivations behind malicious actions, assuming that
the number of vulnerable devices is directly proportional
to the incentives an attacker has to produce an exploit for
that vulnerability. A similar economic perspective from the
standpoint of attackers has been considered in [28]. In our
research, in contrast, the focus is mainly on strategic attackers
who leverage existing exploits, and are able to identify targets
by scanning the IP address space.

We indicate that the proposed model gives rise to both
stable and unstable equilibria. Those equilibria are similar in
spirit to the ones obtained in the analysis of medium access
protocols, such as Aloha [54], [55]. Nonetheless, our analysis
intrinsically accounts for strategic decision makers, whereas
traditional performancemodels, such as those used to analyze
Aloha [54], [55], account for non-strategic agents.
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FIGURE 1. Node states. Transitions in a coarse-grained time scale
correspond to changes in the adoption of stringent countermeasures,
and are captured by the vaccination game state graph introduced in
Section IV-C and Definition 1. Fine-grained transitions are captured
by the SIS model introduced in Section V-A.

III. SYSTEM DESCRIPTION
A. TERMINOLOGY
Next, we briefly introduce the terminology considered
throughout this work.

• A network comprises nodes (or users).
• Heavyweight forms of vaccination, also referred to as
stringent countermeasures, include quarantine or the
execution of heavyweight anti-virus software. Devices
implementing such countermeasures are assumed to be
immune to the target malware.

• Vaccinated nodes are those nodes that have applied strin-
gent forms of vaccination (see Figure 1).

• Lightweight forms of vaccination are typically per-
formed through the update of anti-virus software. Such
updates are executed regularly, giving rise to the so-
called Internet security ‘‘cat and mouse game’’ which
motivates the SIS model considered in this paper.

• Vulnerable nodes are those nodes that are not vaccinated,
who implement lightweight forms of vaccination, and
are thus subject to infection and recovery. A vulnerable
node is either susceptible or infected.

• Susceptible users are prone to infection. Once infected,
they apply lightweight countermeasures, which cause
them to transition back to the susceptible state.

• The attack budget of an attacker is the rate of infections
per time unit that the attacker can issue.

• Endogenous infections are caused by local neighbors.
Exogenous infections are caused by an attacker whose
attack budget is limited.

• The vaccination cost refers to aspects such as expenses,
downtime, performance overhead, increased system
response time, or degraded functionality due to the
application of a vaccine.

• The infection probability is the expected fraction of time
during which a vulnerable node is in the infected state.
The infection probability depends on the infection rate
and on the curing rate. When deciding which counter-
measure to take, a node trades off the relative vaccination
cost against the probability of infection.

TABLE 1. Table of notation.

B. USER POPULATION, COST FUNCTION
AND NETWORK TOPOLOGY
We consider a finite population of M nodes. Each of them
must decide to invest or not in a vaccine. Let the cost per
time unit of a vaccine (e.g., subscription fee for a heavyweight
anti-virus software) be denoted by V , while the costs per time
unit in which a node is infected amount to H [15]; typically,
V < H . We refer to the (unit-less) fraction V/H as the
relative vaccination cost C (see Table 1).

We denote the number of nodes that have not applied a
stringent form of vaccination by N . Such nodes are subject to
the epidemic process andmight be infected by the virus, while
still adopting lightweight protective mechanisms. After being
infected, a node recovers returning to its initial susceptible
state, e.g., by formatting or rebooting the machine. The
remainingM − N nodes are assumed to be always immune.
The relative cost incurred by a user in a population wherein

N users are vulnerable is given by C(N ),

C(N ) =

{
ρ, if user is not vaccinated,
V/H , otherwise,

(1)

where ρ is the fraction of time at which the user is infected.
The network topology, comprising N nodes that did not

invest in stringent countermeasures, determines the process
of epidemic spread. The network topology is given by its
adjacency matrix A of size N × N , where each entry ak,l is
1 if the nodes k and l are connected and 0 otherwise. Except
otherwise noted, we assume an undirected network topology,
wherein ak,l = al,k and the diagonal elements of A are all
zero.
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C. THREAT MODEL
Let 3 be the power of an attacker, measured by the number
of infections per time unit. In the simplest setting, a constant
budget is allocated evenly among all vulnerable nodes; the
exogenous infection rate per node is then λ(N ) = 3/N . In the
remainder of the paper, we may refer to λ(N ) simply as λ,
keeping the dependence of λ on N implicit but noting that
such dependence is assumed throughout the whole work.

In general, 3 may be a function of N , and λ assumes a
functional form given by

λ(N ) = 3(N )/N . (2)

The threat model introduced above constitutes one of our key
contributions. The model leads to novel insights on epidemic
behavior accounting for strategic attackers, with implications
on the role of vaccination for small populations as further
discussed in the following sections.

D. EPIDEMIC INFECTION AND RECOVERY
At any point in time, each of the N vulnerable nodes can be
at states susceptible (S, or 0) or infected (I , or 1). Let the
time expended in the recovery of an infected node follow an
exponential distribution with rate µ. A susceptible node may
be infected by an external attacker (exogenous infection) or
by an internal attack (endogenous infection) from network
neighbors. Let d be the number of infected neighbors of
a given node. We assume that the endogenous infection is
exponentially dependent on d ; i.e., the rate of endogenous
infection per node is given by γ d . The effect of the exogenous
infection is also assumed as multiplicative. Thus, the infec-
tion rate of a susceptible node is given by λγ d , and the
time until a susceptible node becomes infected follows an
exponential distribution with mean 1/

(
λγ d

)
.

E. WHY MULTIPLICATIVE INFECTION MODEL?
The multiplicative infection model proposed in [56] is
inspired by the standard SIS equations. The key novelty
consists of replacing the additive infection rate affecting a
tagged node, namely λ + γ d , by a multiplicative one λγ d .
In what follows, we further discuss the motivation and the
implications of a multiplicative model.

In the traditional SIS epidemic models inspired by bio-
logical systems, such as, the framework under which the
NIMFA model [57] is derived, the additive model is a natural
choice. In fact, when d infected neighbors of node i enter in
contact with node i, each according to an independent Poisson
process of rate γ , the resulting cumulative infection rate γ d
is the sum of their individual infection rates, and yields the
Markovian structure. Ultimately, this provides an appealing
precise formal derivation of the probability of infection per
node.

Note, however, that a linear model may fail to capture the
presence of strategic attackers. In fact, such attackers can
intentionally target a vulnerable node, possibly in a coordi-
nated and/or often synchronised fashion. As a consequence,
our intuition is that such effect might result in a superlinear

infection rate. Then, a multiplicative model is preferred in
that, as showed in [56], it results into closed-form analyti-
cal expressions, amenable to further analysis under general
topologies, as indicated in the upcoming sections.

The additive model [57] captures a situation where the
infection rate γ d affecting a node increase monotonically
as the number of infected neighbors d grows. Under the
multiplicative model proposed in [56], in contrast, the cumu-
lative infection rate γ d may increase or decrease monoton-
ically with respect to the number of infected neighbors d ,
depending on whether γ ≥ 1 or γ < 1, respectively.
In this paper, we are interested in the scenario wherein the
endogenous infection rate increases with respect to the num-
ber of infected neighbors. To this aim, we shall assume that
the time scale of the epidemic process is rescaled in a way
such that the exogenous and endogenous infection rates λ
and γ are both greater than or equal to one, λ ≥ 1 and
γ ≥ 1.

In Section VIII we show through comprehensive simula-
tions that the qualitative behavior under the multiplicative
infection model captured by our analytical results also holds
under the additive infection model corresponding to a Mirai
botnet. The additive and multiplicative models are further
contrasted in Appendix B and analyzed under the complete
and bipartite topologies in Appendices D, E and F.

IV. THE VACCINATION GAME: FOLLOW THE
CROWD OR AVOID IT?
A. THE TWO REGIMES
We distinguish biological epidemic processes, which spread
infections throughout neighbors without a planned strategy
and computational epidemic processes which may have two
distinct regimes depending on the i) the attacker who knows
the vulnerable nodes and can directly infect them all subject
to its limited capacity or ii) the epidemic process that spreads
without a direct attacker control (see Figure 2).

In a biological epidemic the infection probability is strictly
increasing as a function of the number of vulnerable indi-
viduals. This occurs because endogenous infections play a
key role and exogenous infections are typically assumed to
be insensitive to the number of vulnerable individuals. Such
assumptions are captured, for instance, by the standard SIS
model under which the NIMFA approximation [57] is derived
(Figure 2(a)).
In a computational epidemic considered in this work we

assume that exogenous infections are due to a strategic
attacker with a finite budget (see Section III-C). Then, there
is an initial regime (the yellow area in Figure 2(b)) in which
exogenous infection dominates and the infection probability
decreases as a function of the number of vulnerable nodes,
given that the attacker has limited capacity; and there is
a final regime in which the endogenous infection domi-
nates and the infection probability increases as a function of
the number of vulnerable nodes, similarly to the biological
epidemic.
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FIGURE 2. Illustrative biological and computational epidemics.
Computational epidemic has two types of behavior: the first is dominated
by exogenous infections, while the second is dominated by endogenous
infections.

B. FOLLOW OR AVOID THE CROWD?
Figure 3 illustrates in red the relative vaccination costs C
for a computational epidemic. If the risk (probability) of
infection of a node is above these relative vaccination costs,
the node is motivated to vaccinate. Inversely, if the probability
of infection of a node is below the relative vaccination costs,
the node is not motivated to vaccinate.

According to Figure 3(a), this vaccination strategy leads
to three decision moments: i) the first moment occurs under
the initial regime with the infection probability above the
relative vaccination costs: each node is motivated to vacci-
nate, and hence the number of vulnerable nodes decreases;
in this case, the best strategy is to follow the crowd. ii)
the second moment occurs when the infection probability is
below the relative vaccination costs: no node is motivated to
vaccinate, and thus the number of vulnerable nodes tends to
increase; in this case, the best strategy is to avoid the crowd.
iii) the third moment occurs under the final regime with the
infection probability above the relative vaccination costs: the
node is motivated to vaccinate and the number of vulnerable
nodes decreases; in this case, the best strategy is to follow
the crowd.

FIGURE 3. Infection probability of a tagged vulnerable node: (a) in a
computational epidemic, nodes have motivation to vaccinate when the
relative vaccination cost is less than the infection probability; (b) the
system admits at most two non-trivial equilibria, one being unstable and
the other stable.

C. EQUILIBRIA
Next, we further explain and formally define the notion of
equilibrium considered throughout this paper. We start by
illustrating the concepts through an example which is simple
but already helps us appreciate the nature of our definitions.
Then, we proceed by introducing the formal definitions.

Figure 3(b) shows three points of equilibria: i) The first
point is the trivial equilibrium, in which there is no vulnerable
node and no infected node. ii) The second point is an inter-
nal unstable equilibrium; few steps towards to the left with
respect to the numbers of vulnerable nodes (x axis) implies
more motivation to vaccinate, and few steps towards the right
implies less motivation to vaccinate. iii) The third point is
the internal stable equilibrium, a small modification in the
number of vulnerable nodes (x axis) to the left or the right
results in incentives to return to the equilibrium.

For each vaccination game we define its corresponding
state graph. The state graph of the game illustrated above is
shown at the bottom of Figure 3(b).
Definition 1 (State Graph [58], [59]): A state graph is a

directed graph where each vertex corresponds to a strategy
profile Z . There is a directed arc from vertex Z to vertex Z ′
with label v if the only difference between Z and Z ′ is the
strategy of a single player and the payoff of that player inZ is
strictly less than its payoff inZ ′, the modulus of the difference
being equal to v.

Next, we specialize the above general definition of state
graphs to the vaccination games considered in this paper.
In particular, we consider two simplifying assumptions:
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• symmetry: we assume all users to be symmetric, i.e., all
users have the same number of neighbors and are subject
to the same curing rates, as well as the same stationary
exogenous and endogenous infection rates. This yields
a lumped state space wherein each state is character-
ized solely by the number of vulnerable users, i.e., the
number of users that decided not to implement stringent
countermeasures;

• incentives: we assume that the infection probability of
vulnerable users together with the relative vaccination
costs at the current state of the state graph fully deter-
mine the incentives that drive users to change their
strategies, i.e., users have an incentive to change their
strategy if the current infection probability is greater
than relative vaccination costs.

Intuitively, the latter assumption implies that each user does
not account for the difference in the infection probability of
the population after a single change of individual strategy is
performed. Such assumption allows us to determine the value
v of an edge from state Z to Z ′ of the state graph solely
based on properties of state Z . Such assumption is inspired
by [60], wherein its applicability and implications are further
discussed.
Definition 2: The state graph of a vaccination game con-

sists of N + 1 vertices, with each vertex n ∈ {0, 1, . . . ,N }
corresponding to a strategy profile wherein there are n vul-
nerable users, and each edge corresponding to a transition
wherein the system state decreases (or increases) by one unit,
representing the fact that a user starts (or stops) adopting a
stringent countermeasure. The value v of an edge from state
Z to Z ′ is given by

v(Z) = |Hρ(Z)− V |, (3)

where ρ(Z) is the infection probability at stateZ . In addition,

Z ′ =



Z − 1, if Hρ(Z) > V and Z ≥ 1
(incentive to start adopting stringent
countermeasure)

Z + 1, if Hρ(Z) < V and Z ≤ N − 1
(incentive to stop adopting stringent
countermeasure),

Z, otherwise.

(4)

Given the definition of state graphs of vaccination games,
we are ready to introduce the notion of stable and unstable
equilibria of such games. Note that according to (4), at stateZ
a user has incentive to adopt (resp., stop adopting) a stringent
countermeasure if Hρ(Z) > V (resp., Hρ(Z) < V ). In what
follows, we formalize the notion of an equilibrium.
Definition 3: An equilibrium of the vaccination game is

characterized by a minimal set of up to two adjacent vertices
n and n + 1 in its state graph such that there exists a value
n′ ∈ [n, n+ 1] for which ρ(n′) = V/H, n′ ∈ R, n ∈ N.

Definition 3 subsumes that the index of each vertex in the
state graph corresponds to the expected number of vulnerable
users in the system at that state, assuming a large population
of users. Under such an interpretation, two adjacent states
in the state graph are now separated by a continuum set of
virtual states in between them. Then, a virtual equilibrium
is a virtual state wherein relative vaccination costs equal
infection probability. Accordingly, Definition 3 refers to the
set of states surrounding that virtual equilibrium state as an
equilibrium.
Definition 4: A stable equilibrium of the vaccination game

is an equilibrium comprising up to two adjacent vertices
n and n + 1 in its state graph wherein users have no
incentive to change their strategies and cause the system
to transition to a vertex of the state graph outside of the
considered set.

Note that Definition 4 is rather intuitive, as it captures the
notion of a set of strategy profiles such that users have no
incentive to make the system transition out of this set.

The set of vertices corresponding to a stable equilibrium
may comprise a single vertex n or a pair of adjacent vertices
n and n + 1. If an equilibrium comprises two states n and
n + 1, and at state n (state n + 1) the infection probability is
less (greater) than the relative vaccination costs, the equilib-
rium is stable as (4) implies that the population indefinitely
transitions back and forth between those two states.
Definition 5: Any non stable equilibrium of the vaccina-

tion game is referred to as an unstable equilibrium.
According to Definition 3, an equilibrium of the vaccina-
tion game is characterized by a minimal set of up to two
adjacent vertices n and n + 1 in its state graph. If at state
n (state n+ 1) the infection probability is greater (less) than
the relative vaccination costs, Definition 5 together with (4)
imply that the equilibrium is unstable.

Next, we further distinguish between boundary and inter-
nal equilibria.
Definition 6: A boundary equilibrium of the vaccination

game is an equilibrium corresponding to either vertex 0 or
vertex N of the corresponding state graph. Any equilibrium
that is not a boundary one is referred to as an internal
equilibrium.

The fact that the infection probability is zero at state 0 and
that relative vaccination costs are assumed to be non-negative,
together with the two considered simplifying assumptions,
motivates the following definition.
Definition 7: The trivial equilibrium is the boundary equi-

librium wherein all nodes are vaccinated, corresponding to
vertex 0 of the state graph.
The above definitions will be used in Section VII to establish
structural results of the vaccination game. To that aim, we first
introduce the SIS epidemic model and its approximate solu-
tion in the two sections that follow. The role of the SIS
model and its approximate solution in the general framework
considered in this paper is illustrated in Figures 4(a) and 4(b),
respectively.
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V. EPIDEMIC MODEL: CHARACTERISTICS AND SOLUTION
A. NETWORK STATE
The network state can be expressed by anN -dimensional vec-
tor. Let x be a state of the network, x = (x1, x2, . . . , xk , . . . ,
xN−1, xN ), with xk ∈ {0, 1} representing the state of node
k and x ∈ X , with X ≡ {0, 1}N denoting all possible
network states. The dynamics of the system is characterized
by a continuous, homogeneous-time, irreducible and finite
Markovian process. Each network state corresponds to a state
in the Markovian process. Such process, in turn, is known to
be reversible [61].

Note that the network states introduced in this section
should not be confused with the states of the state graph intro-
duced in Section IV-C and Definition 1. Whereas the states
considered here vary in a fine-grained time scale, the states
of the state graph considered in Section IV-C correspond
to changes in the adoption of stringent countermeasures by
users, and vary in a coarse-grained time scale (see Figure 1).

B. INFINITESIMAL GENERATOR
Let Q be the infinitesimal matrix associated with the Markov
process. States are indexed lexicographically, and we denote
by x(i) the i-th network state. The k-th entry of vector x(i) is
denoted by x(i)k . Let d (i)k be the number of infected neighbors
of node k at state x(i).
Then, the element qi,j in the i-th row and j-th column of Q

is given by:

qi,j =



λγ d
(i)
k , if x(i)k = 0, x(j)k = 1,

x(i)l = x(j)l for l 6= k,

µ, if x(i)k = 1, x(j)k = 0,

x(i)l = x(j)l for l 6= k,

−

2N∑
p=1, p6=i

qi,p, if i = j,

0, otherwise.

(5)

C. STEADY-STATE DISTRIBUTION
The steady-state distribution of the multiplicative SIS process
[43], [56] is given by

π (x) =
π̃ (x)
Z

, x ∈ X , (6)

where

π̃ (x) =
(
λ

µ

)1T x

γ x
TAx/2 (7)

and

Z =
∑
x∈X

π̃ (x). (8)

The number of infected nodes at state x is given by

1T x =
N∑
k=1

xk . In addition, the number of edges with both

FIGURE 4. Exact and approximate solutions to the epidemic model and
corresponding vaccination game. The threat model used to obtain the
exogenous infection rate λ(N) per node is one of the key novel elements
of this work.

sides infected, referred to as infected edges, is given by
1
2x

TAx = 1
2

N∑
k=1

N∑
l=1
l 6=k

xkxlak,l .

D. INFECTION PROBABILITY
Let I be a random variable denoting the number of infected
nodes in the network. Let π(ι) = P(I = ι) be the probability
of finding ι infected nodes in the network. Thus, from Equa-
tion (7):

π̃(ι) =
∑

x:1T x=ι

π̃ (x), ι = 0, . . . ,N (9)

π(ι) =
π̃ (ι)
Z
. (10)

The infection probability of a node picked randomly (based
on a uniform distribution), as a function of the population
size, is

ρ(N ) =
E(I )
N
, (11)

where

E(I ) =
N∑
ι=0

ι
π̃ (ι)
Z

(12)

is the expected number of infected nodes. The infection prob-
ability plays a key role in the modeling framework proposed
in this work, as summarized in Figure 4(a).

In the expressions above, matrix A is the adjacency matrix
as defined in Section III-B. In the remainder of this paper,
we will consider a fully-connected network, unless otherwise
noted. For such a network, ak,l = 1 ∀k 6= l.
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VI. AN APPROXIMATE SOLUTION TO THE
EPIDEMIC MODEL
In this section we introduce an approximate solution to the
epidemic model. We start by presenting the binomial approx-
imation.

A. BINOMIAL APPROXIMATION
In what follows, we assume that the topology is fully con-
nected. Let ι be the number of infected nodes. Thus, from
Equation (7):

π̃ (ι) =
(
N
ι

)(
λ(N )
µ

)ι
γ ι(ι−1)/2, ι = 0, . . . ,N . (13)

The infection probability of a node picked randomly (based
on a uniform distribution), as a function of the population
size, is given by (11),

ρ(N ) =
1
N

N∑
ι=0

ι
π̃ (ι)
Z

(14)

=
1
NZ

N∑
ι=0

ι

(
N
ι

)(
λ(N )
µ

)ι
γ ι(ι−1)/2, (15)

where (15) is obtained by replacing (13) into (14). Obtaining
a closed-form expression from Equation (15) is complicated
due to the quadratic term in the exponent of γ . To simplify
this, we consider the following approximation.

Let N ?(N ) be an hyperparameter of the proposed approx-
imation of ρ(N ). We will show that letting N ?(N ) be the
expected number of infected neighbors of a typical node
yields accurate approximations of ρ(N ) in regular topolo-
gies wherein all nodes have the same number of neighbors.
We defer this derivation to the upcoming section (see also
Appendices C and D-E). For now, it suffices to note that
N ?(N ) is a scalar value between 0 andN and thatN ? : R→ R
is an increasing function.

Then, we define ρ̂(N ) ≈ ρ(N ) and π̂ (ι) ≈ π̃ (ι) as a
function ofN ?(N ) and of parameters λ,µ, γ andN as follows:

ρ̂(N ) =
1
N

N∑
ι=0

ι
π̂ (ι)

Ẑ
, (16)

where

π̂(ι) =
(
N
ι

)(
λ(N )
µ

γ N
?

)ι
(17)

and

Ẑ =
N∑
ι=0

π̂ (ι). (18)

N ? in Equation (17) is a simplified notation for N ?(N ). We
refer to Equation (16) as a ‘‘binomial approximation’’ due to
the use of Newton’s binomial in its definition.

The role of N ? in the modeling framework proposed in this
work is indicated in Figure 4(b), which should be contrasted
against Figure 4(a). Given N ?, Equation (16) can be rewritten
in closed form as demonstrated by Lemma 1.

Lemma 1: The node infection probability under the bino-
mial approximation is given by

ρ̂(N ) =
1

1+ µ
λ(N )γ

−N ? . (19)

Proof: Some algebraic manipulations result in

Ẑ ρ̂(N ) =
1
N

N∑
ι=0

ι

(
N
ι

)(
λ(N )
µ

γ N
?

)ι

=

N∑
ι=1

(
N − 1
ι− 1

)(
λ(N )
µ

γ N
?

)ι

=

N∑
ι=0

(
N − 1
ι

)(
λ(N )
µ

γ N
?

)ι+1
=

(
λ(N )
µ

γ N
?

)(
1+

λ(N )
µ

γ N
?

)N−1
. (20)

Ẑ can be rewritten as

Ẑ =
N∑
ι=0

π̂ (ι)

=

N∑
ι=0

(
N
ι

)(
λ(N )
µ

γ N
?

)ι
=

(
1+

λ(N )
µ

γ N
?

)N
. (21)

Therefore, by Equations (20) and (21):

ρ̂(N ) =
π̂ (ι)

Ẑ
=

(
λ(N )
µ
γ N

?
) (

1+ λ(N )
µ
γ N

?
)N−1

(
1+ λ(N )

µ
γ N

?
)N

=

(
1+

µ

λ(N )γ N ?

)−1
. (22)

An alternative derivation of the binomial approximation is
presented in Appendix C.

B. PARAMETERIZATION OF APPROXIMATION:
OPTIMALLY SETTING N?

Next, our goal is to determine how to set the hyperparam-
eter N ? in order to obtain accurate results with the pro-
posed approximation of ρ(N ). To that aim, we consider two
approaches. The first consists of analyzing the most probable
states of the system. The second is based on theN -intertwined
mean-field approximation (NIMFA). The two approaches are
further developed in Appendices C and D-E, respectively.
Both approaches lead to the same result, namely, that letting
N ? be the expected number of infected neighbors of a typi-
cal node yields accurate approximations in regular networks
wherein all nodes have the same degree.

In a fully-connected topology each node has N − 1 neigh-
bors, and the expected number of infected neighbors of any
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FIGURE 5. Infection probability behavior and model parameterization:
(a) infection probability ρ(N) as a function of number of vulnerable nodes
N , and its approximations ρ̂(N,N?), letting N? = N (upper bound),
N? = N/2 (lower bound), and optimal N?; (b) finding the best
approximation for N? under the binomial approximation, with γ = 1.09,
µ = 1, 3 = 10 and λ = 3/N .

given node is (N − 1)ρ(N ). Then, in a fully connected net-
work, under the binomial approximation, Equation (19) can
be rewritten as

ρ̂(N ) =
1

1+ µ
(
λγ (N−1)ρ̂(N )

)−1 . (23)

where we let

N ? = (N − 1)ρ̂(N ) (24)

in Equation (19).
Figure 5(a) shows the infection probability as a func-

tion of the number of vulnerable nodes, with γ = 1.09,
µ = 1, 3 = 10 and λ = 3/N . The full orange line
is obtained through the fix point solution of Equation (23),
which accurately captures the exact solution of the model
(see Appendix D). Setting N ? to its optimal value also leads
to an accurate approximation of the infection probability,
as indicated by the circles in Figure 5(a). Alternatively, letting
N ? = N (resp., letting N ? = N/2) in Equation (19) leads to
an upper (resp., lower) bound for the infection probability,
shown by the green (resp., blue) curve.

Figure 5(b) further illustrates how to optimally set N ?.
In particular, it indicates that the curves corresponding to
the optimal N ? parameterization and (N − 1)ρ̂(N ) match

each other, which is in agreement with the discussion in the
previous paragraphs. The root mean squared error due to the
approximation of N ? by N ρ̂(N ) rather than by (N − 1)ρ̂(N )
is of the order of 10 nodes in the considered setting. This,
in turn, indicates that for analytical tractability one may
consider simpler expressions to approximate N ?, trading off
accuracy against simplicity.

C. REGULAR NETWORKS
The analysis in the previous section accounted for fully
connected networks, and can be easily extended to regular
networks. A regular network is a network wherein each node
has degree d̃ . In a regular network the expected number of
infected neighbors of each node is d̃ ρ̂(N ). Then, under the
binomial approximation, Equation (19) can be rewritten as

ρ̂(N ) =
1

1+ µ
(
λγ d

?
)−1 . (25)

In particular, let

d? = d̃ ρ̂(N ). (26)

Using (26) we are able to obtain accurate approximations
of the infection probability. For the special case of fully
connected networks where d̃ = N − 1, ρ̂(N ) estimated
by (25)-(26) equals (23).

Let d be the average node degree in a network. If the
distribution of node degrees is concentrated around its mean,
the analysis above still holds replacing d̃ by d . In what
follows, we illustrate the approximations above in bipartite
networks.
Illustrative Example: To illustrate the accuracy of the

approximation above, Figures 6 and 7 show the infection
probability as a function of the number of vulnerable nodes,
obtained through Equation (25). Figure 6 considers a fully
connected bipartite network and Figure 7 accounts for a
bipartite network with maximum node degree equal 3. In both
cases, setting d? to its optimal value we obtain very accurate
approximations, and (26) typically provides a good approxi-
mation for the optimal value of d? (see Figures 6(c) and 7(c)).
Setting d? = d , we note that the resulting approximation
upper bounds the infection probability. Alternatively, setting
d? = d/2 we obtain a lower bound. Those examples serve
to illustrate that the proposed approximations are helpful to
analyze topologies other than the complete graph. Additional
results on bipartite graphs and more general topologies are
reported in Appendices E and G, respectively.

VII. MODEL ANALYSIS: PROPERTIES OF EQUILIBRIUM
Next, our goal is to characterize structural properties of the
equilibria. We start with general results before specializing to
the case wherein the attacker budget is distributed uniformly
at random across vulnerable nodes.

A. GENERAL RESULTS
Under the general setting illustrated in Figure 4(b), the fol-
lowing theorem states that the model admits at most two
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FIGURE 6. Infection probability behavior and model parameterization in
a bipartite fully connected graph: (a) considered topology when N = 8
vulnerable nodes; (b) infection probability ρ(N) and its approximations
ρ̂(N,d?), letting d? = N/2 (upper bound), d? = N/4 (lower bound) and
d? optimally set; (c) optimal value of d? (circles) contrasted against
ρ(N)d (full line) indicates close agreement between the two. We let
γ = 2.09, µ = 1, 3 = 10 and λ = 3/N .

internal equilibria, under the mild conditions that γ > 1 and
that N ?(N ) and is an increasing function of N , while λ(N ) is
a decreasing function of N .
Theorem 1: The vaccination dynamics subsumed by the

SIS model under the binomial approximation admits at most
two internal equilibrium points.

Proof: Let 9(N ) = (λ(N )/µ)γ N
?
. By Lemma 1,

d ρ̂(N )/dN = (d9/dN )/(92(1 + 1/9)2). All terms of
d ρ̂(N )/dN are greater than zero, except d9/dN :

d9
dN
=

1
µ

(
dλ
dN

γ N
?

+ λ(log γ )γ N
? dN ?

dN

)
=
λγ N

?

µ

(
log γ

dN ?

dN
+
dλ
dN

1
λ

)
. (27)

FIGURE 7. Infection probability behavior and model parameterization in
a bipartite graph with maximum node degree of three: (a) considered
topology when N varies between 3 and 8; (b) infection probability ρ(N)
and its approximations ρ̂(N,d?), letting d? = N/2 (upper bound),
d? = N/4 (lower bound) and d? optimally set; (c) optimal value of d?
(circles) contrasted against ρ(N)d (full line) indicates rough agreement
between the two. We let γ = 2.09, µ = 1, 3 = 10 and λ = 3/N .

As dN ?
dN > 0 and dλ

dN ≤ 0, we conclude that Equation (27)
admits at most a single root. Therefore, ρ̂(N ) admits at
most one internal minimum point, and ρ̂(N ) intercepts any
horizontal line in at most two points. Those points are the
candidate internal equilibria.
Illustrative Example: Figures 8 and 9 illustrate the results

discussed so far, under the setup of µ = 1, 3 = 10 and
λ = 3/N . Theorem 1 is in agreement with the results shown
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FIGURE 8. Infection probability of a tagged node as a function of the
population size, ρ(N). When the endogenous infection rate γ is small
(big), the system is dominated by the exogenous (endogenous) infection
rate, and the infection probability decreases (increases) with respect to
the vulnerable population size. When γ ≈ 1, the infection probability first
decreases and then increases, in agreement with Equation (6). µ = 1,
3 = 10 and λ = 3/N .

in Figure 8. This figure shows that for γ > 1 the infection
probability first decreases and then increases. The infection
probability admits a single global minimum and at most two
equilibrium points. When the system admits two internal
equilibrium points, one of those equilibria is stable, while the
other is unstable. For γ = 1.09, Figure 9 shows the possible
population states with corresponding gains envisioned by
users who decide to vaccinate (blue arrows pointing upwards)
or not to vaccinate (red arrows pointing downwards). States
11 and 12 compose an unstable equilibrium, while states
30 and 31 constitute a stable equilibrium. The minimal infec-
tion probability is attained at state 21.

B. SPECIAL CASE: VULNERABLE NODES SELECTED
UNIFORMLY AT RANDOM, λ(N) = 3/N
Next, we specialize our results to the setting wherein vulner-
able nodes are selected uniformly at random. To that aim,
we leverage the closed-form result derived in Lemma 1,
setting λ(N ) = 3/N . Note that letting λ(N ) = 3/N
corresponds to considering an attacker who has a finite attack
budget of 3 infections per time unit, which is uniformly
distributed across N vulnerable nodes. In that case,

dλ
dN
= −

3

N 2 . (28)

For the purposes of the following analysis, it suffices to
consider a rough approximation for N ?, and let N ? = N/2
(see our discussion in Section VI-B). Then,

d
dN

ρ̂(N ) = κ
(
1
2
log γ −

1
N

)
, (29)

where κ is a positive constant. The root of Equation (29)
corresponds to the population size which yields minimum
infection probability, and is given by

N =
2

log γ
. (30)

For γ = 1.09, Equation (30) evaluates to N ≈ 23.
Indeed, this result is in rough agreement with Figure 8, which
indicates that the minimum infection probability occurs for
N = 21.
Next, we further derive closed-form expressions approx-

imating equilibrium points. The internal equilibrium points
can be determined through the following equation,

ρ(N )− C = 0, (31)

where as before C refers to the relative vaccination costs.
Alternatively, approximate values can be obtained through

ρ̂(N )− C = 0. (32)

Letting again N ? = N/2, the values of N that satisfy the
above equation are

N = −
2

log γ
W
(
(C − 1)3 log γ

2Cγ 1/2

)
, (33)

whereW (x) is the Lambert relation [63], defined as follows,

x = W (x)eW (x). (34)

The Lambert relation W (x) admits two real values for each
given value of x, corresponding to the branches −1 and 0.
For 3 = 10, γ = 1.09 and C = 0.6, for instance, the values
of N corresponding to the −1 and 0 branches are 45.6 and
9.7, respectively. Figure 9 shows that 45.6 significantly over-
shoots the stable equilibrium involving states 30 and 31, while
9.7 is a good approximation for the unstable equilibrium
involving states 11 and 12. The overshooting occurs due to
the rough approximation N ? = N/2, which is not very
accurate as shown in Figure 5(a).More accurate results can be
obtained by using Newton’s approximation method (NAM),
as indicated in Appendix A.

Although the approximations presented in this section are
not extremely accurate, they serve to illustrate the qualita-
tive properties of the model. In particular, the fact that the
Lambert relation has at most two real branches implies that
the system admits at most two internal equilibria. This result,
in turn, is in agreement with Theorem 1, allowing us to obtain
a quick assessment of the equilibrium points.

VIII. EXPERIMENTS
We developed an epidemic simulator to evaluate a network’s
behavior under a wide range of configurations, including
those not directly captured in our analytical model (e.g.,
when the number of vulnerable nodes N varies over time,
when the time between infections is not exponentially dis-
tributed, or when the epidemic model is additive rather than
multiplicative). We compare the experimental results with
analytical results, discussing similarities and differences.
Our simulator is publicly available.1

1 https://github.com/queupe/miraisim
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FIGURE 9. Dynamics of the number of vulnerable nodes. The endogenous infection rate and the relative vaccination cost are set to
γ = 1.09 and 0.6, using the same setup as for Figure 8. There are two stable Nash equilibria [62], the first one at 0 and the other one at 31.
In Figure 8, the horizontal line at y = 0.6 crosses the magenta curve at two points. The first point corresponds to an unstable equilibrium
(where the expected number of vulnerable nodes is between 11 and 12), and the second one corresponds to a stable equilibrium
(between 30 and 31 vulnerable nodes).

TABLE 2. Simulation parameters and their reference values.

A. SIMULATOR CONFIGURATION
The simulator provides an array of configuration parameters,
shown on Table 2, to allow control of network conditions and
the behavior of infected devices. The simulator is inspired by
the behavior of Bashlite and Mirai [8], [47].

An attacker operates an initial infection host (called the
master bot) with an additive exogenous infection rate 3̃.
On each infection, the master bot attempts connection to a
random subset of hosts in the network (e.g., using telnet).
Each subsequent infected device (called a bot) contributes an
additive endogenous infection rate γ̃ . Infections from (master
and normal) bots proceed in two steps. First, a bot attempts to
connect to a target host (e.g., using telnet). Connections fail
if the target device is protected or already infected. Second,
the bot attempts to infect the target host if a connection is
successful. Each bot attempts infections independently and
in a random cyclic order.

We run simulations for 10, 000 time units, which
is long enough to estimate the network’s steady state.

TABLE 3. Simulation and fitting of the model parameters.

Each configuration was executed eight times; in Figure 10 we
plot the infection probability average with a 95% confidence
interval as a function of the number of vulnerable hosts.

B. ANALYTICAL MODEL AND EXPERIMENTS
1) MODEL PARAMETERIZATION
Next, we introduce the methodology used to parameterize the
proposed model. The most striking distinction between the
analytical model and the simulation is that in the former infec-
tions have a multiplicative effect, whereas in the latter the
effect is additive. For this reason, there is no straightforward
mapping between the parameters used in the simulations and
those considered in the analytical model. To cope with such a
challenge, we consider a simple curve fitting approach. The
model parameters corresponding to the scenarios presented
in Figure 10 are reported in Table 3. In what follows we
further discuss the obtained numerical results.

2) EXPERIMENTAL RESULTS
Figure 10 compares the infection probability obtained
through simulations against that obtained with the proposed
analytical model. The analytical model results were obtained
using Newton’s Approximation Method after two iterations
(see Appendix A). The fraction of infected nodes obtained
through simulations (resp., analytical model) is shown in
solid red lines (resp., dotted-dashed blue lines). For the
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FIGURE 10. Outcome of Mirai Botnet simulation experiments, in the presence of a strategic attacker, under a fully connected network. The
reference values of the simulator parameters are: 3 = 1500, γ̃ = 5× 10−5, 3̃ = 2× 10−2 and τ = 65. Model parameters are shown in Table 3.

simulations, the 95% confidence interval is also reported
(shaded area). In addition, we also report the fraction of nodes
that were infected through endogenous and exogenous infec-
tions, in dotted and dashed red lines, respectively. In each
plot, the fraction of infected nodes (solid red line) is the sum
of the fraction of endogenously and exogenously infected
nodes. Column I (left) varies the endogenous infection rate
γ̃ , Column II (center) varies the exogenous infection rate 3̃,
and Column III (right) varies the node uptime τ .

3) MODEL VALIDATION
The outcome of the experiments is qualitatively in agree-
ment with the findings from the analytical model. Under the
initial regime with a few nodes, the system is dominated
by exogenous infection. As the number of nodes increases,
the infection probability first decreases and then increases,
and the system is then dominated by endogenous infection.

Generally, the model tends to overestimate the infection
probability vis-à-vis the experiments. This is due to the
following reasons: i) The model assumes that the nodes
are always active (on-time), whereas the simulator assumes
that the nodes alternate between active and inactive states
(on-time and off-time). ii) The model assumes a multiplica-
tive infection rate, while the simulator assumes an additive
one. iii) In the model, the periods between events are expo-
nentially distributed, whereas in the simulator l and T follow
a uniform distribution. iv) The model assumes instantaneous
infections and state transitions, while the simulator captures
the time it takes bots to scan for vulnerabilities (attempt
connections) and infect vulnerable hosts.

C. EXPERIMENTAL RESULTS AND INSIGHTS
As the number of vulnerable nodes increases, the frac-
tion of infected nodes first decreases and then increases.
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The system (model and simulator) undergoes two regimes,
first being dominated by exogenous infections and then by
endogenous infections. In Figure 10 the dashed curve repre-
sents the probability of exogenously infected hosts, which is
decreasing while the number of vulnerable hosts increases,
and the dotted curve represents the probability of endoge-
nous infected hosts, which is increasing while the number
of vulnerable hosts increases. The behavior observed in the
experiments agrees with the one predicted by the proposed
model (see Lemma 1 and Appendix 2).
Figure 10 shows that under the first regime the proportion

of exogenously infected hosts is greater than the proportion
of the endogenously infected ones (the dashed curve is above
the dotted curve). Under the final regime, the proportion of
the endogenously infected hosts is greater than the proportion
of the exogenously infected ones (the dotted curve is over the
dashed curve).

The minimal proportion of (endogenously and exoge-
nously) infected hosts occurs when the dashed curve crosses
the dotted curve (as the curves are concave increasing and
convex decreasing, respectively). At that point, the proportion
of infected hosts as assessed by simulations (solid curve)
reaches its minimum.

Note that when γ̃ = 8 × 10−5 (Figure 10(a.I)) the
analytical model underestimates the infection probability,
going counter the behavior observed in the other scenarios
considered in Figure 10. Except for the scenario consid-
ered in Figure 10(a.I), the number of vulnerable nodes that
minimizes the infection probability according to simulations
(solid curve) is typically close to that obtained through the
analytical model (dotted-dashed blue curve).

As the number of vulnerable nodes increases, the infec-
tion probability is more sensitive to the endogenous,
rather than the exogenous, infection rate. Endogenous
infections are boosted as the number of infected nodes in the
network increases, whereas the exogenous infection rate is
limited by the power of the bot master. From top to bottom,
in Figure 10 Column I the endogenous infection rate was
increased by about factor 60, while in Column II the exoge-
nous infection rate had to be increased around 400 times to
produce similar effects.

Model parameters are more sensitive to host uptimes
and exogenous infection rates as opposed to endogenous
rates. As shown in Table 3, model parameters µ and γ are
more sensitive to 3̃ and τ (second and third columns of
Figure 10) as opposed to γ̃ (first column of Figure 10). This
occurs even though endogenous infection rate was varied in a
range between 8× 10−5 and 500× 10−5, which allows us to
appreciate the roles of endogenous and exogenous infections
as the number of vulnerable nodes increases. Further increas-
ing the endogenous infection rate does increase the sensitiv-
ity of model parameters, however, this results in scenarios
where endogenous infection rates dominate system behavior,
which can be captured through classical epidemic models,
e.g., [11], [12].

Host uptimes significantly impact the fraction of
infected nodes. The asymptotic value of the proportion of
infected nodes depends on the average uptime, as shown
in Figure 10, Column III. When nodes stay active for longer
periods of time, the number of infections attempted by each
individual bot increases, resulting in an increase of the frac-
tion of infected nodes.

IX. DISCUSSION
In this section we indicate some of the broader implications
of the results presented in this work.

A. CYBERSECURITY INSURANCE
Cybersecurity insurance (or cyber liability insurance) is a
product that an entity can purchase to help reduce the finan-
cial risks associated with online business. It encompasses a
contract wherein, in exchange for a fee, the insurance pol-
icy transfers some of the risk to the insurer [64], [65]. Our
results imply that the modeling and pricing of cybersecurity
insurance should take into account both positive and nega-
tive externalities derived from immunization. In particular,
the model proposed in this paper may serve as an additional
ingredient when assessing insurance prices [65].

B. RISK SCORE PARAMETERIZATION
Standard risk scores, such as the common vulnerability scor-
ing system [66], account for environmental aspects when
determining risks. Such environmental aspects may embrace
the security countermeasures taken by the neighbors of a
node when assessing its risk. Our results indicate that even if
most of the neighbors of a given node are already protected,
the risks faced by a node may remain high, which serves to
motivate lingering nodes to also deploy the available security
countermeasures.

C. IMMUNIZATION STRATEGIES BEYOND HERD
IMMUNITY
Themodels presented in this work serve to bring awareness to
system administrators about risks incurred due to old vulner-
abilities for which a significant fraction of the population has
already applied a patch. Strategic attackers may still be able to
find vulnerable nodes that linger in the network. Such nodes
may correspond, for instance, to industrial control systems
which are difficult to patch, or to devices which are not
automatically patched after being installed off-the-shelf [34].
Strategic attackers may target those devices, requiring system
administrators to adopt preventive measures beyond herd
immunity.

D. ADDITIONAL PRACTICAL IMPLICATIONS
Next, we provide a discussion on the implications of our
results from the attack generation and defense points of
view. From the attack standpoint, our model suggests that
scanning the network to target vulnerable nodes can signifi-
cantly impact infection probability. This, in turn, implies that
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engineering solutions to counteract the automated exploita-
tion of vulnerabilities in the wild are key in face of strategic
attackers [39], [67]. From the defense standpoint, our model
suggests that there is an optimal number of vulnerable nodes
that minimizes infection probability. We envision that the
assessment of infection probability, in turn, can be used to
decide how to invest in security countermeasures, such as
vaccination, rejuvenation and quarantine [17], accounting for
the whole population ecosystem. In addition, the number
of vulnerable nodes that minimizes infection probability as
derived from the proposed model can also be instrumental
to determine how to deploy honeypots based on first princi-
ples [68], which we leave as subject for future work.

X. CONCLUSION
In this paper we have proposed a new epidemic analyti-
cal model to assess the infection probability of nodes in a
network which face a strategic attacker with finite power.
For this model, the infection probability can be expressed
in closed form, allowing us to verify its equilibrium points
and its further attributes. Administrators can use this model to
choose the best countermeasure to be applied to the network.
To facilitate this process, the model provides: i) a vaccination
game in which the player must choose the best strategy to
minimize the maintenance costs depending on the infection
probability; ii) some points of equilibrium supporting the
concept of follow or avoid the crowd in the presence of a
strategic attacker.

In order to validate the proposed model we have carried
out numerous experiments using a simulator in which we
provoked infections using the Mirai botnet malware. The
proposed model was able to capture the behavior qualita-
tively and accurately. The experiments have also allowed to
understand what happens if some assumptions of the pro-
posed model are relaxed. The experiments have shown that
the exogenous infection rate has to be increased around 400
times to attain effects similar to those observed when the
endogenous infection rate is increased by about a factor of 60.

Some interesting results from the experiments and related
analysis include the following. i) There are two distinct
regimes, the first one being dominated by exogenous infec-
tions and the second one by endogenous infections. ii) The
role of endogenous infection is prevalent whenever the num-
ber of vulnerable nodes is big. iii) In contrast to classical
epidemiology research, a few vulnerable nodes may become
preferred targets, and increasing the number of vulnerable
nodes may decrease the infection probability of a given
tagged node. The latter observation, in turn, may be used to
position honeypots in a network based on epidemiological
first principles, which we leave as subject for future work.

We envision that this work opens up a number of directions
for future research, including the analysis of the spread of
two or more distinct malware. Protective measures can then
be implemented either at the host level, e.g. upgrades to
OSes/firmware that add address space layout randomization
(ASLR), or at the network level, e.g. blocking SMB ports and

protecting against multiple malware using the same attack
vector. It is also worth pointing that in this work we focused
on networks with a finite number of nodes. The study of
scaling laws of epidemics when the number of vulnerable
nodes grows to infinity [69], accounting for strategic attackers
whose budget increases as the population of vulnerable nodes
grows, is another avenue for future research.

APPENDIXES
APPENDIX A
ITERATIVE MODEL SOLUTION THROUGH NEWTON
APPROXIMATION
In this appendix we indicate that the Newton Approximation
Method (NAM) may be instrumental to approximate the
infection probability. The use of NAM to obtain approximate
closed form expressions to estimators is not novel. A similar
idea has been used by Wilks [70], for instance, to obtain
approximations in closed form to optimal estimators for the
covariance matrix of the bivariate Gaussian distribution (see
Section 4 in [70]).

A. A NOTE ABOUT NOTATION
In all the appendices that follow, we are interested in approx-
imations to ρ(N ). Then, to simplify notation we refer to the
infection probability as estimated by the Markovian model
and to its approximation through the binomial approximation
as ρ(N ). It should be clear from the context the quantity which
is being referred to.

B. INTRODUCTION TO NEWTON APPROXIMATION
METHOD (NAM)
Next, we show how to apply NAM to obtain approximations
for the infection probability. In a fully connected network,
under the binomial approximation, Equation (19) can be
rewritten as

ρ(N ) =
1

1+ µ
(
λγ (N−1)ρ(N )

)−1 . (35)

The definition of ρ(N ) uses ρ(N ) itself as an exponent of γ .
Isolating ρ(N ) is non-trivial, but we can approximate it. With
ρ(N ) = ρ and n = N − 1, define function f (ρ) as

f (ρ) = ρ
(
1+

µ

λ
γ−ρn

)
− 1 = ρ + ρ

µ

λ
γ−ρn − 1. (36)

Then,

f ′(ρ) ≡
∂f (ρ)
∂ρ
= 1+

µ

λ
γ−ρn (1− ρn ln γ ) (37)

f ′′(ρ) ≡
∂2f (ρ)
∂2ρ

=
µn ln γ
λ

γ−ρn (ρn ln γ − 2) (38)

We are now ready to report the two key results from this
section.
Theorem 1: If γ > 1, starting from ρ0 = 0 NAM con-

verges without overshoot to the solution of f (ρ?) = 0, where
ρ? approximates the node infection probability.

Proof: Finding a solution for Equation (35) is equiv-
alent to detecting a root of Equation (36). If γ > 1 and
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f (0) × f ′′(0) > 0 it follows from Darboux’s theorem [71]
that starting from ρ0 = 0 NAM converges without any over-
shoot to the solution. To check the hypothesis of Darboux’s
theorem note that

f (0) = −1 and f (1) =
µ

λγ
> 0,

where µ, λ > 0 and γ > 1. In addition,

f ′(0) =
µ

λγ
and f ′′(0) = −2

µn ln γ
λ

.

The result follows from the fact that ln γ > 0, which implies
that γ > 1 and f (0)× f ′′(0) > 0.
Theorem 2: The expression of ρi+1 at iteration i+ 1, as a

function of ρi produced at iteration i, is given by

ρi+1 =
λ− µγ−ρin(ρ2i n ln γ )

λ− µγ−ρin(ρin ln γ − 1)
. (39)

Proof: According to the Newton Approximation
Method (NAM),

ρi+1 = ρi −
f (ρi)
f ′(ρi)

(40)

= ρi −

from (36)︷ ︸︸ ︷
ρi + ρi

µ

λ
γ−ρin − 1

1+
µ

λ
γ−ρin(1− ρin ln γ )︸ ︷︷ ︸

from (37)

(41)

=
ρi
µ
λ
γ−ρin − (ρi

µ
λ
γ−ρin)(ρin ln γ )− ρi

µ
λ
γ−ρin + 1

1+ µ
λ
γ−ρin(1− ρin ln γ )

=
1− (µ

λ
γ−ρin)(ρ2i n ln γ )

1− µ
λ
γ−ρin(ρin ln γ − 1)

(42)

=
λ− µγ−ρin(ρ2i n ln γ )

λ− µγ−ρin(ρin ln γ − 1)
(43)

C. CLOSED-FORM APPROXIMATION FOR
INFECTION PROBABILITY
Using the precedent approach it is possible to obtain a closed-
form expression for an approximation of the infection proba-
bility. Numerically, we experimentally found that using only
two iterations of NAM is enough to obtain accurate approxi-
mations.

The initial value ρ0 for NAM is key for the gener-
ation of accurate results. We consider two initial values
ρ0 = 0 and ρ0 = 1 to obtain two approximations
of the infection probability. In Appendix A-D we present
a simple heuristic to determine which is the best initial
value.

Let ρ(0)i be the approximate infection probability after i
iterations of NAM, with ρ0 = 0. Then,

ρ
(0)
1 =

λ

λ+ µ
,

ρ
(0)
2 =

λ− µγ−ρ1n
(
ρ21n ln γ

)
λ− µγ−ρ1n (ρ1n ln γ − 1)

(44)

where ρ1 = ρ
(0)
1 .

Similarly, let ρ(1)i be the approximate infection probability
after i iterations of NAM, with ρ0 = 1,

ρ
(1)
1 =

λ− µγ−n (n ln γ )
λ− µγ−n (n ln γ − 1)

, (45)

and with ρ(1)2 given by Equation (44), replacing ρ1 by ρ
(1)
1 .

D. HEURISTIC TO SET INITIAL VALUE
As indicated in Appendix A-C, the accuracy of NAM is
very dependent on the considered initial condition. We have
shown that to produce tractable closed-form expressions for
the infection probability, we can consider two initial condi-
tions that simplify the resulting expressions, namely ρ0 = 0
and ρ0 = 1. In what follows, we indicate an heuristic to
choose between those two initial conditions. The heuristic is
inspired by the numerical results presented in Figure 11(a)
and Figure 11(b) for ρ0 = 0 and ρ0 = 1, respectively,
with the same parameters as in Figure 8 (µ = 1, 3 = 10
and λ = 3/N ). Note that ρ0 = 1 typically produces good
approximations, except when the obtained values evaluate to
quantities beyond the range of interest which varies between
0 and 1. In those cases, the approximation through ρ0 = 0
produces accurate estimates.
The discussion in the previous paragraph motivates the fol-

lowing heuristic. First, evaluate the infection probability con-
sidering the initial value ρ0 = 1. If the resulting expression
to estimate the infection probability produces a value greater
than 1 or less than 0, then switch to ρ0 = 0. We denote by
ρ2(N ) the infection probability obtained through that simple
heuristic,

ρ2(N ) =

{
ρ
(1)
2 (N ), if 0 ≤ ρ(1)2 (N ) ≤ 1

ρ
(0)
2 (N ), otherwise.

(46)

Figure 11(c) illustrates the behavior of the proposed heuristic
for ρ ≥ 1.06. In the considered example, ρ0 = 1 produced
accurate results except when γ = 1.03. In the latter case,
as shown in Figure 11(b), setting ρ0 = 1 produces results that
are outside the range [0,1]. Hence, for γ = 1.03 we should
set ρ0 = 0 which again produces accurate results as shown
in Figure 11(a).
In what follows, we refine the considered heuristic in

order to contemplate scenarios such as those corresponding to
γ = 1.03 in the considered setup. To that aim, note that in
the numerical examples presented above, when γ ≥ 1.06,
large values of N produce an infection probability close to 1,
which in turn favor NAM with initial condition ρ0 = 1
as opposed to ρ0 = 0. Accordingly, when γ ≤ 1.03 the
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FIGURE 11. Infection probability, obtained through NAM: (a) initial
condition ρ0 = 0; (b) ρ0 = 1; and (c) initial condition chosen by the
proposed heuristic.

infection probability is decreasing with respect to N in the
range of interest, favoring ρ0 = 0 irrespectively of N .

Let ρ̄(z)2 (N ) be the value of NAM at its second iteration,
under initial condition z, if the produced value is in the range
between 0 and 1, for all n ≤ N , and −∞ otherwise. Then,

ρ̄
(z)
2 (N ) =


ρ
(z)
2 (N ), if 0 ≤ ρ(z)2 (N ) ≤ 1

and ρ̄(z)2 (N − 1) 6= −∞,
−∞, otherwise,

(47)

where z, 0 ≤ z ≤ 1, is the initial value for ρ0. Equation (47)
explicitly sets the dependence of ρ onN = n+1 (in Lemma 1

such dependency was implicit). According to Equation (47),
if NAM produces results out of the range [0,1], for a given
value of Ñ , then ρ̄(z)2 (N ) = −∞ for N ≥ Ñ . The refined
heuristic is given by,

ρ̄(N ) = max
(
ρ̄
(0)
2 (N ), ρ̄(1)2 (N )

)
. (48)

Figure 11(c) illustrates the approximation obtained consider-
ing the refined heuristic. As shown in Figure 11(c), the refined
heuristic captures the fact that ρ0 = 0 should be chosen
for γ = 1.03. We have evaluated the refined heuristic
under different configurations (not reported in the paper), and
observed that it captured the right initial condition under all
the considered examples.

APPENDIX B
MULTIPLICATIVE VERSUS ADDITIVE
INFECTION MODELS
Next, we further discuss the relationship between additive
and multiplicative infection models. First, note that with a
logarithmic change of variables, namely, letting λ = log λ̃
and γ = log γ̃ , we have

λ+ γ d = log
(
λ̃γ̃ d

)
. (49)

The equation above allows us to relate the infection rates
under the additive and multiplicative models. A similar idea
has been considered in [72], wherein the authors rely on
geometric programming for epidemic control after replacing
summations by products.

Throughout this paper, we considered the multiplicative
model under the assumption that γ > 1. As argued in
Section III-E, it is always possible to set γ > 1, as far as time
units are conveniently normalized. In the remainder of this
appendix, we briefly discuss an interpretation of the model
under γ < 1, which is out of the scope of this paper but may
be of interest on its own.

If γ < 1, the multiplicative model can be interpreted as
follows. The infection occurs if the external attacker infects
a node and all neighbors infect that node as well. The ‘‘and’’
comes in as the multiplication of probabilities, assuming that
the respective events are all independent.

Note that under the additive model, a node may be infected
externally or by any of its neighbors. In that case, the ‘‘or’’
comes in as the addition. In particular, the aggregation of
independent Poisson processes is also a Poisson process with
rate equal to the sum of the rates of the independent processes.

As in this work we consider the setup wherein the infection
rate increases as the number of infected neighbors grows,
we assume γ > 1. In this setting, the multiplicative model
is contrasted against the additive model in Section III-E.

APPENDIX C
ALTERNATIVE DERIVATION OF BINOMIAL
APPROXIMATION
Zhang and Moura [45] describe an alternative approach to
derive a result similar in spirit to Lemma 1 taking into account
the most-probable state x ∈ X .
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Approximation by Most-Probable State x ∈ X : Next,
we consider an alternative approach to approximate the prob-
ability that a node is infected in steady-state. Recall that
the steady-state probability of state x, π (x), is given by
Equations (6), (7) and (8). In order to approximate the prob-
ability that a node is infected in steady-state, Zhang and
Moura [45] leverage the notion of most-probable state x? =
(x?1, x

?
2, . . . , x

?
N ), with x

?
= argmax

x∈X
π (x).

Then, Theorem 4.1 from [45], constitutes an alternative
derivation of the binomial approximation. For completeness,
we reproduce the theorem below.
Theorem 3: If π̃ (x?)� π̃ (x), ∀x ∈ X \ x?, then

P(xk = 1) ≈
(
1+

µ

λ(N )γm
?
k

)−1
, (50)

where

m?k =
N∑
j=1

ak,jx?j . (51)

The proof of Theorem 4.1 in [45] consists of rewriting the
steady-state distribution (6)-(7) in light of the Boltzmann dis-
tribution. From Equation (7), note that π̃ (x) = eH (x), x ∈
X where H (x) = 1T x log

(
λ
µ

)
+

1
2x

TAx log γ . Then,
Equation (50) is obtained from the relation between π̃ (x) and
the Boltzmann distribution [73].

In Equation (50), m?k is the number of infected neighbors
of node k in the most-probable configuration.N ?, determined
by Equation (19) in Lemma 1, is directly related to m?k
determined by Equation (50). Equation (19) is obtained from
Equation (50) replacing m?k by N

?.

APPENDIX D
EXACT MODEL SOLUTION AND APPROXIMATIONS FOR
FULLY CONNECTED NETWORK TOPOLOGY
A. GENERAL SOLUTION
Under the fully connected network topology with N nodes,
the number of infected nodes is characterized by a birth-death
process. The state of the process is the number of infected
nodes. The rate from state i to state i − 1 equals iµ, as any
of the i nodes may recover, for i = 1, . . . ,N . The rate
from state i to state i + 1, in turn, depends on whether we
consider the multiplicative or the additive model. We denote
by (N− i)3̃i the rate from state i to state i+1 (see Figure 12).
Then, the stationary steady state solution of the system is the
classical solution to a birth death Markov chain,

πk = π0

k∏
i=1

3̃i−1

iµ
, k = 1, 2, . . . ,N (52)

and

π0 =
1

1+
∑N

k=1
∏k

i=1
(N−i)3̃i−1

iµ

. (53)

FIGURE 12. Markov chain for the fully connected network topology when
N = 3.

B. MULTIPLICATIVE MODEL
Under the multiplicative model,

3̃i = λγ
i (54)

Therefore,

πk = π0

k∏
i=1

(N − i+ 1)λγ i−1

iµ
, k = 1, 2, . . . ,N (55)

= π0

(
λ

µ

)k ∏k
i=1(N − i+ 1)γ i−1∏k

i=1 i
(56)

= π0

(
λ

µ

)k (N
k

) k∏
i=1

γ i−1 (57)

It follows that

πk = π0

(
λ

µ

)k (N
k

)
γ
∑k

i=1 (i−1) (58)

= π0

(
λ

µ

)k (N
k

)
γ k(k−1)/2 (59)

In addition,

π0 =
1

1+
∑N

k=1

(
λ
µ

)k (N
k

)
γ k(k−1)/2

(60)

and

Z =
1
π0
. (61)

The equations above are in agreement with (13).

C. ADDITIVE MODEL
Under the additive model,

3̃i = λ+ iγ (62)

Therefore, for k = 1, 2, . . . ,N ,

πk = π0

k∏
i=1

(N − i+ 1)(λ+ (i− 1γ )
iµ

(63)

= π0

(
1
µ

)k ∏k
i=1(N − i+ 1)(λ+ (i− 1)γ )

k!
(64)

= π0

(
1
µ

)k (N
k

) k∏
i=1

(λ+ (i− 1)γ ), (65)
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and

π0 =
1

1+
∑N

k=1

(
1
µ

)k (N
k

)∏k
i=1(λ+ (i− 1)γ )

. (66)

Recall from (11) that

ρ(N ) =
E(I )
N
= (67)

=
1
N

N∑
k=0

kπ0

(
1
µ

)k (N
k

) k∏
i=1

(λ+ (i− 1)γ ), (68)

where

E(I ) =
N∑
ι=0

ιπι (69)

is the expected number of infected nodes.

D. NIMFA APPROXIMATION UNDER ADDITIVE MODEL
The direct and exact solution of the infection model (65)
involves a product not expressed in closed form. In part, this
occurs because the model solution requires the characteriza-
tion of the infection probability of each node conditioned on
the states of neighboring nodes. The states of the neighboring
nodes, in turn, is captured through the expected value of a
product of random variables. In this section, we rely on a
mean-field (MF) approximation referred to as N -interwinded
MF approximation (NIMFA) to compute the fraction of
infected nodes. The approximation consists of replacing the
expectation of the product of random variables by the product
of their expectations [15], [74], [75].

Let Xj,0(t) and Xj,I (t) be two indicator random variables
equal to 1 if node j is healthy or infected, respectively.
Accordingly, let πj,0(t) and πj,I (t) be the probabilities that
node j is healthy or infected at time t , respectively. Note that

E(Xj,0(t)) = πj,0(t), (70)

E(Xj,I (t)) = πj,I (t). (71)

The time change of E(Xj,I (t)) is given by

dπj,I (t)
dt

= −µπj,I (t)+ E

Xj,0(t)(λ+ γ∑
k 6=j

Xk,I (t)
)

As mentioned above, the NIMFA approximation consists of
replacing the expectation of the product of random variables
by the product of their expectations. Let rj(t) be the endoge-
nous infection rate towards node j by its neighbors, at time t .
Under NIMFA, rj(t) is approximated as follows,

rj(t) = γ
∑
k 6=j

Xk,I (t) ≈
∑
k 6=j

γπk,I (t)

which yields

dπj,I (t)
dt

= −µπj,I (t)+

λ+∑
k 6=j

γπk,I (t)

πj,0(t). (72)

Leveraging the symmetry between nodes, we let

lim
t→∞

πj,I (t) = ρ.

Then, in stationary regime it follows from (72) that

0 = −µρ +
(
λ+ (N − 1)γρ

)
(1− ρ)

= −(N − 1)γρ2 −
(
(λ+ µ)− (N − 1)γ

)
ρ + λ.

Whenever the equation above admits a root between 0 and 1,
it is given by

ρ(N ) =
(λ+ µ)− (N − 1)γ ±

√
1

2(1− N )γ
(73)

where

1 =
(
(λ+ µ)− (N − 1)γ

)2
+ 4(N − 1)γ λ.

In particular, if λ = 0 and (N − 1)γ > µ the solution is
given by

ρ(N ; λ = 0) = 1−
1

γ (N − 1)/µ
.

which is in agreement with [15].
Figure 13 shows the infection probability ρ as a function

of N , letting µ = 1 and λ = 1/N . The full lines are
obtained through the exact solution of the Markov chain
(Equation (68)) whereas the circles are obtained through the
NIMFA approximation (Equation (73)) for γ = 0.2, 0.3
and 0.4, respectively. As in the case of the multiplicative
model considered in the remainder of this paper, the infection
probability first decreases and then increases as the number
of vulnerable nodes grows. In addition, the NIMFA approxi-
mation captures well the behavior of the exact MC solution,
allowing to find the number of vulnerable nodes that mini-
mizes the infection probability. It is also worth noting that the
NIMFA model overestimates the infection probability, which
is in agreement with [76], [77] although the assumptions of
those related works do not account for exogenous infections

FIGURE 13. Additive model under complete graph topology: comparing
exact solution against NIMFA approximation. We let λ = 1/N and µ = 1,
varying γ between 0.2, 0.3 and 0.4.
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(see also [78], [79]). Amore careful analysis of the conditions
under which NIMFA overestimates the infection probability,
as well as of the connections between the exact MC solution
and NIMFA, are left as subject for future work, noting that
a detailed discussion about NIMFA accuracy under general
topologies can be found at [75].

E. NIMFA APPROXIMATION UNDER
MULTIPLICATIVE MODEL
Next, we consider the multiplicative model under the NIMFA
approximation. Using the same terminology as in the previ-
ous section, the time change of E(Xj,I (t)) is given by

dπj,I (t)
dt

= −µπj,I (t)+ E
(
Xj,0(t)λγ

∑
k 6=j Xk,I (t)

)
.

As mentioned above, the NIMFA approximation consists of
replacing the expectation of the product of random vari-
ables by the product of their expectations. In the scenario
of the multiplicative model, we also consider an additional
approximation, which consists of replacing the expectation
E
(
γ Xk,I (t)

)
by γ E(Xk,I (t)).

In summary, we consider the following two approxima-
tions:
• (A1) independence approximation: replace the expec-
tation of the product of random variables by the product
of expectations;

• (A2) functional approximation: replace the expecta-
tion of a function, E

(
γ X
)
, by a function of the expec-

tation, γ E(X).
Under the two approximations above, the endogenous

infection rate towards node j by its neighbors, at time t ,
is given by

rj(t) = γ
∑

k 6=j Xk,I (t) ≈ γ
∑

k 6=j πk,I (t)

which yields
dπj,I (t)
dt

= −µπj,I (t)+
(
λγ

∑
k 6=j πk,I (t)

)
πj,0(t). (74)

Leveraging the symmetry between nodes, we let

lim
t→∞

πj,I (t) = ρ. (75)

Then, in stationary regime it follows from (74) that

0 = −µρ +
(
λγ (N−1)ρ

)
(1− ρ)

Therefore,

ρ =
1

1+ µ
(
λγ (N−1)ρ

)−1 . (76)

The above derivation indicates that the NIMFA approxi-
mation provides an alternative derivation and rationale to
approximation (35), referred to as the binomial approxima-
tion in this paper.

Alternatively, if we consider only approximation (A1), but
not (A2), the infection probability is given by the root of the
following equation,

0 = −µρ + λ(1− ρ)
(
γρ + (1− ρ)

)(N−1)
. (77)

FIGURE 14. Multiplicative model under complete graph topology:
comparing exact solution against NIMFA approximation, letting µ = 1 and
3 = 10: (a) under approximations (A1) and (A2) and (b) under
approximation (A1).

In the numerical experiments that follow,we indicate that (76)
typically provides better approximations than (77). This
occurs as we empirically observed that (76) slightly overesti-
mates the infection probability. This, in turn, is in agreement
with [76], [77]. Then, approximation (A2) serves as a correc-
tion. Indeed, it follows from Jensen inequality that

E
(
γ X
)
≥ γ E(X), γ > 1, 0 ≤ X ≤ 1. (78)

The inequality above implies that approximation (A2) favors
a reduction in the infection probability, and that together
(A1) and (A2) balance out to produce better approximations
through (76) when compared against (77).

Figure 14 shows the infection probability ρ as a function
of N , letting µ = 1, 3 = 10 and λ = 3/N . The full
lines are obtained through the exact solution of the Markov
chain (Equations (59)-(61)) whereas the stars, squares and
circles are obtained through the NIMFA approximation for
γ = 1.1, 1.15 and 1.2, respectively. Equation (76) is used
to obtain Figure 14(a), under approximations (A1) and (A2),
and Equation (77) is used to obtain Figure 14(b), under
approximation (A1).

As in Appendix D-D, the NIMFA approximation cap-
tures the behavior of the exact MC solution, allowing to
find the number of vulnerable nodes that minimizes the
infection probability. In addition, the NIMFA approxima-
tion again overestimates the infection probability. Applying
approximation (A2) on top of (A1) favors a correction of the
overshooting, as evidenced by the closer agreement between
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the exact MC solution and the approximations in Figure 14(a)
when compared against Figure 14(b).

APPENDIX E
EXACT MODEL SOLUTION AND APPROXIMATIONS FOR
BIPARTITE NETWORK TOPOLOGIES
Next, we consider the solution of the model for bipartite
network topologies. Figure 15 shows the Markov chains cor-
responding to the proposed epidemicmodel accounting for up
to 4 vulnerable nodes, assuming a bipartite network topology.
The Markov chains leverage symmetry in the bipartite graph.
In what follows, we solve the corresponding Markov chains.

To appreciate the analysis that follows through a very
simple example, we start considering the case of a single
vulnerable node. The solution in this simple case, as well as in
the case of two vulnerable nodes, is in agreement with the full
topology considered so far. Then, we consider three and four
nodes, indicating the specifics of the role played by topology
on the model solution.

A. ONE VULNERABLE NODE
In this case, states 0 and 1 correspond to the vulnera-
ble node being susceptible and infected, respectively (see
Figure 15(a)). The corresponding steady state probabilities
are π0 and π1. Then,

π0λ = µπ1

π0 + π1 = 1

Therefore,

π0 =
µ

λ+ µ
, π1 =

λ

λ+ µ

Alternatively, we can rely on results from the detailed state
space introduced in Section V-C to derive the same results.
In this appendix, we refer to a state of the Markov chain
considered in the rest of this paper as a detailed state, and
to the lumped states considered in this appendix simply as
states. To each state i we associated its corresponding class
of symmetric detailed states. The symmetric detailed states
in each class have all the same steady state probability. Let
νi be the number of symmetric detailed states in the class of
state i. The steady state probability of each of those symmetric
detailed states equals πi/νi. It follows from (6)-(8) that

π̃i = νi

(
λ

µ

)1xT

γ x
TAx/2 (79)

πi =
π̃i∑
∀j
π̃j

(80)

Then,

π̃0 =

(
λ

µ

)0

γ 0
= 1

π̃1 =
λ

µ

1
γ 0
=
λ

µ

FIGURE 15. Markov chains for the bipartite topology with up to
4 vulnerable nodes.

and

π0 =
π̃0∑
∀j
π̃j
=

1

1+ λ
µ

=
µ

λ+ µ

π1 =
π̃1∑
∀j
π̃j
=

λ
µ

1+ λ
µ

=
λ

λ+ µ

The infection probability is given by ρ = π1.
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B. TWO VULNERABLE NODES
1) MULTIPLICATIVE MODEL
The Markov chain corresponding to the multiplicative model
with two nodes is shown in Figure 15(b). In that case, state
i corresponds to i infected nodes in the network, i = 0, 1, 2.
The corresponding steady state probabilities are πi. Then,

π02λ = µπ1
π1λγ = 2µπ2

π0 + π1 + π2 = 1

Therefore,

π0 +
π02λ
µ
+

(
π02λ
µ

)
λγ

2µ
= 1

and

π0 =
1

1+ 2λ
µ
+

λ2γ

µ2

=
µ2

µ2 + 2λµ+ λ2γ

π1 =
2λµ

µ2 + 2λµ+ λ2γ

π2 =
λ2γ

µ2 + 2λµ+ λ2γ

As discussed in the previous section, those results can also be
similarly obtained using the detailed state space introduced
in Section V-C. Considering the same terminology as the one
introduced in the previous section (see Equations (79)-(80)),

π̃0 = 1
λ

µ

0
γ 0
= 1

π̃1 = 2
λ

µ

1
γ 0
=

2λ
µ

π̃2 = 1
λ

µ

2
γ 1
=
λ2γ

µ2

Then,

π0 =
π̃0∑
∀j
π̃j
=

1

1+ 2λ
µ
+

λ2γ

µ2

=
µ2

µ2 + 2λµ+ λ2γ

π1 =
π̃1∑
∀j
π̃j
=

2 λ
µ

1+ 2λ
µ
+

λ2γ

µ2

=
2λµ

µ2 + 2λµ+ λ2γ

π2 =
π̃2∑
∀j
π̃j
=

λ2γ

µ2

1+ 2λ
µ
+

λ2γ

µ2

=
λ2γ

µ2 + 2λµ+ λ2γ

The infection probability is given by ρ = (π1 + 2π2)/2,

ρ =
E(I )
2
=

λ
µ
+

λ2γ

µ2

1+ 2λ
µ
+

λ2γ

µ2

. (81)

2) ADDITIVE MODEL
The Markov chain corresponding to the additive model with
two nodes is obtained from the one shown in Figure 15(b),
replacing the rate from state 1 to state 2 from λγ by λ + γ .
In that case, state i corresponds to i infected nodes in the net-
work, i = 0, 1, 2. The corresponding steady state probabilities
are πi. Then,

π02λ = µπ1
π1(λ+ γ ) = 2µπ2

π0 + π1 + π2 = 1

Therefore,

π0 =
1

1+ 2λ
µ
+

2λ
µ
γ+λ
2µ

π1 =

2λ
µ

1+ 2λ
µ
+

λ
µ
γ+λ
µ

π2 =

λ
µ
γ+λ
µ

1+ 2λ
µ
+

λ
µ
γ+λ
µ

The infection probability is given by ρ = (π1 + 2π2)/2,

ρ =
E(I )
2
=

λ
µ
+

λ(γ+λ)
µ2

1+ 2λ
µ
+

λ(λ+γ )
µ2

. (82)

C. THREE VULNERABLE NODES
In this case, the bipartite topology is composed of two
subgraphs. One subgraph contains one node, and the other
contains two nodes. The fact that the number of nodes in
each subgraph is distinct breaks symmetry, and requires us
to keep track of two state variables at four states, where the
first state variable characterizes the state of the subgraph
comprised of a single node, and the second state variable
corresponds to the state of the other subgraph. State 0 cor-
responds to 0 infected nodes. State (1,0) corresponds to one
isolated node being infected in the subgraph comprised of
a single node. State (0,1), in contrast, corresponds to one
node being infected in the subgraph comprised of two nodes.
As pointed out above, we need to distinguish states (1,0)
and (0,1) due to symmetry breaking. Similarly, states (1,1)
and (0,2) correspond to one node in each subgraph being
infected, and two nodes in the same subgraph being infected,
respectively. Finally, state 3 corresponds to all nodes being
infected.

1) MULTIPLICATIVE MODEL
The Markov chain corresponding to the multiplicative model
is shown in Figure 15(c). The flow balance equations are
given as follows,

π03λ = µ(π0,1 + π1,0) (83)

(π1,02γ + π0,1(1+ γ ))λ = 2µ(π0,2 + π1,1) (84)
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π0,2λγ
2
+ π1,1λγ = 3µπ3 (85)

π1,0(µ+ 2λγ ) = π0λ+ π1,1µ (86)

π0,1(µ+ λ+ λγ ) = π02λ+ π1,1µ+ π0,22µ (87)

and

π0 + π1,0 + π0,1 + π0,2 + π1,1 + π3 = 1 (88)

We also let

π1 = π1,0 + π0,1 (89)

π2 = π0,2 + π1,1 (90)

The first three equations above are obtained by considering
the balance of flow in and flow out between the four layers of
states, i.e., accounting for sets of states 0, {0, (1, 0), (0, 1)},
and {0, (1, 0), (0, 1), (1, 1), (0, 2)}, respectively. The follow-
ing two equations correspond to flow in balancing flow out
in states (1,0) and (0,1), respectively.

Using the detailed state space introduced in Section V-C,
we compute the steady state probabilities. Considering the
same terminology as the one introduced in the previous
section (see (79)-(80)),

π̃0 = 1
λ

µ

0
γ 0
= 1

π̃1,0 = 1
λ

µ

1
γ 0
=
λ

µ

π̃0,1 = 2
λ

µ

1
γ 0
= 2

λ

µ

π̃1,1 = 2
(
λ

µ

)2

γ 1
= 2

λ2γ

µ2

π̃0,2 = 1
(
λ

µ

)2

γ 0
=
λ2

µ2

π̃3 = 1
(
λ

µ

)3

γ 2
=
λ3γ 2

µ3

Then,

πi =
π̃i

1+ 3λ
µ
+

λ2(1+2γ )
µ2 +

λ3γ 2

µ3

, i = 0, 1, 2, 3, 4. (91)

It can be readily verified that the solution above satis-
fies (83)-(90).

The infection probability of a uniformly selected node is
given by

ρ =
1
3
(π10 ++π11 + π3)+

2
3

(
π01 + π11

2
+ π02 + π3

)

=
E(I )
3
=

1
3

3 λ
µ
+ 4λ

2γ

µ2 + 2 λ
2

µ2 + 3λ
3γ 2

µ3

1+ 3λ
µ
+

λ2(1+2γ )
µ2 +

λ3γ 2

µ3

 .

2) ADDITIVE MODEL
The Markov chain corresponding to the additive model is
shown in Figure 15(d). The flow balance equations are given
as follows,

π03λ = µ(π0,1 + π1,0)

2π1,0(λ+ γ )+ π0,1(2λ+ γ ) = 2µ(π0,2 + π1,1)

π0,2(λ+ 2γ )+ π1,1(λ+ γ ) = 3π3µ

π1,0(µ+ 2λ+ 2γ ) = π0λ+ π1,1µ

π0,1(µ+ 2λ+ γ ) = π02λ+ µ(π1,1 + 2π0,2)

and

π0 + π1,0 + π0,1 + π0,2 + π1,1 + π3 = 1

Symbolically solving the system of equations above is a
daunting task, which evidences the benefits of the multiplica-
tive model for which there are closed form expressions for
the stationary state probabilities. Nonetheless, with the help
of the Matlab symbolic solver, we are able to express all
quantities in closed form. Letting µ = 1,

πi =
π̃i

Z

Z =
5∑
i=0

ζiλ
i

where

π̃0 = 14λ2 + (21γ + 19)λ+ ζ0
π̃10 = 30λ3 + (39γ + 43)λ2 + (33γ + 12γ 2

+ 9)λ

π̃01 = 12λ3 + (24γ + 14)λ2 + (12γ 2
+ 12γ + 18)λ

π̃02 = 60λ4 + (138γ + 102)λ3 +

+ (170γ+102γ 2
+42)λ2 + (36γ + 70γ 2

+ 24γ 3)λ

π̃11 = 12λ4 + (30γ + 6)λ3 + (10γ + 24γ 2
+ 6)λ2 +

+ (4γ 2
+ 6γ 3)λ

π̃3 = ζ5λ
5
+ (84γ + 36)λ4 + (98γ + 108γ 2

+ 16)λ3 +

+ (30γ+88γ 2
+60γ 3)λ2+(12γ 2

+ 26γ 3
+ 12γ 4)λ

and

ζ5 = 24

ζ4 = 84γ + 108

ζ3 = 108γ 2
+ 266γ + 166

ζ2 = 60γ 3
+ 214γ 2

+ 273γ + 119

ζ1 = 12γ 4
+ 56γ 3

+ 110γ 2
+ 102γ + 46

ζ0 = 8γ 2
+ 15γ + 9

Contrasting the equation above against the solution to the
multiplicative model (see Equation (91)), we note that the
multiplicative model is instrumental to analyze and study
general topologies.
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D. FOUR VULNERABLE NODES
In this case, we have a bipartite network comprised of two
subgraphs with two nodes each. Except when there are two
infected nodes in the network, it suffices to keep track of the
number of infected nodes in the network. Therefore, state i
corresponds to i infected nodes, for i = 0, 1, 3, 4. When
i = 2, we need to distinguish between two states: (2,0) and
(1,1). At state (2,0), we have two nodes infected in the same
subgraph, noting that the identity of the subgraph is irrelevant.
At state (1,1), in contrast, we have two nodes infected, each
node in a distinct subgraph.

1) MULTIPLICATIVE MODEL
The Markov chain corresponding to the multiplicative model
is shown in Figure 15(e). The flow balance equations are
given as follows,

π04λ = µπ1 (92)

π1(2λγ + λ) = 2µ(π2,0 + π1,1) (93)

π2,02λγ 2
+ π1,12λγ = 3µπ3 (94)

π3λγ
2
= 4µπ4 (95)

π12λγ + π32µ = (2µ+ 2λγ )π1,1 (96)

and

π0 + π1 + π2,0 + π1,1 + π3 + π4 = 1 (97)

We also let

π2 = π2,0 + π1,1 (98)

The first four equations above are obtained by considering the
balance of flow in and flow out of the sets of states 0, {0, 1},
{0, 1, (2, 0), (1, 1)} and {0, 1, (2, 0), (1, 1), 3}, respectively.
Equation (96) corresponds to balancing flow in and flow out
from state (1,1).

Using the detailed state space introduced in Section V-C,
we compute the steady state probabilities. Considering the
same terminology as the one introduced in the previous
section (see (79)-(80)),

π̃0 = 1
(
λ

µ

)0

γ 0
= 1 (99)

π̃1 = 4
(
λ

µ

)1

γ 0
= 4

λ

µ
(100)

π̃1,1 = 4
(
λ

µ

)2

γ 1
= 4

λ2γ

µ2 (101)

π̃2,0 = 2
(
λ

µ

)2

γ 0
= 2

λ2

µ2 (102)

π̃2 =
2λ2(1+ 2γ )

µ2 (103)

π̃3 = 4
(
λ

µ

)3

γ 2
= 4

λ3γ 2

µ3 (104)

π̃4 = 1
(
λ

µ

)4

γ 4
=
λ4γ 4

µ4 (105)

Then,

πi =
π̃i

1+ 4λ
µ
+

2λ2(1+2γ )
µ2 +

4λ3γ 2

µ3 +
λ4γ 4

µ4

, (106)

for i ∈ {0, 1, (1, 1), (0, 2), 2, 3, 4}, where π̃i is
given by (99)-(105).

The infection probability is given by

ρ =
1
4

4 λ
µ
+ 8λ

2γ

µ2 + 4 λ
2

µ2 + 12λ
3γ 2

µ3 + 4λ
4γ 4

µ4

1+ 4λ
µ
+

2λ2(1+2γ )
µ2 +

4λ3γ 2

µ3 +
λ4γ 4

µ4

 .
2) ADDITIVE MODEL
Next, we present the solution to the four node bipartite topol-
ogy under the additive model. The solution serves to further
evidence the simplicity of the multiplicative model. As in the
previous section, with the help of the Matlab symbolic solver,
we are able to express all quantities in closed form. Letting
µ = 1,

πi =
π̃i

Z

Z =
5∑
i=0

ζiλ
i

where

π̃0 = 3λ+ ζ0
π̃1 = 4λ(3λ+ ζ0)

π̃20 = 2λ(2γ 2
+ 5γ λ+ 3λ2 + 3λ)

π̃11 = 4λ(4γ 2
+ 8γ λ+ 3γ + 3λ2 + 3λ)

π̃3 = 4λ(4γ 3
+12γ 2λ+2γ 2

+11γ λ2 + 6γ λ+ 3λ3 + 3λ2)

π̃4 = (2γ + λ)π̃3/4

and

ζ5 = 3

ζ4 = 17γ + 15

ζ3 = 56γ + 34γ 2
+ 30

ζ2 = 66γ + 62γ 2
+ 28γ 3

+ 30

ζ1 = 32γ + 28γ 2
+ 20γ 3

+ 8γ 4
+ 15

ζ0 = 5γ + 3

Comparing the equations above against those derived in
Section E-C2, we note that due to symmetry the solution
of the four node topology is much simpler than that for
three nodes. Nonetheless, further contrasting the equations
above against the multiplicative model (see Equation (106)),
we again appreciate that the multiplicative model is instru-
mental to analyze and study general topologies.

E. GENERAL NUMBER OF NODES
Next, we consider a bipartite graph with N = 2(Ñ − 1)
nodes, with Ñ −1 nodes in each partition. A naive solution to
compute the infection probability involves a Markov chain
with state space cardinality of Ñ 2, as each partition can
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have from 0 up to Ñ − 1 infected nodes. If N = 4, this
amounts to 9 states. Nonetheless, further leveraging the prob-
lem symmetry we can lump the state space, e.g., leading to the
6 state Markov chain in the case of four nodes (Figures 15(c)
and 15(d) show the lumped MCs for the multiplicative and
additive models, respectively).

1) LUMPED STATE SPACE CARDINALITY
Next, we compute the cardinality of the lumped state
space. The state space is divided into layers, where each
layer ` corresponds to a given number of infected nodes,
` = 0, 1, . . . , 2(Ñ−1). At layer `, the number of states equals
the number of ways to throw ` balls into 2 indistinguishable
bins (corresponding to the two partitions of the bipartite
graph), where each bin can contain up to Ñ − 1 balls. Let
B(`) be the number of states at layer `. Then, B(`) is given
by the Gaussian binomial coefficient,

B(`) =
[
q`
](Ñ + 1

2

)
q

where
[
q`
]
P denotes the coefficient of q` in polynomial P

and

(
Ñ + 1

2

)
q
=

(1− qÑ+1)(1− qÑ )
(1− q)(1− q2)

.

Let |�B| be the cardinality of the state space of the lumped
model corresponding to the bipartite topology. Then,

|�B| =

2(Ñ−1)∑
`=0

B(`) =
(
Ñ + 1

2

)
q

∣∣∣∣
q=1

= (Ñ + 1)Ñ/2. (107)

The rationale goes as follows. If there are Ñ − 1 nodes per
partition, there are Ñ ( ˜N − 1)/2 ways to configure the number
of infections in the top and bottom partitions, restricted by the
number of infected nodes in the top partition being strictly
larger than the number of infected nodes in the bottom one.
In addition, there are Ñ configurations in which the number
of infected nodes in both partitions is the same. Together,
Ñ ( ˜N − 1)/2+ Ñ equals (107). If N = 20, 000, for instance,
then |�B| = 50, 015, 001 and the original state space has
cardinality 100,020,001.

2) ADDITIVE MODEL
Next, we consider the additive model. To simplify presen-
tation, we account for the unlumped version of the model,
wherein there are Ñ 2 states. Each state (i, j) corresponds to
i infected nodes in the top partition and j infected nodes in
the bottom one. Then, the positive entries of the infinitesimal

FIGURE 16. NIMFA approximation: NIMFA is insensitive to the network
topology being a bipartite graph or a complete graph. The exact solution
of the Markov chain model indicates that there is a slight difference
between the exact solution of the the two under (a) additive model and
(b) multiplicative model. We let 3 = 10, µ = 1 and γ vary between 1.1,
1.15 and 1.2 under the multiplicative model and 3 = 1, µ = 1 and γ vary
between 0.2, 0.3 and 0.4 under the additive model.

generator matrix Q are given by q(i,j),(k,l),

q(i,j),(k,l) =



((Ñ − 1)− i)λ+
+j((Ñ − 1)− i)γ, if k = i+ 1 and j = l

((Ñ − 1)− j)λ+
+i((Ñ − 1)− j)γ, if i = k and l = j+ 1

iµ, if i = k + 1 and j = l
jµ, if j = l + 1 and i = k
0, otherwise

where i, j, k and l are all greater than or equal to zero, and
strictly smaller than Ñ . Then, the steady state solution is given
by the standard flow balance equations,

πQ = 0,
∑
i

∑
j

πij = 1, (108)

where π is the vector of stationary state probabilities. In par-
ticular, if Ñ = 2 and Ñ = 3, the solution above is in
agreement with Appendices E-B2 and E-D2, respectively.

3) MULTIPLICATIVE MODEL
Next, we consider the multiplicative model. As in the pre-
vious section, to simplify presentation, we account for the
unlumped version of the model, wherein there are Ñ 2 states.
Each state (i, j) corresponds to i infected nodes in the top par-
tition and j infected nodes in the bottom one. Then, it follows
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FIGURE 17. Two topologies with central hubs: (a) star graph with 11 nodes and (b) star-ring
graph with 8 branches and 25 nodes.

from (6)-(8) that

πij = π00

(
Ñ − 1
i

)(
Ñ − 1
j

)(
λ

µ

)i+j
γ ij

π00 =
1∑Ñ−1

i=0
∑Ñ−1

j=0

(Ñ−1
i

)(Ñ−1
j

) (
λ
µ

)i+j
γ ij

and

E(I ) =
Ñ−1∑
i=0

Ñ−1∑
j=0

(i+ j)πij

ρ =
E(I )

2(Ñ − 1)
.

In particular, if Ñ = 2 and Ñ = 3, the solution above is in
agreement with Appendices E-B1 and E-D1, respectively.

F. NIMFA APPROXIMATION
For the additive model, the analysis that leads to Equa-
tion (73) still holds.

ρ(2(Ñ − 1)) =
−(λ+ µ)+ (Ñ − 1)γ +

√
1

2(Ñ − 1)γ
(109)

where

1 = ((λ+ µ)− (Ñ − 1)γ )2 + 4(Ñ − 1)γ λ. (110)

If λ = 0 and (Ñ − 1)γ > µ the solution is given by

ρ(2(Ñ − 1); λ = 0) = 1−
1

γ (Ñ − 1)/µ
. (111)

which is in agreement with [15].
Similarly, under the multiplicative model the NIMFA

approximation for bipartite networks is given by

ρ(2(Ñ − 1)) =
1

1+ µ
(
λγ (Ñ−1)ρ

)−1 . (112)

The equation above is in agreement with (25), noting that all
nodes have the same degree equal Ñ − 1, i.e., d̃ = Ñ − 1.

FIGURE 18. Tree-cluster network topology: there are N = 4 children per
node and a total of N = 25 nodes. Filled ellipses represent fully
connected subgraphs.

FIGURE 19. Star-cliques graph with 8 clusters and 32 nodes.

Comparing the equations above against those presented in
Appendix D, we note that the same equations hold in the two
considered scenarios. The fact that the NIMFA equations for
the complete and bipartite graphs are the same reflects the fact
that NIMFA, in this setup, is insensitive to the specifics of the
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FIGURE 20. Outcome of the simulation experiments in a star network (Figure 17(a)), under the action of the Mirai Botnet in presence of a
strategic attacker. The reference values of the simulator parameters are: 3 = 1500, γ̃ = 5× 10−5, 3̃ = 2× 10−2 and τ = 65. Model parameters
are shown in Table 3.

topology, which are captured only through node degrees. This
is due to the fact that NIMFA captures the direct impact of the
neighbors of a node, but not second order effects, e.g., due to
neighbors of neighbors.

Figure 16 shows the NIMFA solution for the bipartite
graph (dotted lines), and contrasts it against the exact solution
of complete graphs (full line) and bipartite graphs (circles,
squares and dots). Figures 16(a) and 16(b) correspond to
the additive and multiplicative models, respectively. In all
scenarios, we assume

λ =
3

2(Ñ − 1)
(113)

where Ñ − 1 is the number of vulnerable nodes in each
partition of the bipartite graphs. In the complete graphs, Ñ
is the number of vulnerable nodes in the network. Note that
to allow for a comparison between the bipartite and complete

topologies, in this scenario we exceptionally assume that λ
decays according to (113) under the complete topology rather
than λ = 3/Ñ .
Figure 16 shows that even though NIMFA does not dis-

tinguish between the two topologies, in reality there is a gap
between the exact solution of the two. Figure 16(a) shows that
under the additive model, the infection probability estimated
by NIMFA is typically larger than the infection probabilities
of bipartite graphs and complete graphs. In addition, the for-
mer is typically larger than the latter. In all cases, the infection
probability first decreases and then increases as the number
of vulnerable nodes grows.

Figure 16(b) shows that under the multiplicative model
the infection probability of a bipartite graph with Ñ − 1
nodes per partition is typically larger than that of a complete
graph with Ñ nodes in the intermediary regime wherein
the system transitions from being dominated by exogenous
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FIGURE 21. Outcome of the simulation experiments in a star-ring network with 7 branches (Figure 17(b)), under the action of the Mirai Botnet in
presence of a strategic attacker. The reference values of the simulator parameters are: 3̃ = 2× 10−2 and τ = 65.

infections to being dominated by endogenous infections. The
NIMFA approximation overestimates the infection probabil-
ity of complete and bipartite graphs in that regime, e.g., when
Ñ − 1 varies between 45 and 50 in the setup where γ = 1.1
the dotted line (NIMFA) is above the full line (complete MC)
and the dots (bipartite MC).

APPENDIX F
CONDITIONS UNDER WHICH INFECTION PROBABILITY
INITIALLY DECREASES AS POPULATION GROWS
One of the key results in the paper relates is the observation
that the infection probability may increase as the population
of vulnerable nodes grows. Next, we rely on results from
the previous sections to establish conditions under which the
infection probability decreases when the number of vulnera-
ble nodes grows from one to two. We consider both the addi-
tive and the multiplicative models of infection propagation.

Recall that

λ =
3

N
.

In all scenarios, we have

ρ(1) =
3

3+ µ

Next, we evaluate ρ(2) and establish conditions under which
ρ(2) < ρ(1).

A. MULTIPLICATIVE MODEL
Under the multiplicative model, we have from (81), replacing
λ by 3/2,

ρ(2) =
3
2µ +

32γ

4µ2

1+ 3
µ
+

32γ

4µ2

(114)
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FIGURE 22. Outcome of the simulation experiments in a tree-cluster network (Figure 18), under the action of the Mirai Botnet in
presence of a strategic attacker. The reference values of the simulator parameters are: 3̃ = 2× 10−2 and τ = 65.

Therefore,

ρ(1) > ρ(2) ⇒
3

3+ µ
>

3
2µ +

32γ

4µ2

1+ 3
µ
+

32γ

4µ2

⇒
1

1+ µ
3

(
1+

3

µ
+
32γ

4µ2

)
>
3

2µ
+
32γ

4µ2

In particular, letting 3 = µ = 1,

ρ(1) > ρ(2) ⇒
1
2

(
2+

γ

4

)
>

1
2
+
γ

4
⇒ γ < 4.

Recall that under the multiplicative model we assume γ > 1.
Hence, there is an initial decrease in ρ as N increases from
1 to 2 if λ = µ = 1 and 1 < γ < 4.
The illustrative example above serves to indicate condi-

tions under which the infection probability decreases as the
number of vulnerable nodes grows. There are a number of
other scenarios under which the considered behavior holds,

and an extensive analysis of necessary and sufficient condi-
tions is left as subject for future work.

B. ADDITIVE MODEL
Under the additive model, we have from (82),

ρ(2) =
3
2µ +

3(γ+3/2)
2µ2

1+ 3
µ
+

3(3/2+γ )
2µ2

Therefore,

ρ(1) > ρ(2)⇒
3

3+ µ
>

3
2µ +

3(γ+3/2)
2µ2

1+ 3
µ
+

3(3/2+γ )
2µ2

⇒
1

1+ µ
3

(
1+

3

µ
+
32/2+3γ

2µ2

)
>

3

2µ
+
32/2+3γ

2µ2
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FIGURE 23. Outcome of the simulation experiments in a star-cliques network (Figure 19), under the action of the Mirai Botnet in presence of a
strategic attacker. The reference values of the simulator parameters are: 3̃ = 2× 10−2 and τ = 65.

In particular, letting 3 = µ = 1,

ρ(1) > ρ(2)⇒ 1.5 > γ

Hence, there is an initial decrease in ρ as N increases from
1 to 2 if 3 = µ = 1 and 0 < γ < 1.5. As under the
multiplicative model, there are a number of other scenarios
under which the considered behavior holds, and an extensive
analysis of necessary and sufficient conditions is left as sub-
ject for future work.

APPENDIX G
SIMULATIONS UNDER DIFFERENT TOPOLOGIES
Next, our goal is to investigate the role of network topologies
on the spread of epidemics, beyond the complete and bipar-
tite graphs studied so far. To that aim, we use the simula-
tor presented in Section VIII. We considered the following
four topologies: star, star-ring, tree-cluster and star-cliques

(see Figures 17-19). The topologies are further described in
the sections that follows, and the parameters used in our
simulations are those reported in Table 2. We run simulations
for 10,000 time units, which is long enough to estimate the
network’s steady state. Each configurationwas executed three
times; in Figures 20-23 we plot the infection probability
average with a 95% confidence interval as a function of the
number of vulnerable hosts.

A. STAR AND STAR-RING TOPOLOGIES
In the star topology, all nodes are connected with the central
node, as shown in Figure 17(a). In the star-ring topology,
each branch is connected with the central node, as shown
in Figure 17(b). Those type of topologies are widely used in
computer networks, where nodes may be physically intercon-
nected through a central hub or switch, or logically connected
to a single central point that controls all communications.
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The simulation results of an epidemic process accounting
for a strategic attacker on top of a star topology and of a star-
ring topology are shown in Figures 20 and 21.We observe that
under those two topologies, exogenous infections typically
play a more significant role than the endogenous ones. For
that reason, the infection probability usually decreases as the
number of nodes grows. As nodes are connected only through
the central hub, there is not much opportunity for endemic
transmissions.

Endogenous infections may play a role depending on the
system parameters. For instance, under the star topology,
if the endogenous infection rate is high or the uptime is large
(last row of Figure 20) we observe a slight increase in the
fraction of endogenously infected nodes as the number of
vulnerable nodes increases. In all other considered scenarios,
endogenous infections play a negligible role.

B. TREE-CLUSTER TOPOLOGY
The N -ary tree-cluster topology is characterized by cliques
organized in a tree topology, where each tree node has N
children, as shown in Figure 18. In Figure 18, filled ellipses
represent fully connected subgraphs. This model represents
a topology where intranets form an hierarchy, e.g., Internet
autonomous systems and departments within a company.

Results from our simulations with a strategic attacker on
anN -ary tree-cluster topology are reported in Figure 22. The
results are similar to those for star topologies, as the node
degrees are limited and exogenous infections dominate the
epidemic behavior.

C. STAR-CLIQUES TOPOLOGY
In the star-cliques topology we have a clique ofN core nodes
andN cliques of Ñ nodes, wherein one of the latter nodes per
clique is connected to a single distinct core node, as shown
in Figure 19. This topology approximates intranets logically
and physically connected through a wide-area network such
as the Internet.

The results of our simulations with a strategic attacker on
a star-like topology are reported in Figure 23. The results
are similar to the scenario of fully-connected topologies
(Figure 10): an initial prevalence of exogenous infections
is followed by a regime wherein endogenous infections are
more relevant.

D. SUMMARY
Across all topologies, we observed that exogenous infections
have an important impact on the epidemic behavior. The
prevalence of endogenous infections as the number of nodes
increases is dependent on nodes having sufficient out-degree
to allow the infection to spread. In topologies where node
degrees are small relative to topology size (e.g., star-ring
topologies), endogenous infections have a negligible effect,
indicating the relevance of capturing the characteristics of
exogenous infections as indicated throughout this work.
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