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ABSTRACT The center symmetric pattern (CSP) was widely used in the local binary pattern based facial
feature, whereas never used to develop the illumination invariant measure in the literature. This paper
proposes a novel diagonal symmetric pattern (DSP) to develop the illumination invariant measure for severe
illumination variation face recognition. Firstly, the subtraction of two diagonal symmetric pixels is defined
as the DSP unit in the face local region, which may be positive or negative. The DSP model is obtained
by combining the positive and negative DSP units in the even × even block region. Then, the DSP model
can be used to generate several DSP images based on the 2× 2 block or the 4× 4 block by controlling the
proportions of positive and negative DSP units, which results in the DSP2 image or the DSP4 image. The
single DSP2 or DSP4 image with the arctangent function can develop the DSP2-face or the DSP4-face. Multi
DSP2 or DSP4 images employ the extended sparse representation classification (ESRC) as the classifier that
can form the DSP2 images based classification (DSP2C) or the DSP4 images based classification (DSP4C).
Further, the DSP model is integrated with the pre-trained deep learning (PDL) model to construct the DSP-
PDL model. Finally, the experimental results on the Extended Yale B, CMU PIE, AR, and VGGFace2 face
databases indicate that the proposed methods are efficient to tackle severe illumination variations.

INDEX TERMS Severe illumination variations, diagonal symmetric pattern, center symmetric pattern, single
sample face recognition.

I. INTRODUCTION
Face recognition has been a hot research topic for decades
due to its wide application prospects [1]–[3]. The illumination
variation problem is inevitable in face recognition, even for
the deep learning features [4]–[5]. Severe illumination vari-
ations are considered as tough issues for the face images in
the outdoor environment, such as the driver face images in the
intelligent transportation systems [6]. Hence, it is still signif-
icance to address illumination variations in face recognition,
especially for severe illumination variations. As numerous
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approaches have been proposed to tackle severe illumination
variations, some significant works are selected to review in
this paper.

The illumination holding based approach and the illumina-
tion eliminating based approach are two categories of meth-
ods to address illumination variations in face recognition.
The illumination holding based approach [7] aims to recover
the normal lighting of the illumination variation face image.
The illumination eliminating based approaches [8]–[12]
remove the illumination and obtain the illumination inde-
pendent features from the illumination variation face image.
As the illumination recovery could cause the face discrimi-
nant information distortion in the illumination holding based
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approach, the illumination eliminating based approach is
more efficient to tackle severe illumination variations. In fact,
most of illumination eliminating based approaches were
developed based on the lambertian reflectance model [13].
The face reflectance [8], the face high-frequency facial
features [5], [9], [10], and the face illumination invariant
measures [6], [10]–[12] are very efficient to tackle severe
illumination variations.

The face reflectance [8] employed the lambertian
reflectance model [13] to estimate the reflectance and
the illumination from the illumination contaminated face
image simultaneously. The logarithmic total variation (LTV)
model [9] extended the lambertian reflectance model to
extract the small scale facial structures (i.e. the high-
frequency facial features) and the large scale facial struc-
tures of the illumination contaminated face image. The
high-frequency single value decomposition face (HFSVD-
face) [10] firstly used the frequency interpretation of the
single value decomposition algorithm to extract the high-
frequency facial features of the illumination contaminated
face image, Recently, HFSVD-face was extended to the
orthogonal triangular with column pivoting (QRCP) decom-
position algorithm, which resulted in that the QRCP decom-
position was first used to construct the QRCP-face and the
normalized QRCP-face [5].

The illumination invariant measures [6], [10]–[12] con-
structed the reflectance based pattern by eliminating the illu-
mination of the face image. The Weber-face [11] proposed
a simple reflectance based pattern that the differences of the
center pixel and its neighboring pixels were divided by the
center pixel in the 3 × 3 block region, which can elimi-
nate the illumination of the face image under the lambertian
reflectance model [13], since the face illumination invariant
measure assumes that illumination intensities of neighbor-
hood pixels are approximately equal in the face local region.
Then, the pixel domain based Weber-face was extended to
the logarithm domain, and several illumination invariant mea-
sures were proposed such as [6], [10], and [12], since the
illumination invariant measure of the logarithm domain was
proved to have better tolerance to illumination variations than
that of the pixel domain in mathematics [10].

Nowadays, the deep learning features [14]–[17] are the
best for face recognition, which require massive available
face images to train. VGG [14] was trained by 2.6M internet
face images (2622 persons and 1000 images per person).
The matching/non-matching face patches of 200M internet
face images were employed to train Facenet [15]. CASIA-
WebFace face images (10575 persons and 0.49M images)
were used to train Cosface [16]. Arcface [17] was trained by
85742 persons and 5.8M internet face images. As large scale
face images for training the deep learning model are collected
via internet, the deep learning features performed very well
on internet face images. However, the internet face images are
not with severe illumination variations, thus the deep learning
features performed unsatisfactorily under severe illumination
variations [5], [6].

A. MOTIVATION
The illumination variation problem is one of the tough
issues for the face images in the outdoor environment.
Zhang et al. [4] claimed that the current deep learning based
face recognition required a huge amount of labeled face
data, which were unable to cover the infinite illumination
variations that can occur in real-life applications. Hence,
illumination processing approaches continue to be crucially
important for further widening the application field of face
recognition. Hu et al. [5] indicated that the performance of the
current deep learning feature exhibited unsatisfactorily under
severe illumination variations.

In many practical applications, such as the driver face
recognition in the intelligent transportation systems [6], it is
very difficult to collect enough image pairs with severe illu-
mination variations to train an illumination robust deep learn-
ing model or fine-tune a well-trained deep learning network.
Severe illumination variations are still challenging for the
commonly used deep learning features [14]–[17], since the
sate-of-the-art deep learning models were trained by massive
light internet face images without considering severe illumi-
nation variations.

The illumination invariant measures [6], [10]–[12] were
efficient to tackle severe illumination variations, which were
developed via the subtraction of the center pixel and its
neighboring pixel in the face local region. In the literature,
the CSP model that employed the subtraction of two center
symmetric pixels in the face local region has never been
used to construct the illumination invariant measure. In fact,
the subtraction of the center pixel and its neighboring pixel,
and the subtraction of two center symmetric pixels are quite
different facial features.

Our previous work [6] first developed the positive and neg-
ative illumination invariant units to construct the generalized
illumination robust (GIR) model, that made the illumination
invariant measure independent of the weights associated with
multi face local regions.

Inspired by the CSP model and the GIR model, we are
motivated to develop a novel diagonal symmetric pattern
based illumination invariant measure to tackle severe illumi-
nation variation face recognition.

B. CONTRIBUTION
In this paper, a novel local model named diagonal symmetric
pattern (DSP) is proposed to develop the illumination invari-
ant measure for severe illumination variations. Compared to
the previous works such as [7]–[12], the new contributions
are:

(1) To the best of our knowledge, the center symmet-
ric pattern (CSP) has never been used to develop the
illumination invariant measure in the literature. This
paper proposes a novel pixel-wise DSP model, which
employs the subtraction of two diagonal symmetric
pixels in the face local region to construct the illumi-
nation invariant measure. The proposed DSP model is
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diagonal symmetry, whereas horizontal asymmetry and
vertical asymmetry.

(2) Different from the traditional illumination invariant
measure that employed the odd × odd block region
such as the 3×3 block or the 5×5 block to have a center
pixel, the proposed DSP model uses the even × even
block region such as the 2×2 block or the 4×4 block,
and the center pixel is unnecessary. To the best of our
knowledge, the 2× 2 block has never been used in the
LBP based facial feature or the illumination invariant
measure in the literature.

(3) The proposed DSP model employs the relationships
of the diagonal symmetric pixels, and the diagonal
symmetric is the only relationship of pairs of pixels in
the DSP model. The proposed DSPmodel can fully use
all pixels in the even × even block region, and none
pixel is ignored.

(4) The illumination invariant measure is developed by the
DSP model based on the 2 × 2 block region or the
4× 4 block region, which can generate multi DSP2 or
DSP4 images. Further, the DSP model is integrated
with the pre-trained deep learning model to tackle
severe illumination variation face recognition.

C. ORGANIZATION
The remainder of this paper is organized as follows. Section II
describes the related works. Section III elaborates the illu-
mination invariant measure based on the diagonal symmet-
ric pattern. Section IV presents the classification algorithm.
Section V gives the experiments, and Section VI concludes
this paper.

II. RELATED WORKS
The local binary pattern (LBP) based approach was an effi-
cient hand-crafted facial descriptor, and robust to various
facial variations. The center symmetric local binary pattern
(CSLBP) [18] employed the center symmetric pairs of 8
pixels in the local block region with the size of 3 × 3,
whereas the center pixel was not used. The symmetric pixel
pairs of the CSLBPwere diagonal symmetry, horizontal sym-
metry or vertical symmetry. Recently, the center symmet-
ric quadruple pattern (CSQP) [19] extended the CSP to the
quadruple space, which divided the 4 × 4 block into 4 sub-
blocks with the size of 2× 2, and pixels of diagonally oppo-
site sub-blocks were compared to generate a binary pattern
of 8 bits. The attractive-and-repulsive center symmetric local
binary patterns (ACS-LBP and RCS-LBP) [20] employed
the four triplets corresponding to the vertical and horizontal
directions, and the two diagonal directions by establishing
relations between the center pixel and the center symmetric
pairs of pixels in the block with the size of 3×3. The cascaded
asymmetric local pattern (CALP) [21] utilized three pairs of
pixels of the vertical direction and three pairs of pixels of
the horizontal direction in the block with the size of 3 × 3.
The fully center symmetric dual cross pattern (FCSDCP) [22]
used not only the center symmetric pairs of pixels of the four

directions (i.e. the vertical and horizontal directions, and the
two diagonal directions) but also the non-center-symmetric
pixels in the block with the size of 5× 5.
The multiscale logarithm difference edgemaps (MSLDE)

[12] extracted facial features from multi edges of six local
block regions, whose sizes were from 3× 3 to 13× 13. The
local near neighbor face (LNN-face) [10] was attained from
five local block regions, whose sizes were from 3 × 3 to
11 × 11. In [10] and [12], different weights were assigned
to different local edges or blocks, whereas the edge based
generalized illumination robust face (EGIR-face) and the
block based generalized illumination robust face (EGIR-face)
[6] equally treated different edges and blocks, and removed
the weights associated with multi edges and blocks. Recently,
the reflectance ratio and histogram equalization (RRHE)
based illumination normalization framework [23] conducted
histogram equalization on the ratio of each pixel intensity
to its local mean pixel intensity, where the local mean pixel
intensity was calculated by the block with size of 3×3, 5×5,
7× 7, 9× 9 or 11× 11.
Nowadays, the illumination invariant measure mainly uti-

lized relationships between the center pixel and the pixels
around the center in the face local region. The CSP based
approaches developed many efficient relationships of the
center symmetric pixels which were widely used in the LBP
based facial features, whereas seldom employed in the illu-
mination invariant measure.

III. ILLUMINATION INVARIANT MEASURE BASED ON
DIAGONAL SYMMETRIC PATERN
A. PROBLEM FORMULATION
Based on the commonly used assumption that illumination
intensities of neighborhood pixels are approximately equal in
the face local region, the illumination invariant measure aims
to eliminate the illumination of the face image with severe
illumination variations. Currently, the illumination invariant
measure depends on relationships between the center pixel
and its neighbors, which is limited to use the odd× odd block
region. In order to break through this limitation, we propose
the DSP model, which takes the relationships of the diagonal
symmetric pixels in the even× even block region to construct
the illumination invariant measure.

B. THE DIAGONAL SYMMETRIC PATTERN
The CSP model employs the center symmetric pixels or sub-
blocks to develop the facial feature in the face local region.
The center of the CSP model can be a center pixel in the odd
× odd face local region such as [18], [20]–[23], or the inter-
section of the horizontal and vertical axes that divide the even
× even face local block region into 4 sub-blocks such as [19].
In fact, the current illumination invariant measure always
employed the odd× odd face local region with a center pixel,
and never used the even× even face local regionwhose center
is the intersection of the horizontal and vertical axes.
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FIGURE 1. The proposed pixel-wise DSP model.

FIGURE 2. The DSP with the even × even block.

In this paper, we propose the pixel-wise DSP model, and
its symmetric center is the intersection of the horizontal and
vertical axes, which can divide an even × even block region
into 4 pixels or sub-blocks. Pairs of pixels of the DSP model
are strictly diagonal symmetry about the intersection of the
horizontal and vertical axes.

Fig.1 shows the proposed pixel-wise DSPmodel. The 2×2
block and the 4 × 4 block incorporate 4 pixel-blocks and
16 pixel-blocks respectively. A pixel-block represents one
pixel in the face local region, and two pixel-blocks with the
same color such as two blue blocks, are diagonal symmetric
pixels. The subtraction of the two diagonal symmetric pixels
is defined as the DSP unit in this paper.

It is appropriate to indicate that the proposed DSP model
strictly follows pixel-wise diagonal symmetry, whereas the
CSQP [19] was sub-block-wise diagonal symmetry, and pairs
of pixels of the CSQP are neither diagonal symmetry nor
center symmetry. The CSLBP [18] was pixel-wise center
symmetry, and pairs of pixels of the CSLBP were diagonal
symmetry, horizontal symmetry or vertical symmetry. Pairs
of pixels of the proposed DSP model are diagonal symmetry,
whereas horizontal asymmetry and vertical asymmetry.

C. ILLUMINATION INVARIANT MEASURE UNDER THE DSP
WITH THE EVEN × EVEN BLOCK
Suppose m ≥ n, the logarithm image C is with m rows
and n columns. Fig.2 shows the DSP with the even × even
block, which describes a 2 × 2 block and a 4 × 4 block of

the logarithm image C, where (i,j) denotes the location of
the image point of the i-th row and the j-th column. C(i,j)
denotes the image point intensity at the location (i,j). From
the lambertian reflectance model [13], the logarithm image
can be presented as C(i,j) = ln(R(i,j)) + ln(L(i,j)), where R
and L are the reflectance and the illumination respectively.

According to Section III-B, the subtraction of the two diag-
onal symmetric pixels is defined as the DSP unit. Due to the
assumption that illumination intensities are approximately
equal in the face local region, we can obtain the DSP unit
in the even × even block as

I (i+ d, j+ p)

= C (i+ d, j+ p)− C (i+ N − d − 1, j+ N − p− 1)

= lnR (i+ d, j+ p)− lnR (i+ N − d − 1, j+ N − p− 1).

(1)

where N = 2 is for the 2×2 block, and N = 4 is for the 4×4
block. p is the column variate and p = 0, · · · ,N − 1. d is the
row variate and d = 0, · · · ,N/2−1. In (1), I (i+ d, j+ p) is
the logarithm reflectance subtraction of the DSP pixel pair in
the even× even block. It is easy to know that I (i+ d, j+ p)
is independent of the illumination. Hence, the DSP unit is
illumination invariant.

Accordingly, the illumination invariant measure under the
DSP with the N× N block (IIM-DSP) can be presented as

IIM-DSP (i, j) =
∑N

2 − 1
d=0

∑N−1

p=0
I (i+ d, j+ p). (2)

where N is even.
In point view of numerical sign, the subtraction of two

diagonal symmetric pixels may be positive or negative in (1).
Hence, we can obtain the positive and negative DSP units
from the N × N block. As I (i+ d, j+ p) = 0 contributes
nothing to the illumination invariant measure, we divide
I (i+ d, j+ p) (p = 0, · · · ,N − 1 and d = 0, · · · ,N/2− 1)
into positive DSP units and negative DSP units in the N× N
block, where I+ (i+ d, j+ p) > 0 and I− (i+ d, j+ p) <
0 denote the positive DSP unit and the negative DSP unit
respectively. Equation (2) can be re-written as

IIM-DSP (i, j)=
∑N

2 − 1
d=0

∑N−1

p=0
I (i+ d, j+ p)

=

∑N
2 − 1
d=0

∑N−1

p=0
I+ (i+ d, j+ p)

+

∑N
2 − 1
d=0

∑N−1

p=0
I− (i+ d, j+ p). (3)

Equation (3) is developed by combining the positive and
negative DSP units in the even× even block. It is possible to
generate multi IIM-DSPs by different proportions of positive
and negative DSP units, which results in the DSP image as
below

DSP (i, j) = α
∑N

2 − 1
d=0

∑N−1

p=0
I+ (i+ d, j+ p)

+(2−α)
∑N

2 − 1
d=0

∑N−1

p=0
I− (i+d, j+p). (4)
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where α is the weight to control the balance of the positive
and negative DSP units. When α = 1, the DSP image in
(4) is equal to the IIM-DSP in (3). The DSP face (DSP-face)
is obtained by the DSP image with the arctangent function,
which is presented as

DSP-face(i, j)

= arctan

(
4

(
α
∑N

2 − 1
d=0

∑N−1

p=0
I+ (i+ d, j+ p)

+ (2− α)
∑N

2 − 1
d=0

∑N−1

p=0
I− (i+ d, j+ p)

))
. (5)

where the parameter 4 is the same as [12] recommended.
Some DSP2 images and DSP2-faces are shown in Fig.3.

Some DSP4 images and DSP4-faces are shown in Fig.4,
where Fig.3 and Fig.4 share the same original images. It can
be seen that the DSP images vary from dark to bright with
increase in value of α. Compared with [6], [10] and [12],
the DSP image and the DSP-face are quite different from
previous illumination invariant measures.

From Fig.3 and Fig.4, some detail features of the
DSP2 image and the DSP4 image are different. As the
4 × 4 block covers larger face area than the 2 × 2 block,
the DSP4 image can extract large scale features of the face
image, whereas the DSP2 image extracts small scale features
of the face image. The same conclusion can also be done for
the DSP2-face and the DSP4-face.

Accordingly, the proposed DSP model can easily extend
to the 6 × 6 block. Based on our test, the performance of
DSP6-face lags behind the performances of DSP2-face and
DSP4-face. The reason can be explained as that the 6 × 6
block is larger than the 4 × 4 block and the 2 × 2 block,
the pixel pairs of the edge of the 6 × 6 block are with large
distances, whichmay violate the assumption that illumination
intensities of neighborhood pixels are approximately equal in
the face local region.

IV. THE CLASSIFICATION ALGORITHM
A. SINGLE DSP IMAGE CLASSIFICATION
From [6], [10], [12] and [24], the illumination invariant
measure with the saturation function is more efficient than
the illumination invariant measure without the saturation
function for the single measure image recognition under the
template matching classification method such as the near-
est neighbor classifier, since the high-frequency interference
seriously impacts the recognition of the illumination invariant
measure under the template matching classification method,
whereas the high-frequency interference can be well tackled
by the saturation function.

Hence, the illumination invariant measure with the satura-
tion function (i.e. DSP2-face andDSP4-face) are employed to
address the single DSP image recognition under the nearest
neighbor classifier, and the parameter α = 0.4 in (5) is
adopted, which is the same as [6] recommended for severe
illumination variations.

FIGURE 3. Some DSP2 images and DSP2-faces with different parameters.

B. MULTI DSP IMAGES CLASSIFICATION
Although the template matching classification method is
sensitive to noise such as the high-frequency interference,
the sparse representation classification (SRC) [25] is robust
to noise. In many practical applications, such as the driver
face recognition in the intelligent transportation systems [6],

63206 VOLUME 8, 2020



C. Hu et al.: DSP-Based Illumination Invariant Measure

FIGURE 4. Some DSP4 images and DSP4-faces with different parameters.

severe illumination variations and single sample problem
coexist. Similar with [6, Formulas (8) and (9)], the extended
sparse representation classification (ESRC) [26] under multi
DSP images (i.e. DSP2 images or DSP4 images) can be
employed to tackle severe illumination variation face recog-
nition with single sample problem.

For ESRC with multi DSP images, the DSP model is used
to generate multi training DSP images of the single training
sample by different parameter α. Multi training DSP images
contain more intra class variations of the single training
sample as shown in Fig.3 and Fig.4, which can improve the
representation ability of ESRC. In this paper, we select three

DSP images with α = 0.4, 1, and 1.6 to form multi training
DSP images of each single training sample, which is the same
as recommended by [6]. Accordingly, the DSP image of the
test image is generated by α = 1. As multi images of the
generic subject can produce enough face intra class variation
information, it is unnecessary to generate multi DSP images
for the generic image. The DSP image of each generic image
is generated by α = 1.

In this paper, ESRC with multi DSP2 images is termed
as the DSP2 images based classification (DSP2C). ESRC
with multi DSP4 images is termed as the DSP4 images based
classification (DSP4C). The Homotopy method [27] is used
to solve the L1-minimization problem in DSP2C and DSP4C.

C. MULTI DSP IMAGES AND THE PRE-TRAINED DEEP
LEARNING MODEL BASED CLASSIFICATION
Similar with [6, Formulas (10) and (11)], the proposed DSP
model can be integrated with the pre-trained deep learn-
ing model. ESRC [26] can be used to classify the state-of-
the-art deep learning feature. The representation residual of
DSP2C or DSP4C can be integrated with the representation
residual of ESRC of the deep learning feature to conduct
classification, which is termed as multi DSP images and the
pre-trained deep learning model based classification (DSP-
PDL).

In this paper, the pre-trained deep learning models VGG
[14] and ArcFace [17] are adopted. Multi DSP2 images and
VGG (or ArcFace) based classification is briefly termed as
DSP2-VGG (or DSP2-ArcFace), and multi DSP4 images and
VGG (or ArcFace) based classification is briefly termed as
DSP4-VGG (or DSP4-ArcFace).

V. EXPERIMENTS
A. FACE DATABASES
This paper proposes the DSP model to tackle severe illumi-
nation variations. The performances of the proposed methods
are validated on the Extend Yale B [28], CMU PIE [29], AR
[30] and VGGFace2 test [31] face databases.

The Extended Yale B face database [28] contains grayscale
images of 28 persons. 64 frontal face images of each per-
son are divided into subsets 1-5 with illumination variations
from slight to severe. Subsets 1-5 consist of 7,12,12,14 and
19 images per person respectively. As the deep learning fea-
ture requires the color face image, three RGB channels use
the same grayscale image for the experiments on Extended
Yale B.

The CMU PIE [29] face database incorporates color
images of 68 persons. 21 images of each person from each
of C27 (frontal camera), C29 (horizontal 22.5◦ camera) and
C09 (above camera) in CMUPIE illum set are selected. CMU
PIE face images are with slight/moderate/severe illumination
variations. From [29], pose variation of C29 is larger than that
of C09.

The AR database [30] consists of color images of 126 per-
sons in two sessions. 100 persons (50 males and 50 females)
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FIGURE 5. Some images from Extended Yale B, CMU PIE, AR and
VGGFace2 face databases.

in session 1 and session 2 are selected, and 10 images of each
person are selected, which include variations of expression
(neutral, smile, anger and scream), illumination (left light,
right light and all side lights) and scarf.

The VGGFace2 test database [31] incorporates color
images of 500 persons, which are with large variations
in pose, age, illumination, ethnicity and profession. The
VGGFace2 test database is a large scale test set with more
than 160,000 images.

Extended Yale B, CMU PIE and AR are with small size
in comparison with the large scale face database VGGFace2,
whereas the three face databases are with benchmark illumi-
nation variations, which are commonly used to validate the
illumination invariant measures.

In this paper, all cropped face images and the experimental
setting are the same as [6]. The recognition rates of Tables 1,
2 3 and 4 are from [6, Tables 3, 4, 5 and 7] except for
the proposed methods and RRHE [23]. Fig.5 shows some
cropped images from our employed face databases.

B. COMPARED METHODS
1) THE PROPOSED METHOD
DSP2-face, DSP4-face, DSP2C, DSP4C, DSP2-VGG/ Arc-
Face and DSP4-VGG/ArcFace. Three DSP images (i.e. α =
0.4, 1, and 1.6) are generated for DSP2C, DSP4C, DSP2-
VGG/ArcFace and DSP4-VGG/ArcFace.

2) THE HIGH-FREQUENCY FACIAL FEATURE AND THE LOCAL
BINARY PATTERN DESCRIPTOR
HFSVD-face [10] and CSQP [19]. The parameters are the
same as [10] and [19] recommended.

3) THE ILLUMINATION INVARIANT MEASURE
Weber-face [11], MSLDE [12], LNN-face [10], EGIR-face
[6], BGIR-face [6], MSLDE+ESRC, LNN-face+ESRC,
RRHE [23], EGIRC [6] and BGIRC [6]. LNN-face+ESRC
represents that LNN-faces of the face images are classified
by ESRC, and the same interpretation can also be done for
MSLDE+ESRC. EGIRC and BGIRC [6] employed three
GIR images of each single training sample.

4) THE PRE-TRAINED DEEP LEARNING MODEL
VGG [14] and ArcFace [17], VGG/ArcFace+ESRC, EGIR-
VGG/ArcFace and BGIR-VGG/ArcFace [6]. The 4096D
VGG feature and the 512D ArcFace feature are used.
VGG/ArcFace+ESRC has the same interpretation as LNN-
face+ESRC. EGIR-VGG/ArcFace represents the integra-
tion of the EGIRC and the ESRC based VGG/ArcFace,
and the same interpretation can also be done for BGIR-
VGG/ArcFace.

5) ORIGINAL AND LOG
Original and LOG represent the pixel image without any
processing and the logarithm image, which are directly used
as facial features for recognition.

6) THE SOURCE CODE LOCATION
The code ofWeber-face [11]was downloaded at http://luks.fe.
uni-lj.si/sl/osebje/vit-omir/face_tools/INFace/index.html. The
code ofVGG [14]was downloaded at http://www.robots.ox.ac.
uk/_vgg/soft- ware/vgg_face/. The code of ArcFace [17] was
downloaded at https://github.com/deepinsight/insightface,
and the third party pre-trained model model-r100-ii
was adopted and downloaded at https://pan.baidu.com/
s/1wuRT f2YIsKt76-TxFufsRNA, which was trained by
MS1MV2 (85742 persons and 5.8M images). The code
of Homotopy [27] was downloaded at http://www.eecs.
berkeley.edu/_yang/soft-ware/l1benchmark/, where the error
tolerance ε = 0 is used.
The compared methods (Original, LOG, HFSVD-face,

Weber-face, CSQP, MSLDE, LNN-face, RRHE, EGIR-face,
BGIR-face, VGG, ArcFace, DSP2-face and DSP4-face)
employ the nearest neighbor (NN) classifier with Euclidean
distance for the classification. HFSVD-face, Weber-face,
MSLDE, LNN-face, RRHE, EGIR-face, BGIR-face, DSP2-
face and DSP4-face are termed as the shallow illumination
invariant approaches in this paper.

C. EXPERIMENT RESULTS
Tables 1, 2 and 3 list average recognition rates of the com-
pared methods on Extended Yale B, CMU PIE and AR
datasets. Table 4 lists recognition rates of some compared
methods on VGGFace2 test database.

1) EXTENDED YALE B
The Extended Yale B face database is with extremely
challenging illumination variations. Face images in subsets
1-3 are with slight/moderate illumination variations, where
subsets 1-2 face images are with slight illumination varia-
tions, and subset 3 face images are with small scale cast shad-
ows. Face images in subsets 4-5 are with severe illumination
variations, where subset 4 face images are with moderate
scale cast shadows, and subset 5 face images are with large
scale cast shadows (or severe holistic illumination variations).

From Table 1, we can conclude some important results as
below.
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TABLE 1. The average recognition rates (%) of the compared methods on
the Extended Yale B face database.

1) DSP2-face and DSP4-face outperform EGIR-face,
BGIR-face, MSLDE and LNN-face on all Extended
Yale B datasets, except that DSP4-face lags behind
BGIR-face on subset 4 and subsets 4-5. Although mod-
erate scale cast shadows of subset 4 images are not as
severe as large scale cast shadows of subset 5 images,
moderate scale cast shadows incorporate more edges
of cast shadows than large scale cast shadows as shown
in Fig.5. Edges of cast shadows of face images violate
the assumption of the illumination invariant measure
that illumination intensities are approximately equal in
the face local region.

2) DSP2C and DSP4C perform better than DSP2-face and
DSP4-face. There may be two main reasons, one is
that multi DSP images contain more intra class vari-
ation information than the single DSP image, and the
other one is that ESRC is more robust than NN under
illumination variations. DSP2C outperforms DSP4C,

TABLE 2. The average recognition rates (%) of the compared methods on
the CMU PIE face database.

EGIRC and BGIRC under severe illumination varia-
tions such as on all Extended Yale B datasets except on
subsets 1-3, where DSP2C lags behind DSP4C, EGIRC
and BGIRC. Moreover, DSP2C performs much better
than DSP4C, EGIRC and BGIRC on subset 4. The
reason may be that DSP2C uses the smaller 2 × 2
block region in comparison with DSP4C, EGIRC and
BGIRC, which means that less noises are introduced
into the illumination invariant measure.

3) VGG/ArcFace was trained by large scale light
internet face images, without considering severe
illumination variations, which performs well on sub-
sets 1-3, but unsatisfactorily under severe illumi-
nation variations such as on subsets 4-5. Despite
DSP2-VGG/ArcFace and DSP4-VGG/ArcFace are
not able to attain the highest recognition rates
on all datasets, DSP2-VGG/ArcFace and DSP4-
VGG/ArcFace achieve very high recognition rates
on all Extended Yale B datasets, and outperform
VGG/ArcFace and VGG/ArcFace+ESRC. Hence,
the DSP-PDL model can have the advantages of both
the DSPmodel and the pre-trained deep learning model
to tackle face recognition.

2) CMU PIE
Some CMU PIE face images are bright (i.e. slight illumi-
nation variations), and other face images are with partial
dark (i.e. moderate/severe illumination variations). Illumi-
nation variations of CMU PIE are not as extreme as those
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TABLE 3. The average recognition rates (%) of the compared methods on
the AR face database.

of Extended Yale B. From Fig.5, images in each of C27,
C29 and C09 are with the same pose (i.e. frontal, 22.5◦

profile and downward respectively), whereas images in each
of C27+C29 and C27+C09 incorporate two face poses (i.e.
frontal pose and non-frontal pose).

From Table 2 , DSP2-face and DSP4-face achieve very
high recognition rates on C27, C29 and C09, and per-
form much better than EGIR-face, BGIR-face, MSLDE and
LNN-face on all CMU PIE datasets. However, DSP2-face
and DSP4-face lag behind VGG/ArcFace on C27+C29 and
C27+C09. It can be seen that DSP2-face and DSP4-face are
very robust to severe illumination variations under fixed pose,
whereas sensitive to pose variations. Although DSP2-face
and DSP4-face outperform EGIR-face, BGIR-face, MSLDE
and LNN-face under pose variations, the shallow illumination
invariant approaches perform unsatisfactorily to pose varia-
tions.

However, DSP2-VGG/ArcFace and DSP4-VGG/ArcFace
perform very well on all CMU PIE datasets, which illustrates
that the DSP-PDL model can achieve satisfactorily results
under both severe illumination variations and pose variations.
Hence, the DSP-PDL model is robust to both illumination
variations and pose variations. As DSP2-face and DSP4-
face are superior to EGIR-face and BGIR-face under severe
illumination variations, DSP2-VGG/ArcFace and DSP4-
VGG/ArcFace are slightly better than EGIR-VGG/ArcFace
andBGIE-VGG/ArcFace onC27, C29 andC09, whereas they
achieve similar performances on C27+C29 and C27+C09,
since VGG/ArcFace is the dominant feature under pose vari-
ations.

3) AR
AR face images are with frontal pose, slight illumination
and moderate/severe expression variations as well as scarf
occlusion. Illumination variations of AR are not as severe as
those of Extended Yale B and CMU PIE.

From Table 3, DSP2-face achieves higher recognition
rates than EGIR-face, BGIR-face and MSLDE on all AR
datasets, whereas lags behind LNN-face. DSP4-face slightly

TABLE 4. The recognition rates (%) of some compared methods on the
VGGFace2 test set.

FIGURE 6. CMC of some compared methods on Extended Yale B database.

lags behind other illumination invariant measures. As the
illumination variation problem is not very tough for the AR
face images, the performance of the DSP model is limited.

From Tables 1 2 and 3, the recent RRHE [23] with the
3 × 3 block obtains high recognition rates compared with
other illumination invariant measures, whereas RRHE is still
sensitive to pose variations.

4) VGGFACE2
VGGFace2 images are composed of large scale bright inter-
net face images with large pose/expression variations, and
illumination variations of VGGFace2 are not as severe as
those of Extended Yale B and CMU PIE.

From Tables 4, the shallow illumination invariant
approaches achieve very low recognition rates compared with
the deep learning feature VGG/AracFace. DSP4-face is supe-
rior to EGIR-face and BGIR-face, whereas DSP2-face lags
behind EGIR-face and BGIR-face. DSP2-VGG and DSP4-
VGG achieve high recognition rates, since VGG is the dom-
inant feature of the DSP-PDL model on the VGGFace2 test
set.

D. CMC CURVES OF SOME COMPARED METHODS
Fig.6, Fig7, Fig.8 and Fig.9 show the cumulative match
characteristic (CMC) curves of some compared methods on
Extended Yale B, CMU PIE and VGGFace2 respectively.
These CMC curves follow the same experiment protocols as
the corresponding datasets in Tables 1, 2 and 4. Recognition

63210 VOLUME 8, 2020



C. Hu et al.: DSP-Based Illumination Invariant Measure

FIGURE 7. CMC of some compared methods on C27+C29 of CMU PIE
database.

FIGURE 8. CMC of some compared methods on C27+C09 of CMU PIE
database.

rates of rank=1 in Fig.6, Fig.7, Fig.8 and Fig.9 are equal to
recognition rates of corresponding datasets in Tables 1, 2 and
4 respectively. It can be seen that the proposed methods show
consistent improvement in recognition rate with increasing
ranks.

E. THE PROPOSED METHODS
In comparisonwith the data-driven based deep learningmeth-
ods VGG [14] and ArcFace [17] that required a training
processing, the proposed DSP2-face and DSP4-face are the
model-driven based illumination invariant measures, which
do not depend on large scale face images training, such
as previous illumination invariant measures EGIR-face [6],
BGIR-face [6], RRHE [23], LNN-face [10] andMSLDE [12].
Moreover, DSP2-face or DSP4-face in (5) employs only one
parameter α.
From Tables 1, 2, 3 and 4, on the one hand, DSP2-face

is superior to DSP4-face on Extended Yale B datasets, C27,
C29 and C09 of CMU PIE, AR datasets. These datasets are
with frontal or fixed face pose and illumination variations,
which illustrates that DSP2-face outperforms DSP4-face
under frontal or fixed face pose with illumination variations.

FIGURE 9. CMC of some compared methods on VGGFace2 test set.

On the other hand, DSP2-face lags behind DSP4-face on
C27+C29 and C27+C09 of CMU PIE, and VGGFaces2 test
set. These datasets are with pose variations, which indicates
that DSP4-face outperforms DSP2-face under both pose and
illumination variations.

From experimental results of Extended Yale B and CMU
PIE datasets, DSP2-face and DSP4-face achieve higher
recognition rates than EGIR-face and BGIR-face except
on subsets 1-3 of Extended Yale B, which illustrates that
DSP2-face and DSP4-face are superior to EGIR-face and
BGIR-face under severe illumination variations. However,
DSP2-face and DSP4-face lags behind EGIR-face and BGIR-
face under slight illumination variations, which can be seen
from the experimental results of Extended Yale B subsets
1-3 and VGGFace2 test set.

DSP2-VGG/ArcFace and DSP4-VGG/ArcFace achieve
very high recognition rates on all datasets of Extended Yale
B, CMU PIE and VGGFace2 test, except on Extended Yale B
subset 5 with extremely severe illumination variations, since
the pre-trained deep learning model is restricted to frontal
face images with severe illumination variations, whereas this
is insufficient to deny that DSP2-VGG/ArcFace and DSP4-
VGG/ArcFace are the best approaches to tackle severe illumi-
nation variations. Hence, the DSP-PDL model is able to have
the advantages of both the DSP model (i.e. robust to severe
illumination variations) and the pre-trained deep learning
model (i.e. robust to slight illumination variations and large
pose variations) to tackle face recognition.

F. COMPUTATIONAL COMPLEXITY
Similar to LNN-face [10], DSP2-face or DSP4-face consists
of four steps: 1) image logarithm transformation, 2) Gaussian
smooth, 3) DSP2 image or DSP4 image generation, and 4)
arctangent calculation. For the image with size of m × n,
the computational complexity of DSP2 image or DSP4 image
generation is O(mn). Both the logarithm transformation and
the arctangent calculation are factorized to the polynomial
sum with limited accuracy, and the computation complexity
of each of them is O(mn). The computation complexity of
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FIGURE 10. Average execution time of some compared methods.

FIGURE 11. Execution time of some compared methods under different
number of subjects.

Gaussian smooth is O(mn) from [10]. Thus, the computa-
tional complexity of DSP2-face or DSP4-face is O(mn).

All 2432 images of Extended Yale B are selected to test.
MSLDE [12], LNN-face [10], RRHE [23], EGIR-face [6] and
BGIR-face [6] extract facial features of 2432 images with the
size of 50×50, due to that these methods use images with the
size of 50×50 in above experiments. The tests are conducted
on the PC with Core (TM) i7-9700F 3.00GHz processor and
8.00GB RAM using MATLAB R2016a.

Fig.10 lists average execution time (millisecond) of some
compared methods, where the average execution times of
MSLDE, LNN-face, RRHE, EGIR-face, BGIR-face, DSP2-
face and DSP4-face are 4.98ms, 4.68ms, 3.84ms, 14.82ms,
14.57ms, 4.97ms and 6.02ms respectively. As the max local
regions of EGIR-face and BGIR-face are 6 × 6 and 5 × 5
respectively, the former consumes more time than the latter.
The same conclusion can also be done for MSLDE and LNN-
face. MSLDE and LNN-face did not require to calculate
positive and negative illumination invariant measures, which
results in that MSLDE and LNN-face consume less time
than EGIR-face and BGIR-face. Although DSP2-face and
DSP4-face have to calculate positive and negative illumina-
tion invariant measures, they employ the 2 × 2 block and
the 4× 4 block respectively. Thus DSP2-face and DSP4-face
consumes less time than EGIR-face and BGIR-face. RRHE
with the 3 × 3 block is the fastest algorithm in Fig.10, since

RRHE does not conduct logarithm transformation, Gaussian
smoothing and arctangent calculation. Fig.11 lists execution
time (second) of some compared methods under different
number of subjects. It can be seen from Fig.11 that execution
time increases linearly with increase in number of subjects.

VI. CONCLUSION
This paper proposes the DSP model to address severe illumi-
nation variation face recognition. DSP2-face and DSP4-face
achieve higher recognition rates compared with previous
illumination invariant approaches EGIR-face, BGIR-face,
LNN-face and MSLDE under severe illumination variations.
DSP2C and DSP4C are efficient to severe illumination vari-
ations, due to the fact that multi DSP images cover more
discriminative information of the face image. Further, the
proposed DSP model is integrated with the pre-trained deep
learning model to have the advantages of both the DSPmodel
and the pre-trained deep learning model.

Although the proposed DSP model can efficiently tackle
severe illumination variations, the authors realized that fur-
ther work must be done to improve the proposed model under
pose variations and well illumination.
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