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ABSTRACT In intelligent traffic monitoring, speed measuring millimeter waves (MMW) radar is one of
the most commonly used tools for traffic enforcement. In traffic enforcement field, the radar must provide
the evidence of each vehicle belongs to which lane. In this paper, we propose a novel kernel line segment
adaptive possibilistic c-means clustering algorithm (KLSAPCM) for lane determination of vehicles. Firstly,
the raw measurement data is preprocessed using the extracting method of data adjacent lane centerlines.
Secondly, according to the improved minimum radius data search method, outliers are removed and the
proposed KLSAPCM algorithm is initialized. Finally, the accuracy of lane determination has been improved
by the proposed KLSAPCM clustering algorithm based on adaptive kernel line segment that conforms to the
shape features of the measurement data in the actual scene. The experiment results for multiple scenes were:
the KLSAPCM algorithm is compared with the DBSCAN, the k-means, the FCM, the PCM, the AMPCM,
and the APCM algorithms on real measurement datasets, and the results highlight the classification rate of
the proposed algorithm. Meanwhile, the proposed algorithm gets a good real-time performance and strong
robustness for some sparse moving vehicle scene applications.

INDEX TERMS MMW radar, radar measurements, lane determination, clustering algorithms.

I. INTRODUCTION
In intelligent transportation systems, lane detection is a
research hotspot, including lane routes, road boundaries, and
vehicles passing areas [1], [2]. In actual traffic situations,
some drivers do not strictly control the speed of the vehicle
as required, which may result in overspeed. The problem
of speeding in traffic is a major problem that threatens the
safety of life. At present, the speed limit signs are used to
enforce speed limits on different roads. At the intersection
of roads or highways, the radar speedometer is installed
to monitor the speed of passing vehicles. However, due
to technical limitations, some false detections and missed

The associate editor coordinating the review of this manuscript and
approving it for publication was Chao Tong.

detections may occur during the speed measurement process,
and the intelligent lane separation algorithms can greatly
improve this effect [3]–[5]. However, in the application of
actual scenes, it is often found that these lane separation
algorithms are not accurate in judging the lane of illegal
vehicles, which triggers the camera of the wrong lane, result-
ing in the illegal vehicle capture failure and escape from
legal sanctions. Therefore, improving the accuracy of vehicle
lane judgment has important practical significance for traffic
enforcement.

In the past few years, vision-based detection techniques
have been widely used due to the low cost of acquiring
large amounts of image and video data [6]. In 2008, Felzen-
szwalb [7] et al. proposed the DPM (Deformable Parts
Model) algorithm. It uses root filters and component filters
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to extract features of the image and uses LSVM (Latent
Support Vector Machine) to train the gradient model which
is used as a template to match the target. But the vision-
based detection techniques may be affected by environmental
conditions such as glare and inclement weather. With the
development of civilian radar technology [8]–[10], in recent
years, radar has gradually been used for lane detection task.
However, there are still very little open literature related to
this topic. Xu [11] divides the radar data points into several
regions and calculates the random density of the region to
detect roadsides. Han et al. [12] uses the threshold segmenta-
tion method and proposes an IPDAF (Integrated Probabilistic
Data Association Filters) algorithm to detect and track road
edges. The lane division method based on clustering algo-
rithm is also widely used. Stauffer and Grimson [13] pro-
posed the GMM (Gaussian Mixture Model), and the method
of clustering using this model is called soft clustering. The
method gives the probability that the sample belongs to each
class. Hulle et al. [14] proposed the SOM (Self-organizing
feature Map), which can give the centers of different classes.
In 2016, Xenaki et al. proposed a novel adaptive possibilistic
c-means clustering algorithm (APCM) for removing redun-
dant clusters problem [15]. In APCM, the parameter η, after
their initialization, are properly adapted as the iterations of
the algorithm. Compared with other related PCM framework
algorithms, the adaptive algorithm for parameter η makes the
APCM algorithmmore flexible in discovering the underlying
clustering structure, especially in unusual datasets such as big
difference in their variances or even with those consisting of
closely located to each other clusters.

FIGURE 1. The multi-target traffic MMW radar.

The data used in this paper is obtained from a multi-target
traffic MMW radar of the actual scene, which is a product of
Beijing Trans-Microwave Science and Technology Company,
Ltd, as shown in Fig.1. The multi-target trafficMMW radar is
designed to capture the speed illegal vehicle vehicles and trig-
ger a camera to take a picture. According to the shape features
of the measurement data for the lane determine in the actual
scene, we propose an enhanced kernel line segment APCM
clustering algorithm (KLSAPCM) based on minimum radius

data search method to improve the accuracy of lane determi-
nation. After receiving the raw measurement data, we first
extract the effective monitoring area data based on the lane
centerlines. Then, the outliers is removed and the KLSAPCM
algorithm is initialized according to the minimum radius data
searchmethod. Finally, the proposedKLSAPCMalgorithm is
used to classify the data and calculate the similarity between
the kernel line segment and the lane to determine the degree
of membership between the vehicle and the lane. In the
KLSAPCM algorithm, the initial kernel segment direction
is the lane centerline direction, the segment center is the
initial clustering center, and the segment length is adjusted
adaptively according to the length of the maximum distance
between two points in the cluster. Therefore, the KLSAPCM
algorithm can correctly determine which lane each vehicle
belongs to without manually measuring the installation posi-
tion and installation angle of radar. For radar measurement
data, the processing flow is shown in Fig.2.

FIGURE 2. Flow chart of measurement data processing.

In summary, the main contributions of the paper are as
follows:

1. An extracting monitoring area method (adjacent to the
lane centerline) and aminimum radius data searchmethod for
the MMW radar measurement data are introduced in traffic
detection. These twomethods effectively reduce the impact of
noise on the clustering algorithm. Meanwhile, the minimum
radius data search method can also effectively initialize the
KLSAPCM clustering algorithm.

2. A KLSAPCM clustering algorithm is proposed in this
paper. The algorithm can correctly determine which lane each
vehicle belongs to without manually measuring the installa-
tion position and installation angle of radar.

The structure of the paper is as follows. In Section II,
we introduce the data acquisition method of multi-target
traffic microwave radar. Meanwhile, the k-means, the FCM,
the PCM, and APCM clustering algorithms are reviewed. The
Section III first preprocesses the measurement data, that is,
the extraction of data adjacent lane centerlines. Then, based
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on the improved minimum radius data search method, out-
liers is removed and the proposed KLSAPCM algorithm is
initialized. Finally, the principle of KLSAPCM algorithm is
described in detail. The Section IV describes the results of
several scene experiments, the performance of several algo-
rithms is compared, and the applicability of the algorithm is
discussed. Section V summarizes this paper.

II. VEHICLE DATA ACQUIRED BY MMW RADAR AND
RELATED ALGORITHM REVIEW
A. THE MMW RADAR IN TRAFFIC MONITORING SCENE
The MMW radar, like the microwave radar, emit electromag-
netic waves that are a cone-shaped beam, unlike the laser
that are a line. Because the antenna of this band mainly
uses electromagnetic radiation as the main method, the large
reflective surface makes the millimeter wave radar more reli-
able, but its resolution is greatly affected. The advantages and
disadvantages of millimeter wave radar compared with other
kinds of radar are as follows:
· Compared with the centimeter wave radar, the millimeter

wave radar has the characteristics of small size, light weight,
and high spatial resolution;
· Compared with optical radars such as infrared and laser,

the millimeter wave radar has strong ability to penetrate fog,
smoke, and dust. Meanwhile, it has the characteristics of long
transmission distance and adapting to some extreme weather
conditions;
· Stable performance. Not affected by the shape and color

of the target.
Therefore, the millimeter wave radar can make up for the

shortcomings of sensors such as infrared, laser, ultrasonic,
and camera in traffic monitoring applications.

FIGURE 3. The actual scenes. (a) The corresponding camera of the lane.
(b) Multi-target millimeter wave radar mounted on the forward direction
of three lanes. (c) Multi-target millimeter wave radar mounted on the
right side of three lanes. (d) Multi-target millimeter wave radar mounted
on the forward direction of three lanes at crossroad.

In this paper, the Beijing Trans-Microwave Science and
Technology Company, Ltd. has provided us with a large
number of experimental data of actual application scenes. The
actual scenes is shown in Fig.3, where figure (a) is the actual

scene of the lane cameras, figure (b) is multi-target millimeter
wave radar forward installation, figure (c) is multi-target
millimeter wave radar side installation, and figure (d) Multi-
target millimeter wave radar mounted on the forward direc-
tion of three lanes at crossroad.

Besides, the radar measurement period in this paper is
50ms. The proposed algorithm usually requires 5 to 15 frames
to accumulate data (The frame number can be adjusted based
on vehicle speed), and the vehicle driving distance in the
monitoring area is about 10 to 30meters (the higher the speed,
the longer the length). The method of accumulating data
is: after the radar obtains the measurement data per frame,
the system determines whether there are the illegal speeds.
If there is illegal speed, the system starts to accumulate data.
After the data is accumulated, the proposed algorithm begins
to process the data.

B. DEFINE LANE CENTERLINE
After installing the radar, we had to calibrate the number of
lanes and the centerline of each lane. The number of lanes
can be inputting directly, but the centerline of each lane must
be calculated and analyzed by a specific calibrated vehicle
equipped with a corner reflector. The acquisition method of
the lane centerlines: Firstly, a calibrated vehicle equipped
with a radar reflector move slowly along the centerline of
each lane at a certain speed. Because the monitoring area
is usually not more than 100 meters, the calibration vehicle
usually travels from a position 100m away from the radar to
the bottom of the radar. Secondly, after the measurement data
of the radar calibration vehicle is obtained, the measurement
data corresponding to the vehicle speed is extracted and
filtered. Finally, the centerline of each lane is calculated by
the proposed algorithm in this paper and processed in parallel
(the center lines of lanes are parallel to each other). The
obtained lane centerlines will be used as the basis for judging
the lanes of vehicles. After comparing with the actual manual
measurement, the error of the calculated lane centerline based
on this method is not more than 10cm. Because the extracted
measurement data based on fixed speed is very accurate,
the calculated centerlines are very accurate.

Because the accuracy of the lane centerline has a large
impact on the performance of the algorithm in this paper,
we must obtain an accurate lane centerline. If the calculation
of the lane centerline is completed automatically based on the
measurement data of vehicles randomly on the lane, the error
of the centerline based on this method is much larger than
that based on above method. The measurement data of these
random vehicles may have the following problems:

(a) Most vehicles may not follow the centerline of the lane;
(b) The road may have an intersection, and most vehicles

entering the intersection will deviate to one side of the lane;
(c) Many drivers may have common driving habits that can

cause the vehicle’s driving trajectory to deviate to one side of
the lane.

Therefore, there are many uncertain factors in the mea-
surement data of randomly driven vehicles, which cause
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FIGURE 4. Vehicle data transformed from frequency spectrum to
scattering points: (a) Frequency spectrum. (b) Vehicles’ position.

a large error in the calculated lane centerline. We performed
10 related experiments. The calculated lane centerline error
based on this method is not less than 25cm, and the error of
the centerline is very unstable.

If the method of training the lane centerline from a large
amount of measurement data is used, it takes a long time to
accumulate the training data first. Meanwhile, the training
data may also have the (b) and (c) problems described above,
and the error of the obtained lane centerline is large. In addi-
tion, if this method is used in scenarios with low vehicle flow,
it will take longer time (hours or days) to accumulate training
data, which is much more time consuming than the method
in this paper to obtain the centerline.

C. VEHICLE DATA ACQUIRED BY MMW RADAR
The FSK (Frequency-Shift Keying, FSK) radar is used in
the paper. The FSK radar alternately transmits two contin-
uous waves of different frequencies at periodic intervals. The
Doppler principle is used for velocity measurement, and the
phase difference of different carrier frequencies is used to
measure distance. According to the principle of the FSK
system, it cannot detect the velocity of stationary target.
In actual traffic applications, we can use this to shield the
information of stationary targets, but also to obtain distance
and angle information for stationary targets such as roads,
manhole covers, guardrails, and trees.

Raw data containing vehicle information is acquired by the
radar in the time domain. In the following, we will introduce
how to convert raw data into the vehicle data used in this
paper: The spectral amplitude of the vehicle is obtained by
using an FFT of the time domain signal. Use the following
formula (1) to obtain the distance R between the vehicle and
the radar.

R =
c ·1φ

4π (f1 − f2)
(1)

There is a Doppler shift for the radar echo signal of the mov-
ing vehicle. The echo signal and the transmitted signal are
mixed by a mixer to output the Doppler signal. The frequency
(the abscissa of Fig.4(a)) of the Doppler signal depends
on the moving velocity, and the amplitude (the ordinate of
Fig.4(a)) depends on the distance, target material, and radar

cross-section (RCS) of the target. The expression of relative
velocity v between the radar antenna and the vehicle is:

v =
c · fd

2 · fTx · cosα
(2)

Use the following formula (3) to obtain the angle θangle
between connecting line between target and antenna center
and the normal direction of the radar antenna.

θangle = arcsin(
λ ·1φ

2πd
) (3)

The radar is designed with ‘‘one transmitting, two receiving’’
scheme, and carrier frequencies transmitted alternately are
f1 and f2, respectively; 1φ is the phase difference between
the mixing output of two different echo signals for the same
target; fd is Doppler frequency; fTx is the center frequency
of the radar; α is the angle between the radar beam and the
moving direction of the vehicle; λ is the wavelength of the
emitted electromagnetic wave; d is the distance between two
antennas.

Converting data from a polar coordinate system (R, θangle)
to a Cartesian coordinate system (x, y), the final vehicle data
contains three-dimensional information, i.e. velocity v, hori-
zontal distance x, and vertical distance y. The vehicle data for
Fig.3(b) is shown in Fig.4, where the figure (a) is the spectrum
of the Doppler signal corresponding to the three vehicles for
the scene of Fig.3(b), and the 11 red points are considered
as the frequency points of the detection data of the vehicles
(Firstly, the peak points are searched, such as red dots 1,
5, and 9. Secondly, the points whose amplitude are higher
than the threshold are selected at intervals based on the peak
points. Finally, the 11 red frequency points are obtained).
Based on the 11 frequency points, 11 two-dimensional coor-
dinate measuring points of three vehicles in Fig.3(b) can be
calculated, as shown in Fig.4(b). In summary, vehicle data
containsmany scattering points and each point contains three-
dimensional information (x, y, v). In particular, one measure-
ment point does not represent one vehicle (representing a
certain point on the vehicle’s body), and one vehicle has
multiple measurement points. It is difficult to represent the
exact position of one vehicle with one measurement point.
Therefore, the clustering method in this paper is used to
identify all the measurement points of one vehicle and find
the center of these points.

D. RELATED ALGORITHM REVIEW
1) THE k-MEANS CLUSTERING ALGORITHM
In this section, the shortcomings of the classical k-means
clustering algorithm are first analyzed. Then a solution was
proposed: to overcome these shortcomings by using kernel
functions.

The k-means algorithm [16] is an efficient and widely-
used clustering algorithm that uses iterative ideas to minimize
the distortion function. The distortion function J is defined
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as follows:

J (c,µ) =
m∑
i=1

∥∥∥x(i) − µc(i)

∥∥∥2 (4)

where c(i) represents the cluster to which point i-th belongs,
andµj is themean vector of class j corresponding to the center
of the cluster.

c(i) = argmin
j

∥∥∥x(i) − µj

∥∥∥2 (5)

µj =

∑m
i=1 χ (c

(i)
= j) · x(i)∑m

i=1 χ (c(i) = j)
(6)

The number of lanes that need to be monitored must be
predetermined based on the hardware of the radar. Therefore
the parameter k of the k-means algorithm is usually constant
and there is no need to bother with it.

However, the k-means algorithm is not suitable for data
with a non-spherical distribution because it assumes that the
data is subject to a Gaussian distribution.

2) FCM CLUSTERING ALGORITHM
Fuzzy c-means algorithm allocates dataset X = {x1, · · · ,
xi, · · · , xn} (1 ≤ i ≤ n) into c clusters according to member-
ship degree matrix (fuzzy partition matrix) U = (µij)c×n
when the objective function JFCM reaches minimum. The
FCM objective function JFCM can be formulated as follows:

JFCM (U , θ) =
∑c

j=1

∑N

i=1

(
µ
(l)
ij

)α
× d2

(
xi, θ

(l)
j

)
(7)

where α ∈ [1,∞) is the fuzzy weighting exponent for the
membership. l is number of iterations. θ j is center of the
cluster j. µij represents the membership degree measures
how much the sample xi belongs to the cluster center θ j.
Here, the c clusters are marked by cluster centers θ ={
θ1, · · · , θ j, · · · , θc

}
(1 ≤ j ≤ c), θ was randomly selected

in the first iteration. Then the membership degree µij is
calculated as follows:

µ
(l)
ij ∈ [0, 1] ,

∑c

j=1
µ
(l)
ij = 1, and 0 <

∑N

i=1
µ
(l)
ij < N

(8)

µ
(l+1)
ij =



∑c

h=1

(
d2(xi, θ

(l)
j )

d2(xi, θ
(l)
h )

)(1/(α−1))−1,
if d2(xi, θ

(l)
j ) > 0

1, if d2(xi, θ
(l)
j ) = 0

(9)

θ
(l+1)
j =

∑n
i=1

(
µ
(l)
ij

)α
xi∑n

i=1

(
µ
(l)
ij

)α (10)

the objective function is minimized by continuously updat-
ing the membership functions and centers of clusters until∥∥U (l+1)

− U (l)
∥∥ < δ is satisfied. Similarly, the FCM algo-

rithm is not suitable for data with a non-spherical distribution.

3) PCM CLUSTERING ALGORITHM
The FCM algorithm calculates the membership degree of
each measurement point for every cluster, which gives us
a calculation method that refers to the reliability of the
measurement point classification results. If the membership
degree of a measurement point for a certain cluster has an
absolute advantage in all membership degrees, it is a very reli-
able method to assign the measurement point to the cluster.
If there are some measurement point with relative average
membership for every cluster, we need other methods to
process. Besides, the FCM algorithmmust give the number of
clusters, and cannot adaptively identify the number of clusters
in the dataset. Meanwhile, when there is noise in the mea-
surement dataset and the density difference of measurement
point between the clusters is large, the classification results
may be inaccurate. In order to deal with these disadvantages,
Krishnapuram proposed the PCM algorithm based on the
FCM algorithm [17], and objective function JPCM added a
constraint term to JFCM :

JPCM (U , θ) =
∑c

j=1

∑n

i=1

(
µ
(l)
ij

)α
d2
(
xi, θ

(l)
j

)
+

∑c

j=1
ηj
∑n

i=1

(
1− µ(l)ij

)α
(11)

where ηj is a scale parameter, and each one associated with a
cluster. More specifically, each η remains unchanged during
algorithm execution. The greater the η value, the greater the
influence of cluster around θ ; on the contrary, the smaller the
η value, the smaller the influence. The value of ηj is calculated
after running the FCM algorithm:

ηj = B

∑n
i=1 µ

FCM
ij d2

(
xi, θFCMj

)
∑n

i=1 µ
FCM
ij

, j = 1, · · · , c (12)

where the constant B is usually equal to 1. The update of the
membership degree µij and cluster center θ j is as follows:

µ
(l+1)
ij =

1

1+
(
d2
(
xi, θ

(l)
j

)
/ηj

)1/α−1 (13)

θ
(l+1)
j =

∑n
i=1

(
µ
(l)
ij

)α
xi∑n

i=1

(
µ
(l)
ij

)α (14)

According to the iteration between the two equations,
the PCM algorithm gives the update estimates of µij and θ j at
each iteration until the set termination condition is met. From
the above description, the PCM algorithm can be summarized
as follows:

In [17], Krishnapuram and Keller proposed the second
PCM clustering algorithm (PCM2) in 1996, and objective
function JPCM2 is as follows:

JPCM2 (U , θ) =
∑c

j=1

∑n

i=1
µ
(l)
ij d

2
(
xi, θ

(l)
j

)
+

∑c

j=1
ηj
∑n

i=1

(
µ
(l)
ij lnµ(l)ij −µ

(l)
ij

)
(15)
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Algorithm 1 PCM
Require: xi, c, and α.
Ensure: fuzzy partition matrix U , clustering center θ , and

scale parameter 0 = {η1, · · · , ηc}.
1: initialization: θ j from the FCMalgorithm, and using (12)

initialize 0;
2: repeat
3: using (13) update the membership degree matrix U (l);
4: using (14) update cluster center θ (l);
5: l = l + 1;
6: until the difference between θ (l) and θ (l+1) is sufficiently

small;
7: return: results U , θ , and 0;

Using 15, the small values of the memberships are be penal-
ized based on the last term. Setting to zero the derivatives of
JPCM2 (U , θ) with respect to the memberships µ(l)ij :

∂JPCM2 (U , θ)

∂µ
(l)
ij

= d2
(
xi, θ

(l)
j

)
+ ηj lnµ

(l)
ij = 0 (16)

Then, µ(l)ij is obtained:

µ
(l)
ij = exp

−d2
(
xi, θ

(l)
j

)
ηj

 (17)

where, the calculation methods of η and θ are unchanged.
After many years of development, some new classification

algorithms based on the PCM algorithm have been proposed.
The PCM algorithm described above has no cluster elimina-
tion capability, that is, if the number of clusters is overesti-
mated during initialization, they cannot eliminate any clusters
in the iteration process. A adaptive possibilistic c-means
(APCM) algorithm is proposed for this disadvantage [15].
More specifically, in APCM, the parameter η will be adjusted
with the evolution of the algorithm after initialization.
Compared with other PCM algorithms, the adaptability of η
makes the algorithm more flexible to reveal the underlying
clustering structure, especially in dense datasets such as the
clusters with large differences in variance or contains clusters
that are close to each other. The parameter η of the APCM
algorithm is as follows:

ηj =
γ̂

a
γj (18)

where the parameter γj is a measure of the average absolute
deviation of cluster cj, a is a custom positive parameter, and
γ̂ is a constant defined as the minimum of all initial γj,
the expression is as follows:

γ̂ = min
j

∑n
i=1 µ

FCM
ij d2

(
xi, θFCMj

)
∑n

i=1 µ
FCM
ij

, j = 1, · · · , cini

(19)

γ
(l+1)
j =

∑
xi:µ

(l)
ij =maxr=1,··· ,c(l+1)µ

(l)
ir

d2(xi, θ
(l)
j )

n(l)j
j = 1, · · · , c(l+1) (20)

where cini is the number of clusters at the initial iteration. The
objective function JAPCM is as follows:

JAPCM (U , θ) =
∑c

j=1

∑n

i=1
µ
(l)
ij d

2
(
xi, θ

(l)
j

)
+
γ̂

a

∑c

j=1
γj
∑n

i=1

(
µ
(l)
ij lnµ(l)ij − µ

(l)
ij

)
(21)

Then, µ(l)ij is obtained:

µ
(l)
ij = exp

− a
γ̂

d2
(
xi, θ

(l)
j

)
γ
(l)
j

 , j = 1, · · · , c(l) (22)

From the above description, the APCM algorithm can be
summarized as Algorithm 2.

Algorithm 2 APCM
Require: xi, c, and a.
Ensure: fuzzy partition matrix U , clustering center θ , and

label.
1: initialization: θ j from the FCM algorithm, using (12)

initialize γj, and set: γ̂ = minj=1,··· ,ciniγ
(l)
j ;

2: c(l) = cini;
3: repeat
4: using (22) update the membership degree matrix U (l);
5: using (14) update cluster center θ (l);
6: for i← 1 to n do
7: µ

(l)
ir = maxj=1,··· ,c(l)µ

(l)
ij

8: label(i) = r
9: end for
10: p = 0 //number of removed clusters;
11: for j← 1 to c do
12: if j /∈ label then
13: Remove cj
14: p = p+ 1
15: end if
16: end for
17: c(l+1) = c(l) − p
18: using (20) update γ (l+1)j ;
19: l = l + 1;
20: until the difference between θ (l) and θ (l+1) is sufficiently

small;
21: return: results U , θ , and label;

III. KERNEL LINE SEGMENT ADAPTIVE POSSIBILISTIC
C-MEANS CLUSTERING ALGORITHM
This section first preprocesses the measurement data, that
is, the extraction of data adjacent lane centerlines. Secondly,
based on the improved minimum radius data search method,
outliers are removed and the proposed KLSAPCM algorithm
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FIGURE 5. The measurement data processing in actual scene of the
Fig.3(b). (a) Raw measurement data. (b) Data Adjacent to the Lane
Centerline. (c) Outliers Remove.

is initialized. Finally, the principle of KLSAPCM algorithm
is described in detail.

A. EXTRACTION OF DATA ADJACENT TO THE
LANE CENTERLINE
The obtaining method of the lane centerline for each scene
and the raw measurement data from the MMW radar are
described above. For example, the raw measurement data in
actual scene of the Fig.3(b) is shown in Fig.5(a). Based on
the lane centerline, we can effectively extract the interesting
measurement data of the adjacent lane. When the raw data
from the traffic radar measurement is obtained, we first need
to extract the measurement data from the centerline of the
adjacent lane. Firstly, we calculate the vertical distance from
each data point to the centerline of each lane, extract the
minimum distance, and then remove the measurement data
where the minimum distance is greater than the set threshold
d ′. Because the lane width is generally about 3.5m, and the
error of the radar measurement is less than 0.2m, we generally
set it to 1.95m. Finally, the measurement data of the traffic
surveillance area was obtained.

B. OUTLIERS REMOVE AND INITIALIZATION BASED
ON SAMPLE DENSITY FEATURE
After the extraction of data adjacent lane centerlines, the vehi-
cle data can be visualized as follows. As shown in Fig.5(b),
there is still some noise in the data. In the following, the coor-
dinate information of the vehicle data will be used to elimi-
nate the influence of outliers.

Let us represent datasetX = {xi = (xi, yi), i = 1, · · · ,M}
containing all the coordinate information of the processed
data. Where xi is a two-dimensional vector and M is the
total number of scattering points in this dataset. Since dense
points are more likely to be produced by the vehicle, the den-
sity characteristics are calculated. And dense points are sur-
rounded by outliers with low local density.

The minimum radius τi [18] of the i-th measurement point
is defined as follows:

τi = min
ρi>C

(dij) (23)

where dij is the Euclidean distance between xi and xj. The
local density ρi can be interpreted as the number of points
closer to the point i in the neighborhood. When ρi is greater
than constant C , minimum neighborhood radius is treated
as the minimum radius τi of the point i. Fig.5(c) shows the
result of simulated dataset (the radius has been normalized to
give a better intuition). In practice, any measurement point
greater than the β × τ̄ is considered an outlier, where β is a
proportional coefficient, and τ̄ the average of the minimum
radii of all points.

Next, we extract the previous data points with theminimum
radius value less than the threshold dr , and merge the neigh-
boring extraction points into one data point (that is, if the
mutual distance between the extraction points is less than
the threshold dr1, we will merge these points. The position of
themerged point is the average of these extracted points in the
neighborhood). Then, the remaining extraction and merged
points are considered to be the initial clustering center θ .

Finally, the initialization of θ j is carried out using the
final cluster representatives obtained from the above method.
Taking into account that the above method is very likely
to drive the representatives to dense in data regions (since
cini > c), the probability of at least one of the initial θ j to be
placed in each dense region (cluster) of the dataset increases
with cini. Besides, we combine the longest distance between
the two elements in the cluster with the shape of the measur-
ing vehicle to determine whether there are missing clusters.
This provides better initialization results for APCM. After
the initialization of θ j, we can calculate the correspondingµij
value based on (22). Then, the initialization of γj is as follows:

γj =

∑n
i=1 µ

ini
ij d

(
xi, θ inij

)
∑n

i=1 µ
ini
ij

, j = 1, · · · , cini (24)

where θ inij s and µiniij in (24) are calculated.

C. KLSAPCM ALGORITHM
As well known, all clusters obtained from moving vehicles
for several frames will have a large number of clusters that
are elongated in shape. However, the APCM algorithm has a
good classification effect for clustering with circular shape,
and has poor classification performance for slender cluster-
ing. If the length of clustering shape is too large, the APCM
algorithm may be divided into two or more clusters. In this
part, we design a KLSAPCM algorithm based on adaptive
line segment kernel according to the characteristics of the
measurement dataset. After the measurement data is pro-
cessed by the above method, the initial clustering result is
obtained. The adaptive line segment along lane centerline
for each clustering data are used to update the kernel func-
tion. In the proposed KLSAPCM, the Kernel function K is
improved to accommodate the classification of traffic radar
measurement data. The Kernel function K is as follows:

K
(
xi,L

(l+1)
j

)
= min d̂2

(
xi,L

(l+1)
j

)
(25)
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where

L(l+1)j =

[
x̂(l+1)i

ŷ(l+1)i = a1x̂
(l+1)
i + a2

]
,

y(l+1)i − αδ
(l+1)
i ≤ ŷ(l+1)i ≤ y(l+1)i + αδ

(l+1)
i (26)

and

x(l+1)j =

∑n
i=1

(
µ
(l)
ij

)α
xi∑n

i=1

(
µ
(l)
ij

)α , y(l+1)j =

∑n
i=1

(
µ
(l)
ij

)α
yi∑n

i=1

(
µ
(l)
ij

)α (27)

where L(l+1)j is the center line segment of the cluster j, d̂ is
the distance from the measurement point to the point on the
center line segment. x̂(l+1)i and ŷ(l+1)i are the abscissa and
ordinate value of the center line segment, respectively. x(l+1)j

and y(l+1)j are the abscissa and ordinate value of the center
point of the center line segment for the cluster j, respectively.
a1 and a2 are the coefficients of center line segment expres-
sion, whose values can be obtained by the lane centerline.
δ
(l+1)
j is the length of the cluster j along Y axis, α is the
coefficient that determines the length of the cluster center line
segment. γ̂ is a constant defined as the minimum of all initial
γj, the expression is as follows:

γ̂ = min
j

∑n
i=1µ

ini
ij d

2
(
xi, θ inij

)
∑n

i=1 µ
ini
ij

, j = 1, · · · , cini (28)

γ
(l+1)
j =

∑
xi:µ

(l)
ij =maxr=1,··· ,c(l+1)µ

(l)
ir

K (xi,L
(l)
j )

n(l)j
j = 1, · · · , c(l+1) (29)

The objective function JAPCM is as follows:

JAPCM (U ,L) =
∑c

j=1

∑n

i=1
µ
(l)
ij K

(
xi,L

(l)
j

)
+
γ̂

a

∑c

j=1
γj
∑n

i=1

(
µ
(l)
ij lnµ(l)ij − µ

(l)
ij

)
(30)

Then, µ(l)ij is obtained:

µ
(l)
ij = exp

− a
γ̂

K
(
xi,L

(l)
j

)
γ
(l)
j

 , j = 1, · · · , c(l) (31)

From the above description, the proposed KLSAPCM algo-
rithm can be summarized as Algorithm 3.

When the iteration is ended, the best individual in the cur-
rent generation is the global optimum solution. Partitioning
dataset by the best cluster line segments, we can get the
classification results finally.

IV. EXPERIMENT RESULTS
In this section, the proposed clustering method is compared
with the DBSCAN, the k-means [19]–[21], the FCM [22],
the PCM [5], the AMPCM [20], [23], and the APCM in a
typical scene. Then, the experimental results for the scenes

Algorithm 3 KLSAPCM
Require: γj, cini, α, and a.
Ensure: fuzzy partition matrix U , clustering center θ , and

label.
1: initialization: θ j from the initialization method,

using (24) initialize γj, and set: γ̂ = minj=1,··· ,ciniγ
(l)
j ;

2: c(l) = cini;
3: repeat
4: calculating the δ(l+1)j of each cluster;
5: using (27) update the cluster centers θ (l);
6: using (26) update the center line segment L(l) of each

cluster;
7: using (25) update the Kernel function K (l);
8: using (31) update the membership degree matrix U (l);
9: for i← 1 to n do
10: µ

(l)
ir = maxj=1,··· ,c(l)µ

(l)
ij

11: label(i) = r
12: end for
13: p = 0 //number of removed clusters;
14: for j← 1 to c do
15: if j /∈ label then
16: Remove cj
17: p = p+ 1
18: end if
19: end for
20: c(l+1) = c(l) − p
21: using (29) update γ (l+1)j ;
22: l = l + 1;
23: until the difference between L(l) and L(l+1) is sufficiently

small;
24: return: results U , θ , and label;

in the Fig.3(b) show that the proposed clustering method is
superior than the other several clustering algorithms. Finally,
the proposed clustering method had better robustness against
some special scenes.

A. COMPARISON WITH EXPERIMENTAL RESULTS OF
CLUSTERING ALGORITHMS
This section gives experimental comparisons of the
DBSCAN, the k-means, the FCM, the PCM, the AMPCM,
the APCM, and the KLSAPCM algorithms in the scene
of Fig.3(b). In the scene of Fig.3(b), highway speed limit:
the speed range of miniature vehicle in the driving lane is
60 ∼ 100km/h(16.67 ∼ 27.78m/s), and the speed range
of big vehicle in the driving lane is 60 ∼ 80km/h(16.67 ∼
22.22m/s).

The scene 1 description: Two trucks are running on three
lanes. The length and width of the truck in the middle lane are
about 8 m and 2.4 m respectively (From the type of truck in
video surveillance). The velocity is about 25m/s. The length
and width of the truck in the left lane are about 11m and 2.4m
respectively. The velocity is about 24 m/s. The two trucks
were moving at closing speed in the adjacent lane.
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FIGURE 6. The actual scenes. (a) and (b) The scene 1 and 2 in the Fig.3(b).

The scene 2 description: One microbus and one car are
running on three lanes. The length and width of the microbus
in the middle lane are about 4.5m and 1.8m respectively.
The velocity is about 34 m/s. The length and width of the
car in the right lane are about 4.2m and 1.8m respectively.
The velocity is about 33 m/s. The two vehicles were mov-
ing at closing speed and very close together in the adjacent
lane. Meanwhile, the microbus was suspected of dangerous
driving.

FIGURE 7. The measurement data after removing the outliers. (a) and
(b) The scene 1 and 2 in the Fig.6.

Firstly, we extracted measurements in the adjacent lane
centerline and filtered out the outliers from the raw data
to obtain the effective measurement data of the vehicles,
as shown in Fig.7. By observing the measurement data after
removing the outliers, it is known that the measurement of
the two vehicles is difficult to distinguish about the 2 scenes.
Here, we find that when the outliers removed from raw data,
the different cluster centers are very clear in the Fig. 5, but the
vehicle data are mixed together and hard to decide its cluster
center in this section. The main reasons are: in the real scene
Fig. 3(b) of the Fig. 5, the distance between the three vehicles
is large, and there is no mirror interference between each
other during radar measurement. However, in this Section,
we deliberately selected two scenarios where the vehicles
are very close to each other to show the performance of the
algorithm. We observe the two scenes of the Fig. 6, because
the distance between the vehicles is close, there will be a
lot of mirror interference between the vehicles, making the
measurement data of the two vehicles mixed together and

difficult to distinguish. Aiming at this problem, the tradi-
tional clusteringmethods cannot distinguish the twomeasure-
ment datasets correctly. Therefore, this paper proposed the
KLSAPCM algorithm to deal with the problem.

Next, the noise-filtered data is processed by the DBSCAN,
the k-means, the FCM, the PCM, the AMPCM, and the
APCM classification algorithms, and the results are shown
in Fig. 8. It can be seen that the DBSCAN, the k-means,
the FCM, the PCM, the AMPCM, and the APCM algorithms
are not suitable for data with non-spherical distribution.
When the DBSCAN algorithm is executed, the algorithmwill
also filter out low-density measurement data, as shown by
Outliers in Fig.8 (a) and (g). When the PCM algorithm is
executed, because the PCM algorithm can greatly eliminate
the influence of low-density data (outliers) on the clustering
result, we first remove the low-density data (outliers) before
executing the PCM clustering algorithm, as shown by Out-
liers in Fig.8 (d) and (j). The clustering results of the PCM
algorithm obtained by this method are very close to those
obtained by directly executing the PCM algorithm, and the
computational efficiency of the algorithm is improved. The
Fig.9 shows the clustering results of the proposed algorithm,
and the results are obviously better than other algorithms.

TABLE 1. CR and running time of clustering algorithms for the
scene 1 and 2.

In the following, the proposed classification algorithm
is compared with the DBSCAN, the k-means, the FCM,
the PCM, the AMPCM, and the APCM algorithms on real
measurement datasets from the scenes of Fig.6 with respect to
the classification rate (CR) index and the time consumption.
Table 1 and Fig. 10 shows the CR values obtained by the
DBSCAN, the k-means, the FCM, the PCM, the AMPCM,
the APCM, and the KLSAPCM algorithms in the two scenes.
As it can be deduced from the Table 1 and the Fig. 10,
the KLSAPCM algorithm has optimal CR index. It is worth
noting that the time consumption of the KLSAPCM algo-
rithm is more than that of the DBSCAN, the k-means, and the
FCM algorithms, but less than the PCM, the AMPCM, and
the APCM algorithms. Because the KLSAPCM algorithm is
first initialized through the improved minimum radius data
search method, and then the KLSAPCM algorithm is run.
In terms of time complexity, it is necessary to calculate
the minimum radius of each data point and find the data
point with the smallest minimum radius in the neighborhood.

63012 VOLUME 8, 2020



L. Cao et al.: Lane Determination of Vehicles Based on a Novel Clustering Algorithm

FIGURE 8. The clustering results. (a)∼(f) The results of the DBSCAN, the k-means, the FCM, the PCM, the AMPCM, and the APCM classification algorithms
for the scene 1. (g)∼(l) The results of the DBSCAN, the k-means, the FCM, the PCM, the AMPCM, and the APCM classification algorithms for the scene 2.

But proposed algorithm can remove many outliers by the
minimum radius data search method, and reduce the number
of processing points of the subsequent algorithm. In addition,
the lane centerline is known. When the KLSAPCM cluster-
ing algorithm is run, the initial cluster centerline segments
calculated based on the lane centerline are already close to
the true cluster center, thereby greatly reducing the number
of iterations of the algorithm. Therefore, the proposed algo-
rithm improves the clustering accuracy, the time consumption
is within the acceptable range, and is less than some new
clustering algorithms proposed in recent years. The time
consumption comparison is shown in Fig. 11.
In summary, while ensuring real-time application, the clas-

sification performance of the proposed algorithm is better
than that of the DBSCAN, the k-means, the FCM, the PCM,
the AMPCM, and the APCM classification algorithms in the
lane determination of the vehicle.

B. COMPARISON OF EXPERIMENTAL RESULTS FOR
NEAREST LANE CENTERLINE METHOD
As we all know, the higher the accuracy of capturing illegal
vehicles on the expressway (the lower the rate of missing and
wrong capturing, that is, the more accurate the law enforce-
ment), the more it will help reduce the incidence of traffic
accidents. Besides, the Section II-C of this paper introduces
the data acquisition of the MMW radar. Based on the Section,
we can know that one measurement point does not represent
one vehicle (representing a certain point on the vehicle’s
body, one vehicle has multiple measurement points) and

FIGURE 9. The clustering results of the proposed algorithm. (a) and
(b) The scene 1 and 2.

vehicle measurement data of different densities can be
obtained by adjusting relevant thresholds. If we use the lane
centerline and the vehicle position to determine the lane of a
vehicle for the scenes of the Fig.12, law enforcement errors
may occur. Next, the distance between the position of the
vehicle and the centerline of the lane (nearest lane centerline
method) is used to determine the lane of the vehicle, the mea-
surement data processing steps and possible problems are as
follows:

a) When the measurement data is sparse (there are only
a few or one measurement points per vehicle, and even
some vehicles do not have measurement points). Although
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FIGURE 10. The CR of the different clustering algorithms for the
scene 1 and 2.

FIGURE 11. The time consumption of the different clustering algorithms
for the scene 1 and 2.

FIGURE 12. The actual scenes. (a) and (b) The scene 3 and 4 in
the Fig.3(b).

we can easily obtain the number of vehicles in all lanes,
these measured points are from the position where the radar
wave reflects strongly on the vehicle, that is, it is likely
to be on one side of the vehicle, such as the vehicles in
Fig.12 (a) and (b). The measurement points of the vehicle
for several consecutive cycles may be in the wrong lane,
and the position of the vehicle may be inaccurate. Therefore,
the position of the vehicle may be in the wrong lane, and
finally causing the vehicle’s lane to be determined incorrectly.
In addition, some vehicles will be missed detection in this
mode, that is, there is no measurement in several cycles and
some illegal vehicles may be missed.

FIGURE 13. The experimental results. (a) The nearest lane centerline
method for the scene 3. (b) the proposed method for the scene 3. (c) The
nearest lane centerline method for the scene 4. (d) the proposed method
for the scene 4.

b) When the measurement data is dense (every vehicle has
many measurement points). 1) We must first calculate the
number of vehicles included in the measurement data, and
then calculate the position of each vehicle. The clustering
algorithm can well calculate the number of vehicles, then
the related algorithm is used for accurate positioning, and
finally the distance between the position of the vehicle and
the lane centerline is calculated to define the lane of the
vehicle. Its computational cost is greater than the computa-
tional cost of the proposed method in this paper, and it also
performs the clustering algorithm. 2) It is assumed that the
clustering algorithm and the positioning algorithm are not
used in lane determination. Without knowing the number
of vehicles, the lane of each measurement point is directly
calculated based on the Euclidean distance between the point
and the centerline of each lane. For example, in the scenes
of Fig.12 (a) and (b), one vehicle is directly driving between
lane 2 and lane 3, respectively. The main body (number plate)
of the vehicle in Fig.12 (a) and (b) is in themiddle lane and the
lane 3, respectively. In this way, the measurement data of the
vehicle is divided into two parts (one in lane 3 and the other
in lane 2), and the system will mistakenly consider them as
two vehicles, as shown in Fig. 13 (a) and (c).
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In summary, the dense measurement data mode in this
paper is used (although this mode has a large amount of
data, but the vehicle measurement is stable and there will be
no missed detection vehicle). Then, the proposed clustering
algorithm can be used to achieve the accurate determination
of vehicle lanes, as shown in Fig. 13 (b) and (d). The accuracy
of lane determination is higher than the method of judging
vehicle lanes by using the distance between the position of
the vehicle and the centerline of the lane.

C. CLUSTER PERFORMANCE EVALUATION FOR
MULTIPLE APPLICATION SCENES
More to illustrate the performance of the algorithm,
we extract data from 4 different scenes in Fig.3 (c) and (d).
The 4 scenes are as follows:

The scene 5 description: In Fig.3(c), highway speed
limit: light rain, visibility less than 200m, less than
60km/h(16.67m/s). In the scene, two cars (the car’s length
and width are about 4m and 1.8m respectively) are driven on
three lanes at about 21m/s and 17m/s respectively, and the
weather is light rain.

The scene 6 description: In Fig.3(d), highway speed
limit: the speed of entering the intersection is less than
40km/h(11.11m/s). In the scene, three vehicles travel at
speeds of about 23m/s, 18m/s(entering the intersection), and
21m/s, respectively. On the right side of the lane, a car runs
normally along the lane. In the middle lane close to the radar,
the vehicle is the medium-sized buses with a width of about
2.5m and a length of about 10m, which runs normally along
the middle lane. In the middle lane away from the radar,
a car drives from the middle lane into the leftmost lane at the
fork.

The scene 7 description: In Fig.3(c), highway speed
limit: less than 120km/h(33.33m/s). In the scene, two high-
speed vehicles travel at speeds of about 28m/s and 39m/s,
respectively. The vehicle in the rightmost lane is speeding
vehicle.

The scene 8 description: In Fig.3(d), highway speed limit:
the speed in the driving lane (the rightmost lane) should not
be less than 60km/h(16.67m/s). In the scene, a vehicle in the
right-most lane slowed down, changed lanes, veered into the
left-most lane, and accelerated.

We use the proposed algorithm to analyze the measured
data of the four scenes, and the experimental results are shown
in Fig.14. The experimental results of the four scenes are
all correct. For the experimental result of the first scene,
as shown in Fig.14(a), our system operates normally in an
appropriate light rain environment. The experimental result
of the second scene show that our algorithm can adapt to
the simultaneous detection of multiple vehicles, as shown
in Fig.14(b). The experimental result of the third scene show
that the proposed algorithm can accurately judge the lane of
the overspeed vehicle without affecting the real-time perfor-
mance, as shown in Fig.14(c). The experimental result of the
last scene, as shown in Fig14(d), show that the low-speed

FIGURE 14. The experimental results of the different scenes. (a)∼(d) The
experimental result of the scene 5∼8.

lane-changing vehicle appears in three lanes simultaneously.
The system will capture illegal vehicles in three lanes at the
same time.

In addition, we extracted experimental data of 42 min-
utes, 35 minutes, and 68 minutes in the three different
scenes of the Fig.3 (b), (c), and (d), respectively, and
372 vehicles, 416 vehicles and 397 vehicles were monitored
respectively. The analysis results of the proposed algorithm
were compared with the monitoring video, and three vehi-
cles were missed. The KLSAPCM algorithm can achieve
the accuracy of 99.58% in the three different scenes of
the Fig.3 (b), (c), and (d).

D. DISCUSS
The proposed algorithm in this paper is used to capture
illegal vehicles on speed-limited highways. The speed limit
of highway is generally between 40km/h(11.11m/s) and
120km/h(33.33m/s), the safe driving distance is more than
30m, and the lane length of the monitoring area from accu-
mulate measurement data of 5 to 15 frames in this paper is
generally 4 to 30 meters. When the car is running at high
speed, it is difficult for vehicles to complete the whole lane-
changing process based on about 20m. Therefore, we believe
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that vehicle in the monitoring area was driving in the fixed
lane. When a speeding vehicle appears, the lane of the speed-
ing vehicle is identified and captured. When there are single
or sparse illegal ultra-low-speed vehicles, the frame number
of measurement data for low-speed vehicles in themonitoring
area is more. If the vehicle changes lanes, the vehicle is simul-
taneously captured by cameras in multiple lanes before and
after lane changes.When the vehicle is parked in the monitor-
ing area, it is difficult to distinguish the measurement points
of the vehicle from the road surface measurement points. The
algorithm needs other types of algorithms to judge, such as
data association algorithm. The innovation of the algorithm
in this paper is on data classification, so there is no specific
description of how to judge the driving vehicle parking in
the monitoring area. In the event of traffic congestion and
ultra-low speed driving, the radar can determine whether it
is a traffic congestion mode by the running speed of multiple
vehicles and the number of vehicles in the monitoring area.
In this case, the algorithm stops running and the camera stops
capturing. If there are weather conditions such as dust storms,
hail, torrential rain, heavy snow, fog, ice and so on, the traffic
management department closes the system by remote control.
However, if there are some special scene such as some cars
with the same speed, the big car shielding the small car, and
the continuous driving of many low-speed illegal vehicles,
the algorithm will fail, and the system needs other corre-
sponding means to deal with them.

V. CONCLUSION
In this paper, a novel KLSAPCM clustering algorithm was
developed in intelligent transportation monitoring system.
The main works of the paper can be concluded as fol-
lows: 1) The extracting monitoring area method (adjacent
to the lane centerline) and the minimum radius data search
method for the MMW radar measurement data are intro-
duced in traffic detection. These two methods effectively
reduce the impact of noise on the clustering algorithm.Mean-
while, the minimum radius data search method can also
effectively initialize the KLSAPCM clustering algorithm;
2) A KLSAPCM clustering algorithm is proposed in this
paper. The algorithm can correctly determine which lane
each vehicle belongs to without manually measuring the
installation position and installation angle of radar; And
3) the detailed experiments of multiple scenes were pre-
sented and the results were: the KLSAPCMalgorithm is com-
pared with the DBSCAN, the k-means, the FCM, the PCM,
the AMPCM, and the APCMalgorithms on real measurement
datasets, and the results highlight the classification rate of
the proposed algorithm. Meanwhile, the proposed algorithm
has good real-time performance and strong robustness for
some sparse moving vehicle scene applications. As described
in the discussion section, our future research content will
be carried out to improve classification accuracy for more
complex scenes, and increasing the scope of application of
the system.
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