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ABSTRACT This paper investigates the stabilization of a class of chaotic systems with both model uncer-
tainty and external disturbance. By combining the dynamic feedback control method, and the uncertainty
and disturbance estimator (UDE)-based control method, a new UDE-based control method is developed.
By using this method, the system stabilization can be achieved by three steps. Illustrative examples using
numerical simulations verify the soundness and effectiveness of the proposed method.
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I. INTRODUCTION
Lorenz firstly found the classical chaotic attractor [1] in 1963.
Chaotic systems possess trajectories that have embedded
within a large number of unstable periodic orbits. A chaotic
system has complex dynamical behaviors that depend sensi-
tively on tiny variations of initial conditions and has bounded
trajectories in the phase space. As one of the most fasci-
nating phenomenon in nonlinear dynamical system, chaos
has been intensively studied over the past few decades.
Since Ott, Grebogi and York first observed chaos control [2]
in 1990, and Pecora and Carroll first presented chaos syn-
chronization [3] in 1990, respectively, chaos becomes an
interesting phenomenon and has been widely applied in
engineering, science, and communications [4]–[7]. Up to
today, many works have been done to deal with all kinds of
control problems of the chaotic systems, such as stabiliza-
tion, complete synchronization, anti- synchronization, coex-
istence of synchronization and anti-synchronization, simul-
taneous anti-synchronization and synchronization, projective
synchronization, and so on, please see [8]–[15]. Among the
above mentioned control problems, the stabilization of the
system needs to be addressed at first. It is because only when
the system is stabilized, we can further discuss and solve all
kinds of control problems of the chaotic system. Therefore,
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it is very important to achieve the stabilization of the system
at first.

It should be pointed out that among the above men-
tioned chaotic systems, system uncertainty and external dis-
turbance are not considered. Unfortunately, there are still
many deficiencies in the current research, and in practice
this is not the case. For the chaotic systems, a lot of meth-
ods have been proposed to investigate the robust stabiliza-
tion problems, e.g., [16], [17]. However, the disturbance
is bounded in some forms is a basic assumption in the
most of those methods, such as d(t) belongs to Ln2 [0,+∞),
or d(t) is assumed to be L2-norm bounded. More impor-
tantly, the robust control and disturbance rejection problems
in the above mentioned works are mainly solved by the
linear matrix inequalities (LMIs). However, the stability con-
ditions which are derived by the LMIs are only sufficient
conditions and often result in conservative conclusions. The
robust control problem of chaotic systems with both model
uncertainty and external disturbance has remained very
challenging.

The UDE-based control method [18] is a good method to
deal with the model uncertainty and external disturbance, and
it has the following two advantages:

1. The system model or a disturbance model is not known
completely;

2. both structured (or unstructured) uncertainties and
external disturbances can be suppressed.
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Being an effective robust control strategy, UDE-based con-
trol has been widely applied in various systems. Thus, it is
of interest to apply the UDE-based control to chaotic sys-
tems with both model uncertainty and external disturbance.
However, by reviewing the literature, it was found that this
problem has not been well addressed. Therefore, it is very
important to solve the uncertainty of the model and the sta-
bility of the systemwith external disturbance. The goal of this
paper is to develop a new UDE-based control method for the
chaotic systems, by which the problem of model uncertainty
and external disturbance can be solved. The rest of this paper
is organized as follows. Section 2 introduces the preliminary
knowledge and the problem formation, Section 3 presents the
main results of this paper, Section 4 provides the illustrative
examples with numerical simulation, and Section 5 gives the
conclusions.

II. PRELIMINARIES AND PROBLEM FORMATION
A. PRELIMINARIES
Consider the following chaotic system

ẋ = f (x) (1)

where x ∈ Rn is the state, f (x) = (f1(x), · · · , fn(x))T is a
smooth vector function with f (0) = 0.
Definition 1: Consider the following controlled system

ẋ = f (x)+ Bu (2)

where x ∈ Rn is the state, B ∈ Rn×r , r ≥ 1, (f (x),B) is
controllable, u is the designed controller. If lim

t→∞
‖x(t)‖ = 0,

we call the chaotic system (1) is stabilized by the controller u.
There are many results about the stabilization of chaotic

systems. Among them, the dynamic feedback control
method [11] has a wide range of applications because it is
simply designed and can be easily applied. The introduction
of the dynamic feedback control method are provided at first.
Lemma 1 [11]: Consider the chaotic system (2). If B =

(bij)n×r , and bij = 0 or bij = 1, i = 1, 2, . . . , n, j =
1, 2, . . . , r , and (f (x),B) is controllable, then a dynamic feed-
back controller u is as follows

u = K (t)x (3)

where K (t) = k(t)BT , and

k̇(t) = −γ xT x = −γ ‖x(t)‖2 (4)

where γ > 0 is a constant.
After that, the UDE-based control method is introduced.
Lemma 2 [18]: Considering the following system

ẋ = f (x)+ Bu+1f (x)+ d(t) (5)

where x ∈ Rn is the state, (f (x),B) is controllable, B ∈ Rn×r ,
r ≥ 1, 1f (x) is the model uncertainty, d(t) is the external
disturbance.

The stable linear reference model is described as:

ẋm = Amxm + BmC (6)

where xm ∈ Rn is the reference state, Am ∈ Rn×n is Hurwitz,
Bm ∈ Rn×r , C ∈ Rr×1 is a piecewise continuous and
uniformly bounded command.

If a designed filter gf (t) satisfies

ũd = ûd − ud → 0, t →∞

where ûd = (ẋ − f (x)−Bu) ∗ gf (t), ud = 1f (x)+ d(t), then
the UDE-based controller u is designed as

u = B+
{
`−1

[
1

1− Gf (s)

]
∗ (Amx + BmC − Ke)

}
−B+

{
f (x)+ `−1

[
sGf (s)

1− Gf (s)

]
∗ x(t)

}
(7)

where B+ = (BTB)−1BT , Gf (s) = `[gf (t)], e = xm − x,
` denotes Laplace transformation and the matrix K is
Hurwitz, `−1 represents the Laplace inverse transformation,
∗ stands for the convolution.

B. PROBLEM FORMATION
Consider the following system

ẋ = f (x)+ Bu+1f (x)+ d(t) (8)

where x ∈ Rn is the state, (f (x),B) is controllable, B ∈ Rn×r ,
r ≥ 1, 1f (x) is the model uncertainty, d(t) is the external
disturbance.

The main goal of this paper is to design a controller u to
make the system (8) reach stabilization, i.e., lim

t→∞
‖x(t)‖ = 0.

III. MAIN RESULTS
Considering the advantages of dynamic feedback control
method and the UDE-based control method, we combine
these two methods and obtain the following results.
Theorem 1: Consider the system given in Equation (8). If a

filter gf (x) is designed to satisfy the following condition:

ũd = ûd − ud → 0, t →∞ (9)

where ûd = (ẋ−F(x)−Buude)∗gf (t) and ud = 1f (x)+d(t),
then the UDE-based controller u is

u = us + uude (10)

where

us = K (t)x(t) = k(t)BT x(t), (11)

k(t) is updated by the update law (4),

uude = B+
{
`−1

[
Gf (s)

1− Gf (s)

]
∗ F(x)

}
−B+

{
`−1

[
sGf (s)

1− Gf (s)

]
∗ x(t)

}
(12)

B+ = (BTB)−1BT , F(x) = f (x) + Bus, Gf (s) = `[gf (t)],
` represents the Laplace transformation, `−1 represents the
Laplace inverse transformation, ∗ stands for the convolution.

Proof: Substituting the controller u in (10) into the sys-
tem (8), we get

ẋ = f (x)+ Bus + Buude + ud = F(x)+ Buude + ud (13)
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According to Lemma 1, the system ẋ = F(x) is globally
asymptotically stable. Noting that the condition (9), i.e.,

Buude = −ûd

Thus, the system (13) is rewritten as

ẋ = F(x)+ ũd

and this system is globally asymptotically stable.
Remark 1: According to the existing results in [18],

the following two filters can be applied to the most of cases
in applications.

One is the low-pass filter:

Gf (s) =
1

1+ τ s
, (14)

where τ > 0, which is suitable for d(t) is a constant vector.
The other is presented as follows:

Gf (s) =
a1s+ (a2 − ω2

0)

s2 + a1s+ a2
, (15)

where ω0 = 4π , a1 = 10ω0,a2 = 100ω2
0.

The development of adaptive UDE-based control method
consists of following three steps:

1. Design an dynamic feedback stabilization controller us
for the chaotic systems without model uncertainty and
external disturbance;

2. Design a filter to estimate model uncertainty and
external disturbance, and derive the UDE-based
controller uude;

3. By combining the two controllers obtained in previous
two steps, the adaptive UDE-based control controller u
can be derived as u = us + uude.

IV. ILLUSTRATIVE EXAMPLES WITH NUMERICAL
SIMULATION
In this section, using Lorenz system and the complex Lorenz
system as examples, the numerical simulation were con-
ducted for verifying the soundness and effectiveness of the
proposed method.
Example 1: The controlled Lorenz system with both

model uncertainty and external disturbance:

ẋ = f (x)+ Bu+1f (x)+ d(t) (16)

where x = (x1, x2, x3)T , and

f (x) =

 f1(x)
f2(x)
f3(x)

 =
 10(x2 − x1)
28x1 − x2 − x1x3

−
8
3
x3 + x1x2

 , (17)

B =

 0
1
0

 , (18)

1f (x) =

1f1(x)1f2(x)
1f3(x)

 =
 0
0.1x2x3

0

 , (19)

d(t) =

 d1(t)
d2(t)
d3(t)

 =
 0
1000
0

 (20)

The controlled Lorenz system is presented as

ẋ = f (x)+ Bus (21)

where x ∈ R3, f (x) and B are given as (17).
According to [1], the Lorenz system is ẋ = f (x), where

f (x) is given in (17).
Our goal is to design a controller u = us + uude to make

the system given in Equation (16) reach stabilization, i.e.,
lim
t→∞
‖x(t)‖ = 0.

According to the results in Section II, the first step is to
design us.
For the Lorenz system: ẋ = f (x), if x2 = 0, then the

following two-dimensional system

ẋ1 = −10x1

ẋ3 = −
8
3
x3

is globally asymptotically stable.
Therefore, according to Lemma 1, the controller us is

designed as follows:

us = k(t)BT x(t) = k(t)(0 1 0)x(t) (22)

and the feedback gain k(t) is updated by (4).
The numerical simulation is designed as follows: the ini-

tial values of the controlled Lorenz chaotic system given in
Equation (21) and the system given in Equation (4) are given
as follows: x0 = [1, 2, 3]T , k(0) = −1. Fig. 1 shows that
the Lorenz system is stabilized, while Fig.2 shows that the
feedback gain k(t) converges to a negative constant.

FIGURE 1. The Lorenz system is stabilized.

The second step is to design the UDE controller uude.
Let ud = 1f (x)+d(t), F(x) = f (x)+Bus, the system (16)

is rewritten as

ẋ = F(x)+ Buude + ud (23)
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FIGURE 2. k(t) converges to a negative constant.

According to Theorem 1, the controller uude is presented
as

uude = B+
{
`−1

[
Gf (s)

1− Gf (s)

]
∗ F(x)

}
−B+

{
`−1

[
sGf (s)

1− Gf (s)

]
∗ x(t)

}
(24)

where B+ = (BTB)−1BT , Gf (s) = `[gf (t)], ` represents the
Laplace transformation, `−1 represents the Laplace inverse
transformation, ∗ stands for the convolution.
The third step is to combine the two controllers us and uude,

i.e., u = us + uude. Thus, the system given in Equation (16)
can be stabilized by the above obtained controllers.

The numerical simulation is designed as follows: the ini-
tial values of the controlled Lorenz chaotic system given in
Equation (23) and the system given in Equation (4) are given
as follows: x0 = [1, 2, 3]T , k(0) = −1. Fig.3 shows that the
Lorenz system is also stabilized, Fig.4 shows that ûd2 tends to
ud2 as t →∞, while Fig.5 shows that the feedback gain k(t)
converges to a negative constant.

FIGURE 3. The Lorenz system is also stabilized.

Remark 2: For Example 1, according to the controller
design given in Equation (7), the controller u can be

FIGURE 4. ûd2 tends to ud2 as t → ∞.

FIGURE 5. k(t) converges to a negative constant.

derived as

u = B+
{
`−1

[
1

1− Gf (s)

]
∗ (Amx + BmC − Ke)

}
−B+

{
f (x)+ `−1

[
sGf (s)

1− Gf (s)

]
∗ x(t)

}
(25)

The second term in Equation (25)

B+(−f (x)) = −f2(x) (26)

thus,

BB+(−f (x)) =

 0
−f2(x)

0

 6= −f (x) (27)

That is to say, Bu = −f (x) + ud + Amx is impossible to
satisfied whatever u is. Therefore, the existing UDE-based
control method [18] is not utilized directly for this example.
Example 2: the following complex Lorenz system [19]:

u̇1 = a1(u2 − u1)

u̇2 = a2u1 − u2 − u1u3

u̇3 = −a3u3 +
1
2
(ū1u2 − u1ū2) (28)
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where u1 = x1 + jx2, u2 = x3 + jx4, are the complex state
variables of the system, u3 is the state variable of the system
and ai, i = 1, 2, 3, are the real parameters.

According to the results in [19], the system (28) is chaotic
when a1 = 10, a2 = 110, a3 = 2.

Separating the real and imaginary parts of each variable in
the system (28), the following real system is presented:

ẋ1 = 10(x3 − x1)
ẋ2 = 10(x4 − x2)
ẋ3 = 110x1 − x1x5 − x3
ẋ4 = 110x2 − x2x5 − x4
ẋ5 = −2x5 + x1x3 + x2x4 (29)

The controlled complex Lorenz system with both model
uncertainty and external disturbance is given as

ẋ = f (x)+ Bu+1f (x)+ d(t) (30)

where x = (x1, x2, · · · , x5)T , and

f (x) =


f1(x)
f2(x)
f3(x)
f4(x)
f5(x)

 =

10(x3 − x1)
10(x4 − x2)
110x1 − x1x5 − x3
110x2 − x2x5 − x4
−2x5 + x1x3 + x2x4

, (31)

B =


0 0
0 0
1 0
0 1
0 0

 (32)

1f (x) =


1f1(x)
1f2(x)
1f3(x)
1f4(x)
1f5(x)

 =

0
0
x22x3
−x23
0

 , (33)

d(t) =


d1(t)
d2(t)
d3(t)
d4(t)
d5(t)

 =


0
0
10

20 sin(2t)
0

 . (34)

The controlled complex Lorenz system is presented as

ẋ = f (x)+ Bus (35)

where x ∈ R5, f (x) and B are given as in Equation (31).
Our goal is to design a controller u = us + uude to

make the system in Equation (30) reach stabilization, i.e.,
lim
t→∞
‖x(t)‖ = 0.

According to the results in Section II, the first step is to
design us.

For the uncontrolled system (35), i.e., ẋ = f (x), it is
easy to note that: if x3 = x4 = 0, then the following three
dimensional system

ẋ1 = −10x1
ẋ2 = −110x2
ẋ5 = −2x5 (36)

is globally asymptotically stable.

Therefore, according to Lemma 1, the controller us is
designed as follows:

us = k(t)BT x(t) = k(t)
(
0 0 1 0 0
0 0 0 1 0

)
x(t) (37)

and the feedback gain k(t) is updated by (4).
The numerical simulation is designed as follows: the ini-

tial values of the controlled Lorenz chaotic system given
in Equation (35) and the system given in Equation (4) are
given as follows: x0 = [1, 2, 3,−4,−5]T , k(0) = −1.
Fig.6 shows that the complex Lorenz system is stabilized,
while Fig.7 shows that the feedback gain k(t) converges to
a negative constant.

FIGURE 6. The complex Lorenz system is stabilized.

FIGURE 7. k(t) converges to a negative constant.

The second step is to design the UDE controller uude.
Let ud = 1f (x) + d(t), F(x) = f (x) + Bus, the system

given in Equation (30) can be rewritten as

ẋ = F(x)+ Buude + ud (38)

According to Theorem 1, the controller uude is presented
as

uude = B+
{
`−1

[
Gf (s)

1− Gf (s)

]
∗ F(x)

}
−B+

{
`−1

[
sGf (s)

1− Gf (s)

]
∗ x(t)

}
(39)
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where B+ = (BTB)−1BT , Gf (s) = `[gf (t)], ` represents the
Laplace transformation, `−1 represents the Laplace inverse
transformation, ∗ stands for the convolution.
The third step is to combine the two controllers us and uude,

i.e., u = us + uude. Thus, the system given in Equation (30)
can be stabilized by the above obtained controller.

The numerical simulation is designed as follows: the ini-
tial values of the controlled Lorenz chaotic system given in
Equation (35) and the system given in Equation (4) are given
as follows: x0 = [1, 2, 3,−4,−5]T , k(0) = −1. Fig.8 shows

FIGURE 8. The complex Lorenz system is also stabilized.

FIGURE 9. ûd3 tends to ud3 as t → ∞.

FIGURE 10. ûd4 tends to ud4 as t → ∞.

FIGURE 11. k(t) converges to a negative constant.

that the complex Lorenz system is also stabilized, Fig.9 shows
that ûd3 tends to ud3 as t →∞, Fig.10 shows that ûd4 tends to
ud4 as t →∞,while Fig.11 shows that the feedback gain k(t)
converges to a negative constant.

V. CONCLUSION
This paper has investigated the stabilization of a class of
chaotic systems with both model uncertainty and external
disturbance. By combining the dynamic feedback control
method and the UDE-based control method, a new
UDE-based control method has been developed, by which
the stabilization problem of chaotic systems has been solved
by three steps. Theoretically, the developed method has
some advantages over the existing methods. In this paper,
the soundness and the effectiveness of the proposed results
have been verified by the illustrative examples.
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