
Received March 6, 2020, accepted March 20, 2020, date of publication March 27, 2020, date of current version April 17, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2983731

Toward OS-Level and Device-Level Cooperative
Scheduling for Multitasking GPUs
XINJIAN LONG , XIANGYANG GONG , YAGUANG LIU , XIRONG QUE ,
AND WENDONG WANG , (Member, IEEE)
State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, China

Corresponding author: Xiangyang Gong (xygong@bupt.edu.cn)

This work was partially supported by the National Natural Science Foundation of China (Grant No. 61802022 and No. 61802027), the
Beijing Natural Science Foundation (No. L182034) and the Fundamental Research Funds for the Central Universities (Grant No.
2019XD-A12).

ABSTRACT As one of the most popular accelerators, the graphics processing unit (GPU) has been
extensively adopted throughout the world. With the burst of new applications and the growing scale of data,
co-running applications on limited GPU resources has become increasingly important due to its dramatic
improvement in overall system efficiency. Quality of service (QoS) support among concurrent general-
purpose GPU (GPGPU) applications is currently one of the most trending research topics. Prior efforts
have been focused on providing QoS support either with OS-level or device-level scheduling methods. Each
of these scheduling methods possesses pros and cons and may be unable to independently cover all the
scheduling cases. In this paper, we propose a cooperative QoS scheduling scheme (C-QoS) that consists
of operating-system-level (OS-level) scheduling and device-level scheduling. Our proposed scheme can
control the progress of a kernel and provide thoroughQoS support for concurrent applications inmultitasking
GPUs. Due to the accurate resource management of the copy engine and execution engine, C-QoS achieves
QoS goals 23.33% more often than state-of-the-art QoS support mechanisms. The results demonstrate that
cooperative methods achieve 17.27% higher system utilization than uncooperative methods.

INDEX TERMS Multitasking, parallel architectures, quality of service.

I. INTRODUCTION
Recently, major companies such as Google, Microsoft, and
Tesla have adopted GPUs to boost rapid advances in burgeon-
ing areas, such as image recognition, speech processing, nat-
ural language processing, disease detection, and autonomous
driving. Not only limited to large data centers or high-
performance computing (HPC) systems, such as Amazon’s
GPU cloud [1] and Oak Ridge National Laboratory’s Summit
[2], the demand for GPUs among small and medium-sized
enterprises, research institutes, and universities is increasing
due to its massive parallel computation capability and cost
efficiency.

Modern data centers and HPC clusters commonly co-
execute multiple GPU applications to improve accelerator
utilization and to deal with the diurnal user access pattern. In
these multitasking GPUs [3], different types of applications,
such as artificial intelligence (AI), games, and video encoding
and decoding, are unavoidably executing concurrently. For

The associate editor coordinating the review of this manuscript and

approving it for publication was Nizar Zorba .

applications with certain quality-of-service (QoS) goals, per-
formance below these goals may cause an unsatisfactory user
experience, while performance above these goals may offer
no benefits. Improving the utilization of GPU resources while
guaranteeing the QoS requirements of concurrent GPGPU
applications has become challenging.

A substantial amount of prior work has focused on
enforcing the application’s QoS and maximizing the system
utilization. Researchers have modified the GPU device driver
and invoked system call traps and APIs to schedule different
types of GPU commands (memory copy, kernel execution,
etc.) or reorder the kernels from different applications [1],
[4]–[12]. These techniques are defined as OS-level schedul-
ing methods in this work. Conversely, researchers have pro-
posed techniques [14]–[18] to dynamically partition GPU
resources to provide QoS support among concurrent appli-
cations in a spatial-multiplexed manner. These works focus
on either sharing the device resources at a streaming multi-
processor (SMP) granularity or co-running multiple kernels
in one single SMP. Their performance varies according to the
on-chip resource partitioning strategies and the interference

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 65711

https://orcid.org/0000-0002-4264-570X
https://orcid.org/0000-0002-0631-9747
https://orcid.org/0000-0001-5259-1007
https://orcid.org/0000-0002-9759-767X
https://orcid.org/0000-0002-6418-8087
https://orcid.org/0000-0002-0527-6087

X. Long et al.: Toward OS-Level and Device-Level Cooperative Scheduling for Multitasking GPUs

among the concurrent applications [22]. These techniques are
defined as device-level scheduling methods in this work.

Although these efforts may improve the QoS support for
multitasking GPUs to some extent, they are subject to cer-
tain limitations and may lose efficacy in special cases. First,
OS-level scheduling methods partition GPU time among the
concurrent applications at the granularity of kernel execution.
These techniques consider the GPU as a black box, which
does cause additional manipulation of the kernel resource
partition. Since the modern commodity GPUs do not support
explicit preemption scheduling among the running kernels,
whether the applications’ QoS can be guaranteed is heavily
dependent on the order that kernels are dispatched to the
GPU and the kernels’ execution length. This finding causes
a high probability of problems for the occurrence of prior-
ity inversion, resource underutilization, etc. Second, device-
level scheduling methods share the GPU hardware resources
among concurrent applications in a spatial-multiplexingman-
ner. These techniques may lose efficiency when the QoS
violation is caused by factors beyond the GPU hardware
(PCI-e bandwidth contention, etc.). To overcome the defi-
ciency of applying a single scheduling method and explore
the possibility of better QoS support for multitasking GPUs,
we believe that a cooperative strategy of the two scheduling
methods is required.

In this work, we propose a cooperative scheduling scheme
(C-QoS) for the OS-level scheduling method and device-
level scheduling method. This novel scheme can predict the
application’s slowdown due to co-location and then apply an
ε-greedy-based algorithm. This novel algorithm exploits the
merits of the two scheduling methods, and it can guarantee
the concurrent GPGPU application’s QoS while maximizing
the system utilization. To validate the efficiency of C-QoS, we
use gem5-GPU [23] as the experiment platform and select the
workloads for evaluation from the Rodinia [24] and Parboil
[25] benchmark sets. The results show that the proposed
C-QoS achieves QoS goals 23.33% more often than the
uncooperative schemes and achieves 17.27% higher system
utilization.

In general, this work makes the following major
contributions:

• We propose a cooperative scheduling scheme (C-QoS)
using the OS-level and device-level methods, which can
provide thorough QoS support for multitasking GPUs
and to improve the overall system utilization.

• We propose a novel algorithm, which can make deci-
sions on how to cooperate the two scheduling methods.
These decisions are driven by the concurrent GPGPU
applications’ characteristics and the runtime status of the
overall system.

II. BACKGROUND
In this section, we describe the technical background of the
modern GPU using CUDA terminology. We introduce some

FIGURE 1. System overview.

of the GPU techniques according to the descriptions in prior
work [26].

Figure 1 shows an overview of the system provided with a
GPU accelerator. Typically, GPU applications access accel-
erator resources using several routine steps. These steps con-
sist of the GPU device memory initialization, copy of input
data from the host memory to the GPU device memory,
computation of the input data by launching some CUDA
kernels, and write-back of the computation result from the
GPU device memory to the host memory. CUDA kernel
codes are written following a single-instruction-multiple-
thread (SIMT) model. The SIMT model is an execution
model that is employed in parallel computing, where single-
instruction-multiple-data (SIMD) are combined with multi-
threading. Dependency among CUDA kernels may exist.
These steps are achieved by sending GPU commands through
the PCI-e bus, which are usually grouped to form GPU com-
mand groups and submitted by the GPU device driver.

The discrete GPU is connected to the host through a PCI-e
bus (theoretical peak bandwidth of 16x PCI-e 3.0 bus used
in the NVIDIA GPU K40 is 15,800 MB/s, and the effective
bandwidth is 12,1600 MB/s). The GPU consists of thou-
sands of CUDA cores (ALUs). Each streaming multiproces-
sor (SMP) contains numerous computing resources, such as
CUDA cores, LD/ST units, SFUs, registers files, scratch-
pad memory/shared memory, and L1 cache. The number of
threads that an SMP can concurrently execute (2048 in the
NVIDIA Kepler architecture) is limited. A GDDR5 memory
is shared among the SMPs through an interconnection net-
work as the GPU device memory. Memory requests are dis-
tributed to the memory controller according to the addresses.
A unified L2 cache is shared by all SMPs. A thread block
(TB) scheduler is responsible for determining howmany TBs
of each kernel is allocated to a certain SMP.

A thread is the basic unit of one kernel, and threads in
one kernel are hierarchically grouped into thread blocks (TB).
The total TB count of one kernel, as well as the total thread
count of one TB of this kernel, is specified by the programmer
using variables such as GridDim and BlockDim in the code.
A TB is the basic scheduling unit of the GPU hardware.
The resource requirement of each kernel can be captured
by the compiler before it is launched to the device. Kernels

65712 VOLUME 8, 2020

X. Long et al.: Toward OS-Level and Device-Level Cooperative Scheduling for Multitasking GPUs

FIGURE 2. Different QoS support mechanisms in multitasking GPUs.

from different GPGPU applications consume different types
of GPU on-chip resources [27]. A TB scheduler determines
how many TBs from the same kernel can be dispatched to a
certain SMP.One SMP can keep accepting TBs from different
kernels until any type of computational resource reaches the
corresponding hardware limit, and then, the SMP will leave
the remaining resource unused.

For example, the total thread count of all TBs assigned to
one SMP on the NVIDIA TX2 is limited to 2048 per SMP.
If the TB size of the certain kernel is 384, then a maximum
of 5 TBs of this kernel are scheduled and 128 threads are left
idle. TBs that exceed the resource limit of the hardware will
be kept waiting until the executing TBs on the SMP finish
and release. When one TB is dispatched to an SMP, every
32 threads in one TB will be further grouped into a warp.
A warp is the basic execution unit on the SMP. The SIMD
width of the GPU hardware is 32. Warp schedulers within
one SMP will select the instructions from any ready warps to
execute following some kind of scheduling policy (typically
greedy then oldest). This selection may greatly impact the
performance of the executing kernels and indirectly affect the
waiting kernels.

The only GPU architecture that claims to support pre-
emption is NVIDIA Pascal; this technique has not been
observed in its subsequent architecture, such as Volta and
Turing [28]–[30]. However, no publicly available information
shows the availability of software-level preemption control,
which introduces extra difficulty for researchers in designing
novel strategies to exploit this feature. Substantial overhead
caused by context switching and context saving is a serious
issue. Thus, efficient preemption support in GPU architec-
ture remains an open problem to be solved. Recently, many
works have been proposed to provide both hardware solutions
and software solutions for preemptive scheduling in sharing
GPUs at different levels of granularity [31], [33]–[37].

The first GPU architecture that claims to support QoS
among concurrent applications is NVIDIA Volta due to the
support of Volta MPS; this feature is kept in its following
architecture Turing [28]–[30]. The drawback of pre-Volta
MPS on QoS support has been analyzed in [7]. Volta MPS,
which is introduced in the Volta and Turing architectures,
enables explicit GPU computational resource allocation. This

allocation renders the full spatial multitasking possible in a
modern commodity GPU [30]. However, this technique is
static because the resource allocation of a particular process
cannot change until its end, which limits the MPS technique
to handle complicated cases such as dynamic arriving kernels.
Furthermore, MPS focuses on resource allocation within the
GPU, which means that this technique is unable to handle the
QoS violation caused by factors beyond the GPU computa-
tional resources.

III. RELATED WORKS
As shown in Figure 2, two major QoS support mechanisms
exist in GPU multitasking. The first type is the OS-level
scheduling method, in which the QoS manager and the corre-
sponding data structures reside at the host side, and the arriv-
ing tasks are re-ordered and launched on the GPU according
to their QoS requirements. Kato et al. [4] propose an event-
driven real-time scheduler that exploit priority-based poli-
cies and resource reservation mechanisms. Elliott et al. [38]
propose a synchronization-based framework that employs
priority-based policies to handle resource requirements from
different real-time tasks in a system equipped with multiple
GPUs. Lee et al. [39] map concurrent applications to different
SMPs on the same GPU. Chen et al. [7] classify and predict
the duration of different GPU tasks and provide QoS support
to the concurrent GPU applications by resource reservation.
Ukidave et al. [40] exploit machine learning to identify the
similarities between the arriving kernels and the running
kernels and use this technique to avoid QoS violations in a
GPU-equipped cluster. Zhang et al. [8] propose a runtime sys-
tem that exploits the newly added spatial multitasking feature
in aGPU and raises the accelerator utilizationwhile achieving
the latency targets for user-facing services. Zhu et al. [9] pro-
pose a software runtime that isolates high-priority accelerated
machine learning tasks from memory resource interference.
TheOS-level schedulingmethods commonly implement their
design on a nonpreemptive accelerator design according
to the modern GPU’s execution model, which unavoidably
makes them ineffective in some cases (priority inversion
problem caused by the long-running kernels with lower pri-
ority, etc.). The time-multiplexed based design hinders these

VOLUME 8, 2020 65713

X. Long et al.: Toward OS-Level and Device-Level Cooperative Scheduling for Multitasking GPUs

TABLE 1. Characteristics of 10 GPGPU applications.

techniques’ scheduling performance in the overall system
utilization improvement.

The second type is the device-level scheduling method.
Aguilera et al. [14] propose a runtime technique to dynam-
ically allocate SMPs to the concurrent kernels. Wang et al.
[15] propose a cycle-level mechanism for fine-grained GPU
sharing (sharer kernels can partition the SMPs spatially
within the GPU). Park et al. [22] propose dynamic resource
management to discover the best-performing GPU resource
partition, which exploits the works of both [31] and [34].
Song et al. [41] propose a framework that enables heteroge-
neous cores in MPSoC to make a priority-based adaptation
to satisfy their diverse QoS targets. Device-level scheduling
methods commonly manipulate resource usage among the
concurrent GPU kernels at the hardware level. This notion
makes these techniques, which exclusively rely on refining
intra-GPU resource adjustment to guarantee the applications’
performance, become inefficient when the causes of QoS
violations surpass the GPU hardware resources.

IV. MOTIVATION
To illustrate the above problem, we perform several evalu-
ations of the modified gem5-GPU using workloads chosen
from Rodinia and Parboil benchmark sets. These workloads
are chosen based on their characteristics. Table 1 lists the
benchmarks that we employed in this paper. Bench indicates
the benchmark set to which the particular benchmark belongs.
Abbr indicates the abbreviation name of each benchmark.
Inst indicates the number of each benchmark’s simulated
instructions. Ker indicates the number of kernels of the par-
ticular benchmark. Reg and Smem indicate the number of the
register files and the sharedmemory consumed by the specific
kernel, respectively. Griddim andBlkdim indicate the number
of the TBs and the number of threads in each TB of the cor-
responding kernel of the particular benchmark, respectively.
Memcpy indicates the total amount of data migrated between
the host and the device during the particular benchmark’s
lifetime. KerExec and Memcpy indicate the percentage of
simulated cycles consumed in the kernel execution and the
data migration of each benchmark, respectively. Type indi-
cates the type of the particular benchmark in this study, which
will be explained in the following section.

From Table 1, we can observe that different applications
demand different resources, and different percentages of
duration are spent on kernel execution tasks and memcpy
tasks in each benchmark. We define the benchmarks whose
percentage of memcpy tasks is not less than 40% as the
‘transfer-intensive’ applications (TRANS) in this study. We
define benchmarks whose percentage of kernel execution
tasks exceeds 60% as the ‘compute-intensive’ application
(COMP). Since the original scale of the workloads is small
and most of them vary drastically, we repeatedly execute
the smaller workloads and rein the number of the simulated
instructions of all the benchmarks within two orders of mag-
nitude. Note that no explicit cudaMemcpy exists in the recent
GPU programs that adopt the unified memory technique
[42]. This technique automatically syncs data and releases
users from the data copying. However, memory copies still
occur under the hood, and we believe that scheduling towards
data transfer between CPU system memory and GPU device
memory is still necessary. Furthermore, the complicated page
fault mechanism of unified memory may introduce some
extra overhead, which could be destructive in QoS guaran-
teeing. We select and reproduce the algorithms adopted in
the previous work (Baymax [7], Spart-QoS [14]) according to
their description and exploit them as the ‘OS-level scheduling
method’ and ‘device-level scheduling method’ in this study.
The QoS goal is defined as multiple times of the solo end-
to-end latency of each GPGPU application. The concept of
the end-to-end latency is derived from [7]. We assume that
the scale of the workloads of all the applications is known
when they arrive at the system. The performance of the
particular application when it runs in isolation is defined
as its 100% QoS goal (QoS_1.0). In this study, a differ-
ent level of QoS constraint will be used to simulate the
difficulty of guaranteeing the particular application’s QoS
in different cases. For instance, QoS_0.5 indicates that the
application’s QoS goal equates to the performance when it
is running with 50% IPC compared with its isolated run,
which obtains QoS_0.5 = QoS_1.0

0.5 . As described in previ-
ous work [43], the differences between each application’s
isolated performance and its QoS requirement vary vastly
due to their variation in scalability, which corresponds to the
increase in the thread-level parallelism (TLP). The definition

65714 VOLUME 8, 2020

X. Long et al.: Toward OS-Level and Device-Level Cooperative Scheduling for Multitasking GPUs

FIGURE 3. QoS violation with one single scheduling method.

of the QoS level in this study is similar to that in previous
work [14], [15].

Figure 3 shows the QoS violation when two TRANS
applications or two COMPs applications are collocated using
OS-level scheduling or device-level scheduling method,
respectively. We synthetically generate sequences of arriving
kernels and inter-arrival times for each experiment. The inter-
arrival time differences in each sequence follow an exponen-
tial distribution. The bottom row of the x-axis of Figure 3
indicates the combination of the applications of the Rodinia
and Parboil benchmark sets, and the left application indicates
the first set that arrived at the system in each pair. The
y-axis indicates the end-to-end latency of each application
normalized to its QoS target (QoS_0.3, QoS_0.5, QoS_0.7).

As shown in Figure 3 (a) and (b), the number of
QoS-guaranteed TRANS applications using the OS-level
scheduling method (100% on average) outclasses those using
the device-level scheduling method (60% on average). When
multiple transfer-intensive applications are co-located in the
system, a large number of memcpy requests will be generated
and cause a serious contention in the GPU’s copy engine and
PCI-e bandwidth. In this case, hardware resource reallocation
provided by device-level scheduling is not capable of han-
dling the problem, and it can only cause a slight difference
in the QoS violation. As shown in Figure 3 (c) and (d), the
number of QoS-guaranteed COMPs applications using the
device-level scheduling method (90% on average) is slightly
more than those using the OS-level scheduling method (80%
on average). An OS-level scheduling method can obtain
information and classify different GPU tasks and then apply
specific policies to both the kernel execution tasks and the
memcpy tasks. Compared with the scheduling for COMPs
applications using the device-level method, this capability
mitigates the gap in adaptability between COMPs applica-
tions and the OS-level scheduling method. However, since
OS-level scheduling cannot operate resource reallocation to
the tasks launched on the GPU, its effect onGPU resource uti-
lization improvement is inferior to the device-level schedul-
ing method. For instance, as described in Section VII-C, the
device-level scheduler tends to minimize the difference in
the dominant resource use in each scheduling period. When
a combination of cutcp and spmv is located in the GPU,
spmv’s kernels have a higher probability of being processed
due to its zero shared memory usage compared with cutcp’s,
even when spmv’s kernel arrives at the device later than

FIGURE 4. Average turnaround time of concurrent GPGPU app pairs with
one single scheduling method.

cutcp’s. According to the largest number of TBs that each
application can launch in the same SMP (spmv:16, cutcp:2),
we can explain the results in Figure 3(c)(d) and Figure 4(b).
When the accelerator is shared by spmv’s and cutcp’s kernels
using the OS-level scheduling method, spmv’s kernel is very
likely blocked by cutcp’s, which causes spmv’s QoS violation
when the QoS constraint becomes strict (0.7). Conversely,
adopting the device-level scheduling method helps spmv’s
average turnaround time experience an obvious acceleration
due to faster processing, which also only causes a negligible
effect on cutcp’s kernels without violating their QoS. Com-
pared with the benchmark pair using the OS-level scheduling
method, Figure 4 (b) shows a 11.16% speedup in turnaround
time on average using the device-level scheduling method.
In this work, we consider turnaround time as the metric
for measuring the scheduling method’s effect on system
utilization. For the same amount of workloads, we believe
that the shorter is the turnaround time, the more efficient
are the system resources utilized by the concurrent GPGPU
applications. Note that QoS for more fine-grained sharing of
GPU hardware resources has already been proposed in [15].
Furthermore, a more advanced solution [16] has been pro-
posed to solve the application’s slowdown, which is caused
by the contention on shared resources. However, these tech-
niques still possess the major limitation of the device-level
scheduling method, and we believe that the application of
these techniques will not cause a significant change in the
results of this evaluation.

As shown in Figure 3 and Figure 4, the single scheduling
method is insufficient to provide thorough QoS support to the
concurrent GPGPU applications while improving the system
utilization. We join the OS-level scheduling method with
the device-level scheduling method and expect this combina-
tion to help the two scheduling methods be complementary.

VOLUME 8, 2020 65715

X. Long et al.: Toward OS-Level and Device-Level Cooperative Scheduling for Multitasking GPUs

Unfortunately, as described in Section VII-C, this simple
combination may either enable no improvement or cause per-
formance degradation of the concurrent GPU applications’
performance, which is caused by the potential conflict of the
two scheduling method’s decisions. This finding enlightens
us that cooperation is necessary between OS-level schedul-
ing and device-level scheduling. As shown in Section VII-C,
the result proves that the cooperative scheduling method
is a promising direction for providing better QoS support
for multitasking GPUs. However, how to cooperate the two
scheduling methods rather than making an exclusive choice
between them remains a challenge, which is caused by the
complicated interference between the copy engine and the
execution engine and the asynchrony of scheduling occur-
rence. To fully use the merits of the two scheduling meth-
ods, we further propose C-QoS to jointly manipulate the
two scheduling methods to improve the performance of this
cooperative method, and we aim to provide a more thorough
QoS support for concurrent GPU applications.

V. C-QoS METHODOLOGY
Two major bottlenecks of the concurrent GPU applications’
performance exist in the heterogeneous system equipped with
GPUs. These bottlenecks hinder the efficiency of the prior
QoS support based on the OS-level or device-level scheduling
methods. The first kind of bottleneck is the concurrent appli-
cation’s performance degradation, which is caused by the
queuing delay and PCI-e bandwidth contention. Co-located
applications contend for the limited PCI-e bandwidth when
transferring data between the host and the accelerator. This
contention substantially affects the latency-sensitive appli-
cation’s QoS and is analyzed in [7]. Rapid increases in
GPU computational capability further shift the bottleneck
of GPU applications’ performance towards communication.
This issue is recently recognized and investigated in areas
such as distributed deep learning or parallel deep neural
networks [44]. We cast this bottleneck as the OS-level bot-
tleneck in this study. The second kind of bottleneck is the
application’s slowdown at co-location, which is caused by
the reduction in the computational resources’ assignment and
the contention on the shared GPU resources, such as GPU
L2 cache and GPU’s device memory bandwidth. As demon-
strated in [45], a kernel’s scalability, sensitivity to resource
contention, and pressure on shared resources strongly affect
its slowdown at a co-location. Similarly, we refer to this
bottleneck as the device-level bottleneck.

To resolve the two bottlenecks, we propose C-QoS
(Figure 5), which is a holistic approach to guarantee
the co-located GPU applications’ QoS while maximiz-
ing the device utilization. This scheme has four design
guidelines.

• C-QoS should be able to predict the end-to-end latency
of each arriving kernel. In this case, this scheme can
quantify the impact of each bottleneck on the particular
kernel’s turnaround time and determine what scheduling
strategy should be operated.

FIGURE 5. Overview of C-QoS.

• C-QoS should be able to manage the kernel’s launching
order following a specific strategy, instead of handling
them in a FIFO manner. In this case, the OS-level
scheduling method is operated and the QoS violation
caused by queuing delay and PCI-e contention may be
alleviated.

• C-QoS should be able to manage the GPU hard-
ware resource partition among the concurrent applica-
tions, and C-QoS should be able to operate preemption
scheduling at a specific granularity. In this case, the
device-level scheduling method is operated and the QoS
violation caused by the long-running kernels may be
alleviated.

• C-QoS should be able to monitor the runtime status of
the GPU’s copy engine and the GPU’s execution engine.
In this case, C-QoS can create a specific strategy to apply
in the next scheduling period.

VI. SCHEDULING PROBLEM ANALYSIS
In this section, we first model how the GPGPU applications
access the GPU computational resources and the PCI-e band-
width in GPU-accelerated computing, and we define the met-
rics to measure the QoS guarantees and the utilization. Then,
we state the problem of how to leverage the two scheduling
methods to handle the concurrent CUDA kernels.

A. PROBLEM STATEMENT
We assume that the host’s resources are sufficient and that the
accelerator resources and the PCI-e bandwidth are the major
bottlenecks in this study. We consider one host connected
with one discrete GPU accelerator using a PCI-e bus as
the target platform. We use the set S = {s1, s2, · · · , s|S|} to
denote the SMPs within one GPU. The GPGPU applications
may arrive at the platform dynamically and multiple CUDA
kernels of different applications may exist to simultaneously
access the accelerator resources. We use a to denote one
GPGPU application and the set A = {a1, a2, · · · , a|A|} to
denote a sequence of applications with a negligible inter-
arrival time. Furthermore, we employ ki to denote one CUDA
kernel of application i and the set Ki = {ki1, ki2, · · · , ki|Ki|}
to denote the application i’s all kernels. Similarly, we
utilize tbij to denote one TB of kernel j and the set

65716 VOLUME 8, 2020

X. Long et al.: Toward OS-Level and Device-Level Cooperative Scheduling for Multitasking GPUs

TBij = {tbij1, tbij2, · · · , tbij|TBij|} to denote kernel j’s all TBs.
Because the QoS requirement of each GPGPU application
is different, we use di to denote the desired deadline of
application i. As described in Table 1, the characteristics vary
among different kernels even in the same application. Thus,
for kernel j of application i, we use gdimij and bdimij to
denote its Griddim and Blkdim, respectively, and we use regij
and smemij to denote its requirements of registers and shared
memory, respectively. We employ inij and outij to denote the
size of data of this kernel migrated between the host and the
GPU device.

In any scheduling period, any kernels’ use of GPU hard-
ware resources and the PCI-e bandwidth should not exceed
the hardware constraints of the accelerator and the PCI-e
bus. The definition of scheduling period is described in
Section VI-B. We assume a total of P scheduling periods and
that data migration caused by the memcpy tasks is transferred
from/to pinned memory, which means that the GPU’s copy
engine will be accessible to one kernel exclusively in any
scheduling period. Furthermore, the total usage of both the
GPU computational resources and the PCI-e bandwidth in
all the scheduling periods should not exceed the particu-
lar kernel’s requirement. These assumption are formulated
in (1).

|A|∑
i=1

|Ki|∑
j=1

rijp ≤ R ∀p ∈ {1, · · · ,P},

bwijp ≤ BW ∀p ∈ {1, · · · ,P},
|A|∑
i=1

|Ki|∑
j=1

P∑
p=1

rijp ≤ rij,

|A|∑
i=1

|Ki|∑
j=1

P∑
p=1

dataijp ≤ dataij.

(1)

rijp denotes the allocation of one particular type of resource
of kernel j of application i in the p-th scheduling period. In
theory, r is able to be generalized to any type of GPU hard-
ware resources (e.g., local memory per thread). As described
in Section V, we aim to predict the end-to-end latency of
each arriving kernel before their execution to facilitate further
scheduling. Thus, we define r ∈ {gdim, bdim, reg, smem}
because these four kinds of resources are allocated during TB
dispatch of a kernel [7], and this information is the only data
that we can obtain before the kernel execution [34]. R denotes
the maximum of the corresponding type of hardware resource
in one GPU. Similarly, bwijp denotes the effective PCI-e
bandwidth of kernel j of application i in the p-th scheduling
period. BW denotes the theoretical peak bandwidth of the
PCI-e bus. rij denotes the actual requirement of one of the
previously mentioned resources of kernel j of application i.
Furthermore, dataijp denotes the size of the migrated data
of kernel j of application i in the p-th scheduling period in
one particular direction, and dataij denotes the total size of
the data of the corresponding migration. We define data ∈
{in, out}.
Note that modeling concurrent kernel execution is chal-

lenging because the execution details are complicated, and

the interaction of interference of different resources further
exacerbates the difficulty. To describe the time cost of each
kernel with OS-level scheduling and device-level scheduling
in multitasking GPUs, we extend the concurrent task execu-
tion model described in [51] and use this model to predict
the completion time of each arriving kernel. The end-to-end
latency of one CUDA kernel is composed of two parts: the
duration of its computational tasks and the duration of its
memcpy tasks from the host to the accelerator device or from
the accelerator device to the host. We use tij to denote the
entire time to concurrently finish kernel j of application i, and
tij can be calculated as (2). t_excij represents the completion
time of kernel j’s computational tasks, and t_cpyij represents
the completion time of kernel j’s memcpy tasks. t_olij repre-
sents the duration when the computational tasks and memcpy
tasks are running an overlapping pattern.

tij = t_excij + t_cpyij − t_olij. (2)

We first extend the model in [51] with the awareness
of a scheduling period. The completion time for kernel j’s
computational tasks on non-preemptive GPUs, which are
denoted by t_excij, can be calculated in (3). In the equation,
t_sij represents the duration of the kernel j submitted by the
application i to the task queue in the TB scheduler from the
GPU device driver (as shown in Figure 5). t_qij represents
the queueing delay of kernel j waiting to arrive at the head of
the task queue, and t_wij represents the duration of kernel
j waiting for free SMP at the head of the task queue. As
described in [51], t_sij and t_qij are collected directly via
profiling, and t_wij is calculated by keeping track of when
SMPs are available. t_rij represents the duration of kernel
j running on the accelerator device, which can be further
calculated as the sum of the running time of kernel j of each
scheduling period in (4). t_sk ij represents the running time
of kernel j collected from a single kernel execution profile.
Rtb and Rbw represent the maximum number of TB supported
on one SMP and the peak bandwidth supported on the PCI-e
bus. TBijp represents the number of the TBs of kernel j that
arrived at the head of the task queue in the p-th scheduling
period. occijp represents the occupancy of kernel j in the p-th
scheduling period, which is the ratio of active TBs to the
maximum number of TBs supported on one SMP. occijp is
limited by the four kinds of resources (gdim, bdim, reg, and
smem) allocated during TB dispatch of kernel j. The number
of ready TBs and the kernel’s occupancy may differ as time
elapses. Following the same parameters in all the scheduling
periods may cause an underestimation or overestimation of
the kernel’s running time.

t_excij = t_sij + t_qij + t_wij + t_rij. (3)

t_rij =
P∑
p=1

(t_sk ij ×
⌈

TBijp
Rtb × occijp × |S|

⌉
/

min{1,
Rbw

bwijp ×min{1,
⌈

TBijp
Rtb×occijp×|S|

⌉
} × |S|

}). (4)

VOLUME 8, 2020 65717

X. Long et al.: Toward OS-Level and Device-Level Cooperative Scheduling for Multitasking GPUs

When device-level scheduling methods become available,
the preemption mechanism is supported to handle problems
such as priority inversion and improve the system throughput.
We choose SM-draining [31] as the preemption technique,
and the preemption overhead is defined as the duration of one
TB of the preempted kernel. Thus, (5) and (6) calculate the
new completion time of the kernel that causes preemption and
the completion time that is being preempted respectively, as
denoted by t_excpij and t_excbpij. When preemption occurs,
the TBs of the preempted kernel will not be scheduled for
the SMPs. When the running TB is finished, the SMP will be
freed and occupied by the new kernel. In this case, the waiting
time of the preempting kernel will be 0. Assuming

∣∣K ′∣∣
preempted kernels in one preemption, and t_pi represents the
preemption overhead that corresponds to different preempted
kernels. The preempted kernel will be restored as soon as the
preempting kernel is finished, and then, the completion time
of the preempted kernel will be calculated as the sum of its
self-completion time and the preempting kernel’s completion
time.

t_excpij = t_sij + t_qij + t_rij
+min{t_p1, t_p2, · · · , t_p

∣∣K ′∣∣}. (5)

t_excbpij = t_sij + t_qij + t_wij + t_rij + t_excp. (6)

Conversely, the duration of each memcpy task from ker-
nel j can be calculated as (7). We assume that each kernel
consumes all the effective bandwidth when they transfer data
through the PCI-e bus. Thus, the bandwidth cannot be shared
among the concurrent memcpy tasks, and each of them has
the same priority. t_olij is determined by keeping track of both
SMP and the PCI-e bus. When these two types of resources
are available and ready tasks exist at the head of the task
queue, a computational task ormemcpy taskwill be launched;
these launches are independent.

t_cpyij = t_sij + t_qij + t_wij +
P∑
p=1

dataijp
bwijp

∀data ∈ {in, out}. (7)

Now, we discuss the QoS support in multitasking GPUs.
We define the setXi = {xi1, xi2, · · · , xi|Ki|} to denote the deci-
sion for the GPGPU application i to arrange GPU computa-
tional resources and PCI-e bandwidth to the CUDA kernel set
Ki in multitasking GPUs. We use Qp(Xi) to denote how well
the QoS goal of applications i is guaranteed when a schedul-
ing decision set Xi is applied, and Qp(Xi) can be calculated
as (8). As described in Section IV, the QoS goal is defined
as multiple times of the solo end-to-end latency of each
GPGPU application. We define the value n ∈ {0, 1} to denote
whether the application i’s QoS goal is guaranteed when the
scheduling decision Xi is applied. n and the predicted entire
time tij may vary according to different Xi. ti0 represents the
time when the first kernel of application i is submitted to the
GPU driver. Assume that two different scheduling decisions
with the same n value exist in one scheduling period. In

this case, we calculate the time headroom of applying Xi as∑|Ki|
j=1(1 −

tij(Xi)
di−ti0

) and use this value to differentiate the two
different decisions with the aim of maximizing this metric to
allow for more GPU time shared among different concurrent
kernels. The range of Qp(Xi) is [0,2).

Qp(Xi) = np(Xi)+
np(Xi)
|A| · |Ki|

×

|Ki|∑
j=1

(1−
tij(Xi)
di − ti0

). (8)

We discuss the utilization of accelerator hardware in multi-
tasking GPUs. As the amount of computational resources that
GPU incorporates increases, it becomes increasingly difficult
for CUDA kernels to fully utilize the vast GPU resources,
which always causes a resource underutilization problem.
Throughout this paper, we focus on the hardware resources
utilization within the SMP, whose improvement may cause
an increase in TLP and higher GPU throughput. We use
Up(Xi) to denote the hardware resource utilization of all the
applications in sequence A when Xi is applied. We use drsp
to denote the dominant resource share of the s-th SMP in the
p-th scheduling period, and DRsp represents the maximum of
the corresponding hardware resource. The dominant resource
is originally proposed for job scheduling in clusters [32]. The
intuition of this metric is that multiresource allocation should
be determined by the maximum share that a CUDA kernel
requires of any resource. In consecutive scheduling periods,
we calculate 1 − drsp−drs(p−1)

DR to minimize the difference
between the minimum and the maximum of the dominant
resource share in each SMP. We calculate this value with the
aim of dispatching more TBs to the GPU. We assume that
the four types of hardware resources within the SMP share
the same weight during the kernel dispatch. Furthermore, we
use 1

4|Ki|
and 1

|S| to ensure that the range ofUp(Xi) is the same
as Qp(Xi).

Up(Xi) =
1

4 |Ki|
×

∑
r∈{gdim,bdim,reg,smem}

|Ki|∑
j=1

rijp
R

+
1
|S|
×

|S|∑
s=1

(1−
drsp − drs(p−1)

DR
). (9)

We use C(Xi) to denote the cost of applying scheduling
decision Xi as

Cp(Xi)=
1

4 |Ki|
×

∑
r∈{gdim,bdim,reg,smem}

|Ki|∑
j=1

(
rijp
R
+
bwijp
BW

). (10)

The range of Cp(Xi) is (0, 2]. We use the function Oip(Xi)
to denote the utility of the application i’s performance when
choosing a strategy (Xi) in the p-th scheduling period as

Op(Xi) =
a× Qp(Xi)+ b× Up(Xi)

Cp(Xi)
. (11)

a and b are the weighted factors to adjust the scheduling
performance on both the QoS support and system utilization
among the concurrent GPGPU applications. As we consider

65718 VOLUME 8, 2020

X. Long et al.: Toward OS-Level and Device-Level Cooperative Scheduling for Multitasking GPUs

QoS support as the first aim in each scheduling, we set a as
10 and b as 1 throughout this paper.

B. C-QoS SCHEDULING STRATEGY
The C-QoS scheduler aims to obtain the optimal cooperative
strategy for the two scheduling methods to maximize the
number of QoS guaranteed applications, and it also aims
to improve the utilization of the overall system as much as
possible. Specifically, given the C-QoS scheduling strategy
Xi, the C-QoS scheduler can derive the optimal strategy by
solving the problem as

max
|A|∑
i=1

P∑
p=1

Op(Xi)

s.t. Eq.1. (12)

We develop a dispatch algorithm, termed C-QoS schedul-
ing strategy, which is a greedy heuristic of the multidi-
mensional multiple-choice knapsack problem (MMKP). The
details of the proposed strategy are shown in algorithms 1
and 2. The ‘ready task’ in the following description indicates
the task whose state is ‘ready’. C-QoS scheduling is triggered
when 1. a new application arrives; 2. a memcpy task for the
host to device direction completes; 3. a kernel execution task
completes; 4. a memcpy task in the device to host direction
completes; and 5. an application terminates. The gap between
two consecutive previously mentioned events is defined as
one scheduling period in this study.

According to the definition of MMKP, each SMP in one
GPU is considered one knapsack. The hardware limits of
5 types of resources (as described in (1)) are considered 5
different capacities of one knapsack. We take each set of
the partitions of the 5 types of resources as one category
of items. Each scheduling decision, which consists of one
partition set and one launching order of memcpy tasks, is
considered one item in the particular category. We consider
the numerator of (11) as the value of one item, and we
consider the denominator of (11) as its cost. As described in
algorithm 1 line 4 and line 20, we calculate Op as (11) for
the assumptions of dispatching each ready kernel to the GPU,
and we use these values to allocate computational resources
and PCI-e bandwidth. We assume that the performance and
the completion time of all the benchmarks can be profiled or
predicted in advance.

As assumed in Section VI-A, the PCI-e bus cannot be
shared or preempted among the concurrent CUDA kernels.
Thus, C-QoS scheduling towards the new arriving kernels,
which have not been submitted to the GPU, will not start
until the PCI-e bus is idle (line 1). By leveraging the OS-level
scheduling methods, we can reorder the arriving kernels
regardless of how they are submitted by the concurrent
GPGPU applications. Thus, we traverseKdp and pop one ker-
nel kj, termed the candidate kernel, from Kdp each time (lines
2-3), and assume that this selected kernel will be launched
and occupy the PCI-e bus in the p-th scheduling period (line
4). We join Kdp and Krp into Kp (line 5). We traverse Kp and

Algorithm 1 C-QoS Scheduling Algorithm Part a
Input:

The set of kernels located in the GPU driver’s
task queue in the p-th scheduling period: Kdp =

{kdp1, kdp2, · · · kdp|Kdp|}.
The set of kernels waiting or running on the GPU in the
p-th scheduling period: Krp = {krp1, krp2, · · · krp|Krp|}.
The candidate kernel: kj.

Output:
The scheduling decision: Xi.

1: if the PCI-e bus is idle then
2: for j = 1→

∣∣Kdp∣∣ do
3: Pop kj from Kdp
4: Assume that kj is launched
5: Kp = Kdp

⋃
Krp

6: for j′ = 1→
∣∣Kdp∣∣+ ∣∣Krp∣∣− 1 do

7: Calculate Op+1(Xi′) according to kj′
8: if kj is ready to be submitted to TB scheduler then
9: Calculate Opotp+2(Xi) according to kj
10: Op+1(Xi′) += O

pot
p+2(Xi)

11: end if
12: Push Op+1(Xi′) into dlist
13: end for
14: Push kj into Kdp
15: end for
16: end if
17: for j = 1→

∣∣Krp∣∣ do
18: Execute Algorithm2 and update dlist
19: end for
20: Obtain Xi according to dlist

calculateOp+1(Xi′) for each kernel in the set, andwe calculate
this value to determine how the decision of dispatching kj
will impact the QoS support and resource utilization of other
concurrent kernels (line 6-7).

Note that the interaction of performance interference
caused by the allocation of different resources is compli-
cated. Even if we apply the same device-level scheduling
decisions in two distinct experiments with the same set of
kernels, the final results may differ if we apply different
OS-level scheduling decisions in any of the scheduling peri-
ods. Compared with the simple cooperation that separates the
two scheduling methods, as described in Section VII-C, this
complicated interference should be considered if we aim to
leverage them jointly. Thus, we introduce Opotp (Xi), termed
the potential value, in our proposed algorithm. This value
is calculated as 11, which is similar to Op(Xi). The only
difference between Op(Xi) and O

pot
p (Xi) is that the potential

value is ‘a prediction after a prediction’. As described in lines
8-10, if the candidate kernel kj is ready to be dispatched to
the SMPs in the (p+ 2)-th scheduling period, then we will
calculate Opotp+2(Xi) for kj based on the previous assumption
of launching kj in the (p + 1)-th scheduling period. The aim
of calculating Opotp+2(Xi) is to determine how kj will impact
the concurrent kernels’ QoS support and resource utilization

VOLUME 8, 2020 65719

X. Long et al.: Toward OS-Level and Device-Level Cooperative Scheduling for Multitasking GPUs

Algorithm 2 C-QoS Scheduling Algorithm Part B
Input:

The set of kernels located in the GPU driver’s
task queue in the p-th scheduling period: Kdp =

{kdp1, kdp2, · · · kdp|Kdp|}.
The set of kernels waiting or running on the GPU in the
p-th scheduling period: Krp = {krp1, krp2, · · · krp|Krp|}.
The candidate kernel: kj.

Output:
The list of scheduling results: dlist .

1: Do profile run in 2|S| possibilities and obtain n
2: for i = 1→ n do
3: for j = 1→

∣∣Krp∣∣ do
4: Pop kj from Krp
5: Assume that kj is launched according to the possi-

bility i
6: Kp = Kdp

⋃
Krp

7: for j′ = 1→
∣∣Kdp∣∣+ ∣∣Krp∣∣− 1 do

8: Calculate Op+1(Xi′) according to kj′
9: if kj is ready to occupy the PCI-e bus then
10: Calculate Opotp+2(Xi) according to kj
11: Op+1(Xi′) += O

pot
p+2(Xi)

12: end if
13: Push Op+1(Xi′) into dlist
14: end for
15: Push kj into Krp
16: end for
17: end for
18: Return dlist

after occupying the PCI-e bus, which is assumed to be non-
preemptive in this study. Obviously, determining how many
new kernels are going to be submitted to the GPU driver in
the (p + 2)-th scheduling period in advance is not feasible.
Thus, we calculate Opotp+2(Xi) based on the assumption that
new kernels will not arrive in the (p+2)-th scheduling period.
We input the results on a list and start the next iteration
(line 12).

Lines 17-19 describe the C-QoS scheduling towards the
kernels running or waiting on the GPU in the p-th scheduling
period. Before describing algorithm 2, we define two states
for each SMP in the GPU: hold and changed . hold indicates
that the SMP will remain idle or be occupied by the same
kernels before scheduling, while changed indicates that the
SMP will be occupied by kj. Thus, 2|S| possibilities of kj’s
dispatching will exist in theory if kj is sufficiently large to
consume all the SMPs. We filter the impractical possibilities
by calculating the number of SMPs required by kj and com-
paring it with the number of the accessible SMPs. Further-
more, we eliminate the possibilities that may cause redundant
scheduling. In most cases, the time complexity of handling
all scheduling options remains too high after our filtering.
With advances in technology scaling, the growing number of
SMPs and emergence of new hardware resources within the
SMPs [30] may further deteriorate this problem. Thus, we

TABLE 2. Simulation parameters.

classify the possibilities into |S| groups at the beginning of
the scheduling and calculate an average Op(Xi) based on a
short profile, to 100 possibilities per group.

In algorithm 2, we select the first n groups based on the
sorted profile results in descending order and perform the
following scheduling on them (lines 1-2). We traverse Krp,
pop the candidate kernel kj from Krp (lines 3-4), and assume
that kj will be dispatched to the SMPs according to the i-th
possibility (line 5). We join Kdp and Krp into Kp (line 6). We
traverse Kp and calculate Op+1(Xi′) for each kernel in the set,
as described in algorithm 1 (line 7-8). Similar to algorithm 1,
if the candidate kernel kj is ready to occupy the PCI-e bus
in the (p + 2)-th scheduling period, then we will calculate
Opotp+2(Xi) for kj based on the previous assumption of launch-
ing kj in the (p + 1)-th scheduling period (lines 9-12). We
enter the results on a list and return this list to the scheduling
described in algorithm 1 (lines 13-18). In C-QoS scheduling,
SMPs are shared among the concurrent GPGPU applications,
and our proposed algorithm is compatible with the techniques
of more fine-grained resource sharing for multitasking GPUs
[15], [16].

As described in line 20 in algorithm 1, we obtain dlist and
sort this list in descending order. We select one scheduling
decision according to the definition of ε-greedy algorithm.
We set ε = 0.1, which indicates a 90% chance of selecting
the decision with the largest Op and a 10% chance of making
a random selection among all possible scheduling decisions.
This finding alleviates the problem that the greedy algorithm
falls into a local optimum too early to some extent.

VII. EVALUATION
A. EXPERIMENTAL SETUP
To evaluate our design, we use gem5-GPU [23], which is a
heterogeneous CPU-GPU simulator that consists of the latest
version of GPGPU-Sim [46] and gem5 [50], and modify
the GPGPU-Sim part to support spatial partitioning, pre-
emptive multiprogramming, and the same assumptions and
implementation described in previous work [14], [33], [34].
Applications for evaluation are selected from the chosen
benchmark sets described in Table 1. We ran 100 M cycles
for each collocation of these benchmark workloads. The QoS
goal, which is defined as the end-to-end latency in this study,
substantially varies among applications, andwe need to select

65720 VOLUME 8, 2020

X. Long et al.: Toward OS-Level and Device-Level Cooperative Scheduling for Multitasking GPUs

the least common multiple of them, which is 100 M cycles.
The results are accurate when the simulation is longer than
1 M cycles [31]. If one application of the collocation ends
before 100 M cycles, then it will be executed multiple times
to ensure that a long blank does not exist in the application’s
lifetime. The simulation parameters are listed in Table 2,
and these parameters are similar to the previous work [15].
The theoretical peak bandwidth of the PCI-e bus is set to 16
GB/s, which is the same as the configuration of the 16x PCI-e
3.0 bus. We do not evaluate all combinations to conserve
time. All the experiments of this study were completed in
approximately one week, which means that approximately 18
weeks are needed to traverse all the combinations with the
same arrival time configuration.We believe the selected com-
binations can cover all the cases needed for the evaluation.
All the experiments performed in Section VII are designed
for the co-location of 2 GPGPU applications. We believe that
C-QoS is scalable for more than 2 applications and the co-
location of different types of applications (graphics, AI, etc.),
which remain topics of our future work.

We reproduce the models described in [51] and extend
them to explore preemptive multiprogramming. We employ
these extendedmodels to predict the applications’ completion
time at runtime. In addition, we reproduce the algorithms
adopted in two prior QoS support schemes to multitask the
GPU on both the OS level (Baymax [7]) and the device
level (Spart-QoS [14]). We consider that these two works are
the most representative studies of the corresponding type of
scheduling method. Some works augment the QoS predic-
tion in Baymax with a more advanced technique [45], and
they tune the kernel performance in Spart-QoS with a more
fine-grained SMP partition [15]. We believe that these tech-
niques enable performance improvement in any of the single
scheduling methods. However, these improvements are not
enough for solving the problem of insufficiency due to their
noncooperation. Thus, we believe that comparing C-QoS
with Baymax and Spart-QoS is reasonable, and it is a more
efficient way to show the difference between cooperative
scheduling methods and uncooperative scheduling methods.
This comparison will not produce a critical error without
considering the previously mentioned augmented methods.

B. END-TO-END LATENCY PREDICTION
We perform validation of the application’s end-to-end latency
prediction with a focus on the kernel execution tasks time
and memcpy tasks time. For the selected applications, we
determine that the results of the prediction match the appli-
cation’s corresponding performance, which is measured in
gem5-GPU.

Figure 6 presents percentage composition comparisons
for Rodinia and Parboil benchmarks, which are run
in gem5-GPU and the predictor in this study. In all
the 10 GPGPU applications, both the duration of the kernel
execution in GPU and the data transfer on the PCIe bus is
highly correlated to gem5-GPU. The simulation error is 11%
in the worst case, and the average case is 3.27%.

FIGURE 6. Prediction accuracy of C-QoS compared to gem5-GPU
on 10 GPGPU applications. The average simulation error is 3.27%.

FIGURE 7. QoS-violation with a simple combination of the two
scheduling methods with QoS_0.5.

C. QoS VIOLATION WITH SIMPLE COMBINATION
AND SIMPLE COOPERATION OF OS-LEVEL SCHED
AND DEVICE-LEVEL SCHED
As shown in Figure 7, the QoS guarantee of the simple
combination of the two scheduling methods (0.9) is degraded
compared with the OS-level scheduling method (1.0). The
decision made by two scheduling methods may conflict with
each other, which may cause the avoidable QoS violation
to occur. According to their description, the OS-level sched-
uler determines whether a ready kernel is to be launched or
delayed depending on its QoS headroom. This concept was
defined in prior work. The OS scheduler will decide to launch
a kernel if it ensures that this kernel’s predicted duration is
within its deadline, and this kernel will not cause any QoS
violation of the other running kernels. Conversely, the device-
level scheduler tends to maximize the resource utilization of
the GPU by adopting a dominant-resource-fairness (DRF)
metric [34]. When they are combined, the following occur-
rences are possible: the OS-level scheduler feeds the accel-
erator with kernels from different applications based on its
scheduling criteria and believes that they will share the PCI-e
bandwidth and the accelerator’s SMPs and satisfy their QoS
requirements. Moreover, the device-level scheduler keeps re-
allocating the hardware resources to minimize the difference
in the amount of the dominant resource in each scheduling
period, which may starve the application whose kernels have
higher dominant resource occupancy most of the time. This
situationmay eventually cause theQoS violation of this appli-
cation. We believe that this combination of the two methods
may cause the performance degradation of the concurrent
GPU applications’ performance. This kind of degradation

VOLUME 8, 2020 65721

X. Long et al.: Toward OS-Level and Device-Level Cooperative Scheduling for Multitasking GPUs

FIGURE 8. QoS-violation with the simple cooperative scheduling method.

FIGURE 9. Average QoS violation over 100 sequences with QoS_0.7, QoS_0.8, QoS_0.9.

may continue to deteriorate, which may eventually offset the
gain from the collocation of the two scheduling methods
when the QoS constraint becomes strict.

According to the description in Section II, we suggest that
one GPU kernel is composed of three types of tasks: the
memcpy tasks in the host to device direction: h2dmemcpy,
thememcpy tasks in the device to host direction: d2hmemcpy,
and the kernel execution tasks of each TB: ee. As described in
a prior work [51], we know that tasks in the same application
are submitted and executed in an FIFO order. Moreover, tasks
in different applications can run concurrently on the acceler-
ator if a sufficient amount of computational resources exist
because no dependency exists among these tasks. According
to these descriptions, we suggest that kernels possess four
states in their life span: not ready, ready, being processed,
and finished. For example, for a newly arriving GPGPU
application, the first h2dmemcpy task’s state in its stream is
set to ‘ready’ and the following tasks’s states are set to ‘not
ready’. If this task is selected and processed by the copy
engine, this task’s state will be changed to ’being-processed’
and the following tasks’ will remain as ‘not ready’. If this
task is finished at the copy engine, then its state will be
set to ‘finished’, the next task in the stream of the same
application will be changed to ‘ready’, and the following
tasks’ will remain as ‘not ready’. This process also applies
to ee tasks and d2hmemcpy tasks. According to the previ-
ously mentioned definition, we propose a simple cooperative
method: in each scheduling period, we collect the number of
ready tasks whose states are ‘ready’ or ‘being processed’ and
the number of resources that they occupied in each engine
according to their specific category. We calculate a weighted
sum: trans_cnt and comp_cnt . If trans_cnt ≥ comp_cnt , then
we determine that operating OS-level scheduling is more ben-
eficial than device-level scheduling in the present scheduling
period. Otherwise, we select device-level scheduling for the

operation. Compared with the use of single scheduling meth-
ods (0.9), Figure 8 shows that use of a simple cooperative
scheduling method (COOP sched or COOP in the follow-
ing section) achieves the largest number of QoS-guaranteed
applications. The advantage of applying the device-level
scheduling method in system utilization improvement is also
sustained (4.72% speedup on average in the concurrent pair’s
turnaround time).

D. QoS VIOLATION COMPARISON WITH DIFFERENT
SCHEDULING METHODS IN DIFFERENT
CO-LOCATION SCENARIOS
According to the description in Section IV, we combine the
selected benchmarks to evaluate 5 pairs according to their
types; each pair consists of two different types of work-
loads (HYB). To share the GPU by the two GPGPU pairs,
5 × 20 = 100 sequences are generated. In each sequence,
every GPGPU application possesses a different arrival time
and both of them have QoS targets. We ran 100 M GPU
cycles as described in section VII-A. We use the ratio of the
number of QoS guaranteed applications to the total as our
metric to compare the scheduling performance of each QoS
support scheme: OS-level scheduling method, device-level
scheduling method, simple cooperative scheduling method,
and C-QoS scheduling method. As explained in Section IV,
the QoS level of each GPGPU application is set as a percent-
age of the end-to-end latency in its isolated run, which ranges
from 70% to 90%, with a 10% step size.

Figure 9 shows the QoS violation of co-running two
GPGPU applications using different scheduling methods. To
average the result of all QoS levels, co-running two applica-
tions with OS-level scheduling method has the lowest ratio
of QoS guarantee (50%) due to the nonpreemptive design,
while C-QoS scheduling method achieves the best result
(76.67%). Cooperative scheduling methods (COOP sched

65722 VOLUME 8, 2020

X. Long et al.: Toward OS-Level and Device-Level Cooperative Scheduling for Multitasking GPUs

FIGURE 10. Average turnaround time over 100 sequences with QoS_0.7, QoS_0.8, QoS_0.9.

and C-QoS sched) are better than uncooperative methods (OS
sched and Device sched) in almost all cases, with an aver-
age of 16.66% improvement in QoS guarantee. Cooperative
methods overcome the major limitation of the uncooperative
methods, which are explained in Section IV. Between the two
cooperative methods, C-QoS sched achieves better results
than COOP sched due to a more sophisticated manipulation
of the OS sched and the Device sched, with an average
of 13.34% improvement. C-QoS sched helps the concurrent
GPGPU pairs reach their QoS goals more often than the
uncooperative methods by 23.33%. However, when the QoS
constraint becomes extremely strict (QoS_0.9), almost all the
scheduling methods can only make one of the applications in
concurrent pairs reach its QoS goal. In this case, the goal of
guaranteeing the concurrent applications’ goals exceeds the
computational capability of the system in the evaluation.

E. SYSTEM UTILIZATION, ANTT, AND STP
As explained in Section IV, wemeasure the system utilization
by the concurrent GPGPU applications’ average turnaround
time. We use two other metrics [49]—average normalized
turnaround time (ANTT) and system throughput (STP)—to
obtain a more comprehensive understanding of the perfor-
mance of different scheduling methods. ANTT represents the
user-perceived response time of the concurrent GPU applica-

tions; this metric is calculated as ANTT = 1
N ×

∑N
i=1

CPIMKi
CPISKi

.

N denotes the number of concurrent applications, CPIMKi
denotes the number of cycles per instructionwhen application
i is executed concurrently with different applications’ kernels,
and CPISKi denotes the number of cycles per instruction
when application i is executed in isolation. STP represents
the system throughput; this metric is calculated as STP =∑N

i=1
CPISKi
CPIMKi

. Note that ANTT is a lower-is-better metric,
while STP is a higher-is-better metric.

As shown in Figure 10, cooperative scheduling methods
(Coop sched and C-QoS sched) achieve a lower average
turnaround time than uncooperative methods (OS sched and
Device sched) in all cases by 17.27% on average, which
indicates better system utilization and that a reduction in GPU
time can be utilized to execute more throughput-oriented
kernels. However, as shown in Figure 11, cooperative meth-
ods are not always better than uncooperative methods in the
evaluation of ANTT and STP. Two reasons can explain these
results. The first reason is the difference between the range of

FIGURE 11. ANTT and STP over 100 sequences with QoS_0.7, QoS_0.8,
QoS_0.9.

the completion time of the concurrent GPGPU applications.
For instance, the completion time of HS in Figure 11, includ-
ing the duration of kernel execution and data transfer, is 10
times longer than its concurrent benchmarkMRIQ.When HS
is co-located with MRIQ in the GPU, the C-QoS scheduler
may decide to handle the large kernels from HS and postpone
MRIQ’s dispatching in some of the scheduling periods. These
decisions, which are derived from the aim of guaranteeing
the QoS goals of both of the applications, may cause a more
significant difference between MRIQ’s concurrent perfor-
mance and its isolated performance than that of HS. In the

calculation of STP, the value of MRIQ’s
CPISKi
CPIMKi

may decrease

and cause a lower final STP. This finding also applies to the
evaluation of ANTT. Moreover, QoS support is considered
the first aim to accomplish compared with improved system
utilization. In some cases, we expect the scheduler to make
wise choices to guarantee the concurrent applications’ QoS
goals, even if these choices may cause minor degradation of
the applications’ performance. This expectation is linked to
the first reason: when the scheduler decides to sacrifice the

VOLUME 8, 2020 65723

X. Long et al.: Toward OS-Level and Device-Level Cooperative Scheduling for Multitasking GPUs

performance of one of the concurrent applications, whose
completion time is shorter, the value of ANTT and STP
may fluctuate and show poor results due to this schedul-
ing decision. However, QoS supports of concurrent GPGPU
applications are guaranteed in the end.

F. SCHEDULING OVERHEAD OF C-QoS
The main overhead of C-QoS is derived from the decision-
making with the GPU hardware resource partition of the
selected task. As described in Algorithm 2, O is positively
related to the scheduling overhead of C-QoS, which is a
tradeoff for the algorithm’s time complexity and scheduling
performance. The larger O indicates the higher probability
of obtaining the optimal solution among all the scheduling
options but a longer scheduling delay. Otherwise, the smaller
O significantly accelerates the scheduling but may produce
scheduling results that are even inferior to the single schedul-
ing method. The calculation of the resource partition can be
overlapped, which means that the scheduling overhead can
be compressed. In the evaluation throughout this paper, we
set O to a value less than 5. The average scheduling overhead
of C-QoS is less than 8 milliseconds.

VIII. CONCLUSION
State-of-the-art QoS support for exclusively multitasking
GPUs reside in the OS side or GPU side, and each of them
cannot separately mitigate the QoS violations in all cases.
In this paper, we prove that the single scheduling method or
the simple combination of two scheduling methods is insuf-
ficient. We propose C-QoS, a cooperative scheduling scheme
that consists of the OS-level scheduling method and the
device-level scheduling method. C-QoS enforces the concur-
rent GPU applications’ QoS goals while improving the over-
all system utilization. Moreover, we propose an algorithm to
exploit C-QoS to improve the scheduling performance of QoS
support. The evaluation results show that our design enables
significant improvement in QoS support and overall system
utilization versus uncooperative scheduling methods.

REFERENCES
[1] Amazon. Amzaon High Performance Computing Cloud Using GPU.

Accessed: Jan. 1, 2020. [Online]. Available: http://aws.amazon.com/hpc/
[2] Oak Ridge National Laboratory. Oak Ridge National Laboratory’s 200

Petaflop Supercomputer. Accessed: Jan. 1, 2020. [Online]. Available:
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/

[3] P. Carvalho, R. Cruz, L. M. A. Drummond, C. Bentes, E. Clua, E. Cataldo,
and L. A. J. Marzulo, ‘‘Kernel concurrency opportunities based on
GPU benchmarks characterization,’’ Cluster Comput., vol. 23, no. 1,
pp. 177–188, Mar. 2020.

[4] S. Kato, K. Lakshmanan, R. Ishikawa, and Y. Ishikawa, ‘‘TimeGraph: GPU
scheduling for real-time multi-tasking environments,’’ in Proc. USENIX
Annu. Tech. Conf. (ATC), 2011, pp. 17–30.

[5] K. Menychtas, K. Shen, and M. L. Scott, ‘‘Disengaged scheduling for
fair, protected access to fast computational accelerators,’’ ACM SIGPLAN
Notices, vol. 49, no. 4, pp. 301–316, 2014.

[6] C. J. Rossbach, J. Currey, M. Silberstein, B. Ray, and E. Witchel, ‘‘PTask:
Operating system abstractions to manage GPUs as compute devices,’’ in
Proc. 23rd ACM Symp. Operating Syst. Princ. (SOSP), 2011, pp. 233–248.

[7] Q. Chen, H. Yang, J. Mars, and L. Tang, ‘‘Baymax: QoS awareness
and increased utilization for non-preemptive accelerators in warehouse
scale computers,’’ ACM SIGARCH Comput. Archit. News, vol. 44, no. 2,
pp. 681–696, Mar. 2016.

[8] W. Zhang, W. Cui, K. Fu, Q. Chen, D. E. Mawhirter, B. Wu, C. Li, and
M. Guo, ‘‘Laius: Towards latency awareness and improved utilization of
spatial multitasking accelerators in datacenters,’’ in Proc. ACM Int. Conf.
Supercomput., 2019, pp. 58–68.

[9] H. Zhu, D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and M. Erez,
‘‘Kelp: QoS for accelerated machine learning systems,’’ in Proc. IEEE Int.
Symp. High Perform. Comput. Archit. (HPCA), Feb. 2019, pp. 172–184.

[10] H. Khaleghzadeh, R. R. Manumachu, and A. Lastovetsky, ‘‘A hierarchical
data-partitioning algorithm for performance optimization of data-parallel
applications on heterogeneous multi-accelerator NUMA nodes,’’ IEEE
Access, vol. 8, pp. 7861–7876, 2020.

[11] G. Florimbi, H. Fabelo, E. Torti, S. Ortega, M. Marrero-Martin,
G. M. Callico, G. Danese, and F. Leporati, ‘‘Towards real-time computing
of intraoperative hyperspectral imaging for brain cancer detection using
multi-GPU platforms,’’ IEEE Access, vol. 8, pp. 8485–8501, 2020.

[12] X. Geng, H. Zhang, Z. Zhao, and H. Ma, ‘‘Interference-aware paral-
lelization for deep learning workload in GPU cluster,’’ Cluster Comput.,
Jan. 2020, doi: 10.1007/s10586-019-03037-6.

[13] R. A. Q. Cruz, C. Bentes, B. Breder, E. Vasconcellos, E. Clua,
P. M. C. Carvalho, and L. M. A. Drummond, ‘‘Maximizing the GPU
resource usage by reordering concurrent kernels submission,’’ Concur-
rency Comput., Pract. Exper., vol. 31, no. 18, Sep. 2019, Art. no. e4409.

[14] P. Aguilera, K. Morrow, and N. S. Kim, ‘‘QoS-aware dynamic resource
allocation for spatial-multitasking GPUs,’’ in Proc. 19th Asia South Pacific
Design Autom. Conf. (ASP-DAC), Jan. 2014, pp. 726–731.

[15] Z.Wang, J. Yang, R.Melhem, B. Childers, Y. Zhang, andM.Guo, ‘‘Quality
of service support for fine-grained sharing on GPUs,’’ ACM SIGARCH
Comput. Archit. News, vol. 45, no. 2, pp. 269–281, Jun. 2017.

[16] H. Dai, Z. Lin, C. Li, C. Zhao, F. Wang, N. Zheng, and H. Zhou, ‘‘Accel-
erate GPU concurrent kernel execution by mitigating memory pipeline
stalls,’’ in Proc. IEEE Int. Symp. High Perform. Comput. Archit. (HPCA),
Feb. 2018, pp. 208–220.

[17] J. Fang, Z. Chang, and D. Li, ‘‘Exploration on routing configuration
of HNoC with intelligent on-chip resource management,’’ IEEE Access,
vol. 8, pp. 12117–12129, 2020.

[18] S. Najam, J. Ahmed, S. Masood, and C. M. Ahmed, ‘‘Run-time resource
management controller for power efficiency of GP-GPU architecture,’’
IEEE Access, vol. 7, pp. 25493–25505, 2019.

[19] Z. Lin, H. Dai, M. Mantor, and H. Zhou, ‘‘Coordinated CTA combination
and bandwidth partitioning for GPU concurrent kernel execution,’’ ACM
Trans. Archit. Code Optim., vol. 16, no. 3, pp. 1–27, Jun. 2019.

[20] Z. Xu, X. Zhao, Z. Wang, and C. Yang, ‘‘Application-aware NoC
management in GPUs multitasking,’’ J. Supercomput., vol. 75, no. 8,
pp. 4710–4730, Aug. 2019.

[21] Z.-G. Tasoulas and I. Anagnostopoulos, ‘‘Performance and aging aware
resource allocation for concurrent GPU applications under process varia-
tion,’’ IEEE Trans. Nanotechnol., vol. 18, pp. 717–727, 2019.

[22] J. J. K. Park, Y. Park, and S. Mahlke, ‘‘Dynamic resource management
for efficient utilization of multitasking GPUs,’’ ACM SIGARCH Comput.
Archit. News, vol. 45, no. 1, pp. 527–540, 2017.

[23] J. Power, J. Hestness, M. S. Orr, M. D. Hill, and D. A. Wood, ‘‘Gem5-
GPU: A heterogeneous CPU-GPU simulator,’’ IEEE Comput. Archit. Lett.,
vol. 14, no. 1, pp. 34–36, Jan. 2015.

[24] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, ‘‘Rodinia: A benchmark suite for heterogeneous computing,’’
in Proc. IEEE Int. Symp. Workload Characterization (IISWC), Oct. 2009,
pp. 44–54.

[25] J. A. Stratton, C. Rodrigues, I. J. Sung, N. Obeid, L. W. Chang, N. Anssai,
D. Geng, W. M. Liu, andW.W. Hwu, ‘‘Parboil: A revised benchmark suite
for scientific and commercial throughput computing,’’ IMPACTTech. Rep.
IMPACT-12-01, 2012, vol. 127, pp. 1–11.

[26] P. De Luca, A. Galletti, and L. Marcellino, ‘‘A Gaussian recursive-
filter parallel implementation with overlapping,’’ in Proc. IEEE 15th Int.
Conf. Signal Image Technol. Internet Based Syst. (SITIS), Nov. 2019,
pp. 641–648.

[27] T. Amert, N. Otterness, M. Yang, J. H. Anderson, and F. D. Smith, ‘‘GPU
scheduling on the NVIDIA TX2: Hidden details revealed,’’ in Proc. IEEE
Real-Time Syst. Symp. (RTSS), Dec. 2017, pp. 104–115.

[28] (2016).NVIDIA Pascal GPU Architecture. [Online]. Available: https://
images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-
whitepaper.pdf

[29] (2017). NVIDIA Volta GPU Architecture. [Online]. Available: https://
images.nvidia.com/content/volta-architecture/pdf/volta-architecture-
whitepaper.pdf

65724 VOLUME 8, 2020

http://dx.doi.org/10.1007/s10586-019-03037-6

X. Long et al.: Toward OS-Level and Device-Level Cooperative Scheduling for Multitasking GPUs

[30] (2018). NVIDIA Turing GPU Architecture. [Online]. Available: https://
www.nvidia.com/content/dam/en-zz/Solutions/design-
visualization/technologies/turing-architecture/NVIDIA-Turing-
Architecture-Whitepaper.pdf

[31] J. T. Adriaens, K. Compton, N. S. Kim, and M. J. Schulte, ‘‘The case for
GPGPU spatial multitasking,’’ in Proc. IEEE Int. Symp. High-Perform.
Comp Archit., Feb. 2012, pp. 1–12.

[32] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica, ‘‘Dominant resource fairness: Fair allocation of multiple resource
types,’’ in Proc. USENIX Symp. Networked Syst. Design Implement.
(NSDI), vol. 11, Mar. 2011, p. 24.

[33] I. Tanasic, I. Gelado, J. Cabezas, A. Ramirez, N. Navarro, and M. Valero,
‘‘Enabling preemptive multiprogramming on GPUs,’’ in Proc. ACM/IEEE
41st Int. Symp. Comput. Archit. (ISCA), Jun. 2014, pp. 193–204.

[34] Z. Wang, J. Yang, R. Melhem, B. Childers, Y. Zhang, and M. Guo,
‘‘Simultaneous multikernel GPU: Multi-tasking throughput processors via
fine-grained sharing,’’ in Proc. IEEE Int. Symp. High Perform. Comput.
Archit. (HPCA), Mar. 2016, pp. 358–369.

[35] J. J. K. Park, Y. Park, and S. Mahlke, ‘‘Chimera: Collaborative preemption
for multitasking on a shared GPU,’’ ACM SIGPLAN Notices, vol. 50, no. 4,
pp. 593–606, Mar. 2015.

[36] G. Chen, Y. Zhao, X. Shen, and H. Zhou, ‘‘EffiSha: A software framework
for enabling effficient preemptive scheduling of GPU,’’ ACM SIGPLAN
Notices, vol. 52, no. 8, pp. 3–16, Jan. 2017.

[37] X. Liu, B. Wu, X. Zhou, and C. Jiang, ‘‘FLEP: Enabling flexible and effi-
cient preemption on GPUs,’’ ACM SIGOPS Operating Syst. Rev., vol. 51,
no. 2, pp. 483–496, 2017.

[38] G. A. Elliott, B. C.Ward, and J. H. Anderson, ‘‘GPUSync: A framework for
real-time GPU management,’’ in Proc. IEEE 34th Real-Time Syst. Symp.,
Dec. 2013, pp. 33–44.

[39] H. Lee andM. A. A. Faruque, ‘‘GPU-EvR: Run-time event based real-time
scheduling framework on GPGPU platform,’’ in Proc. Design, Autom. Test
Eur. Conf. Exhibit (DATE), Mar. 2014, p. 220.

[40] Y. Ukidave, X. Li, and D. Kaeli, ‘‘Mystic: Predictive scheduling for GPU
based cloud servers using machine learning,’’ in Proc. IEEE Int. Parallel
Distrib. Process. Symp. (IPDPS), May 2016, pp. 353–362.

[41] Y. Song, O. Alavoine, and B. Lin, ‘‘A self-aware resource management
framework for heterogeneous multicore SoCs with diverse QoS targets,’’
ACM Trans. Archit. Code Optim., vol. 16, no. 2, pp. 1–23, Apr. 2019.

[42] M. Knap and P. Czarnul, ‘‘Performance evaluation of unified memory with
prefetching and oversubscription for selected parallel CUDA applications
on NVIDIA Pascal and volta GPUs,’’ J. Supercomput., vol. 75, no. 11,
pp. 7625–7645, Nov. 2019.

[43] Q. Xu, H. Jeon, K. Kim, W. W. Ro, and M. Annavaram, ‘‘Warped-slicer:
Efficient intra-SM slicing through dynamic resource partitioning for GPU
multiprogramming,’’ in Proc. ACM/IEEE 43rd Annu. Int. Symp. Comput.
Archit. (ISCA), Jun. 2016, pp. 230–242.

[44] A. Harlap, D. Narayanan, A. Phanishayee, V. Seshadri, N. Devanur,
G. Ganger, and P. Gibbons, ‘‘PipeDream: Fast and efficient pipeline
parallel DNN training,’’ 2018, arXiv:1806.03377. [Online]. Available:
http://arxiv.org/abs/1806.03377

[45] W. Zhao, Q. Chen, H. Lin, J. Zhang, J. Leng, C. Li, W. Zheng, L. Li, and
M.Guo, ‘‘Themis: Predicting and reining in application-level slowdown on
spatial multitasking GPUs,’’ in Proc. IEEE Int. Parallel Distrib. Process.
Symp. (IPDPS), May 2019, pp. 653–663.

[46] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt,
‘‘Analyzing CUDA workloads using a detailed GPU simulator,’’ in Proc.
IEEE Int. Symp. Perform. Anal. Syst. Softw., Apr. 2009, pp. 163–174.

[47] S. Pai, M. J. Thazhuthaveetil, and R. Govindarajan, ‘‘Improving GPGPU
concurrency with elastic kernels,’’ ACM SIGPLAN Notices, vol. 48, no. 4,
p. 407, Apr. 2013.

[48] (2007). NVIDIA Compute Unified Device Architecture Programming
Guide. [Online]. Available: http://developer.download.nvidia.com/
compute/cuda/1.0/NVIDIA_CUDA_Programming_Guide_1.0.pdf

[49] S. Eyerman and L. Eeckhout, ‘‘System-level performance metrics for
multiprogram workloads,’’ IEEE Micro, vol. 28, no. 3, pp. 42–53,
May/Jun. 2008.

[50] N. Binkert, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish,
M. D. Hill, D. A.Wood, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, and T. Krishna, ‘‘The gem5 simulator,’’
ACM SIGARCH Comput. Archit. News, vol. 39, no. 2, p. 1, Aug. 2011.

[51] Q. Chen, H. Yang, M. Guo, R. S. Kannan, J. Mars, and L. Tang, ‘‘Prophet:
Precise QoS prediction on non-preemptive accelerators to improve utiliza-
tion in warehouse-scale computers,’’ ACM SIGOPS Operating Syst. Rev.,
vol. 51, no. 2, pp. 17–32, 2017.

XINJIAN LONG received the B.E. degree from the
Beijing University of Posts and Telecommunica-
tions, in 2015, where he is currently pursuing the
Ph.D. degreewith the State Key Laboratory of Net-
working and Switching Technology. His research
interests include GPU computing, autonomic net-
working in 5G, and artificial intelligence in edge
computing.

XIANGYANG GONG received the B.E. and M.E.
degrees from Xi’an Jiaotong University, China, in
1992 and 1995, respectively, and the Ph.D. degree
from the Beijing University of Posts and Telecom-
munications, in 2012. He is currently a Professor
with the Beijing University of Posts and Telecom-
munications. His research interests include IP
QoS, video communications, novel network archi-
tecture, artificial intelligence, and mobile Internet.

YAGUANG LIU received the B.E. degree in elec-
tronic information engineering from the Ren’ai
College, Tianjin University, in 2018. He is cur-
rently pursuing the M.E. degree with the Beijing
University of Posts and Telecommunications. He
is also a Research Assistant with the Institute of
Network Technology, Beijing University of Posts
and Telecommunications. His research interests
include networking and collaborative computing
in 5G, and application of reinforcement learning
in intelligent equipments.

XIRONG QUE received the B.E. andM.E. degrees
from the Beijing University of Posts and Telecom-
munications, China, in 1993 and 1998, respec-
tively. She is currently an Associate Professor
with the Beijing University of Posts and Telecom-
munications. Her main research interests include
innovation applications, next-generation network
architecture, artificial intelligence, and mobile
Internet.

WENDONG WANG (Member, IEEE) received
the B.E. and M.E. degrees from the Beijing Uni-
versity of Posts and Telecommunications, China,
in 1985 and 1991, respectively. He is currently
a Full Professor with the Beijing University of
Posts and Telecommunications. He has published
over 100 articles in various journals and con-
ference proceedings. His current research inter-
ests include next generation network architecture,
innovation applications, artificial intelligence, and

mobile internet. He is a member of the ACM.

VOLUME 8, 2020 65725

	INTRODUCTION
	BACKGROUND
	RELATED WORKS
	MOTIVATION
	C-QoS METHODOLOGY
	SCHEDULING PROBLEM ANALYSIS
	PROBLEM STATEMENT
	C-QoS SCHEDULING STRATEGY

	EVALUATION
	EXPERIMENTAL SETUP
	END-TO-END LATENCY PREDICTION
	QoS VIOLATION WITH SIMPLE COMBINATION AND SIMPLE COOPERATION OF OS-LEVEL SCHED AND DEVICE-LEVEL SCHED
	QoS VIOLATION COMPARISON WITH DIFFERENT SCHEDULING METHODS IN DIFFERENT CO-LOCATION SCENARIOS
	SYSTEM UTILIZATION, ANTT, AND STP
	SCHEDULING OVERHEAD OF C-QoS

	CONCLUSION
	REFERENCES
	Biographies
	XINJIAN LONG
	XIANGYANG GONG
	YAGUANG LIU
	XIRONG QUE
	WENDONG WANG

