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ABSTRACT Sparse matrix regression (SMR) is a two-dimensional supervised feature selection method that
can directly select the features on matrix data. It uses several couples of left and right regression vectors for
each classifier and integrates them in formulating the regression function. However, SMR does not consider
the local geometry of image samples, and it assumes that the training samples should exactly fit a linear
model or a strict binary label matrix by left and right regressionmatrices. In order to enlarge margins between
different classes and preserve the intrinsic geometry structure of samples in the transformed space, we will
propose dynamic graph regularization and label relaxation-based SMR (abbreviated as DGRLR-SMR)
method for two-dimensional supervised feature selection. First, the label relaxation SMR is established by
relaxing the strict binary label matrix into a slack variable matrix via a nonnegative label relaxation matrix by
the ε-dragging technique. Second, we construct a dynamic graph matrix learning model, rather than using
the heat kernel function to obtain a fixed graph matrix, to capture the discriminative information and the
local manifold structure of the image samples. Therefore, the proposed model not only enlarges margins
between different classes, but also obtains a sparse transformation matrix and avoids the problem of over-
fitting. An optimization algorithm is devised to solve this model, and it has closed-form solutions in each
iteration so that it can be implemented easily in real application. Extensive experiments on several data sets
demonstrate the superiority of our method.

INDEX TERMS Feature selection, sparse matrix regression, label relaxation, dynamic graph matrix,
ε-dragging technique.

I. INTRODUCTION
In many real applications, the data is often of very high
dimension and contains some redundant features. Therefore,
selecting or extracting some important features from these
data is a crucial task in some fields, such as data mining
and machine learning [1]. The best representative dimension-
ality reduction techniques are feature selection (FS) [2] and
subspace learning (SL) [3], [4], where feature selection is to
select a few relevant features from the high-dimensional data
to represent the original data, while subspace learning applies
a transformation on the high-dimensional data to obtain a
low-dimensional representation of the data. According to
whether the label information of the data is used or not, these
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methods can be divided into supervised, semi-supervised
and unsupervised learning. Since feature selection does not
change the representation of the original data and maintains
its physical meaning, we mainly discuss the supervised fea-
ture selection in this work.

Most existing supervised feature selection algorithms are
vector-based. For example, Fisher Score [1] is a filtering
feature selection algorithm based on linear discriminative
analysis (LDA). Liu et al. [5] propose a global and local
structure preservation feature selection method (GLSPFS).
To preserve both the local and global structure of the features
as well as samples, Zhu et al. [6] give a robust unsupervised
spectral feature selection method. Nie et al. [7] incorporate
sparse constraint in robust linear regression and design a
robust feature selection (RFS) algorithm. Liu et al. [8] uses
l2,1-norm as the penalty and give a multi-task feature
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selection method. The feature selection approach given by
Cai et al. [9] has the l2,1-norm-based loss function with
an explicit l2,0-norm equality constraint. Xiang et al. [10]
present a framework of discriminative least squares regres-
sion for feature selection. He et al. [11] also study the prob-
lem of robust feature extraction based on l2,1 regularized
correntropy.

However, in many real applications especially in the fields
of image processing and video analysis, the data used are
often presents in matrix form. Thus, these matrix data are
usually scanned into vector data in traditional vector-based
methods in advance. Nevertheless, this vectorization of the
matrix data may cause some problems. First, vectorized data
is often high dimensional, which makes the vector-based
methods often suffer from small sample size problem (SSS).
Second, vectorization will also ignore the location informa-
tion of elements in the original matrix and destroy the relative
geometric relationship between them. Third, when the image
contains some noises (such as the block-wise noisy occlu-
sion), we should treat this occlusion in a whole part. This
correlation will be lost when they are treated as flatting or
vertical vectors. Therefore, the influence and effects of noisy
for vector-based approaches also depends on how to vectorize
the image. To address these problems, it is necessary to
directly study the problem of feature selection for matrix
data. For example, Hou et al. [12] measured the relation-
ship between matrix data and the class labels by deploying
left and right regression matrices and propose an algorithm
named sparse matrix regression (SMR) for two-dimensional
supervised feature selection. Yuan et al. [13] present a joint
sparse matrix regression and nonnegative spectral analysis
(JSMRNS) model for image unsupervised feature selection.

On the other hand, in data classification, we expect that
margins between different classes in the transformed label
space should be as large as possible. Consequently, Leski [14]
propose a least squares regression (LSR) model via the
squares approximations of the misclassification errors to
enlarge the margins between different classes. However,
when training samples are transformed into a linear model or
a strict binary label matrix, a discriminative transformation
matrix may not be learned in practice application. In order
to relax the strict binary label matrix, Xiang et al. [10] intro-
duced a ε-dragging technique to force the regression targets
of different classes moving along with opposite directions.
By this technique, class label information will be embedded
into the LSR model such that the distances between classes
can be enlarged, and a discriminant LSR (DLSR) model for
multiclass classification is obtained.

The existing research results show that the manifold learn-
ing methods can well preserve the intrinsic geometry struc-
ture of samples in the transformed space, but they do not
exploit label information to improve the discriminant ability
of algorithms. To address this problem, Li et al. [15] gave the
margin Fisher analysis method to simultaneously preserve
both the intrinsic geometry structure and the discriminant
structure of the samples by using the label information.

Other similar methods also include locality linear
discriminant analysis (LLDA) [16], [17], locality sensitive
discriminant analysis (LSDA) [18], and local discriminant
embedding (LDE) [19], [20]. Recently, Fang et al. [21]
proposed a regularized label relaxation linear regression
(RLR) method, which relaxes the strict binary label matrix
into a slack variable matrix by introducing a nonnegative
label relaxation matrix and can avoid the problem of over-
fitting by constructing the class compactness graph. In all
the above manifold learning-based methods, the weights of
the adjacency graph characterizing affinity between samples
are generally determined in advance by using the heat kernel
function. Therefore, the graph matrix is fixed during learning
the transformation matrix and is more sensitive to the tuning
of the heat kernel parameter. In order to address this problem,
many dynamic graph-based methods have been proposed.
For example, Liu et al. [22] proposed discriminative low-
rank preserving projection by incorporating the discriminant
analysis and the local neighborhood relationship of the orig-
inal samples into the low-rank representation. Lai et al. [23]
present approximate orthogonal sparse embedding for dimen-
sionality reduction. Liu et al. [24] combined structural opti-
mal graph with sparse representation for feature extraction.
Wen et al. [25] combined low-rank representations with
adaptive graphs. Meanwhile, Wen et al. [26] also applied
adaptive graph learning to incomplete multi-view spectral
clustering.

Inspired by the SMR and RLR, in this paper, we pro-
pose dynamic graph regularization and label relaxation-based
SMR (DGRLR-SMR) method for image supervised feature
selection. To directly select some important features on the
matrix data, DGRLR-SMR uses the sum of squares of dif-
ferences between the matrix data and the slack label by
deploying left and right regression matrices as the loss func-
tion. Furthermore, in order to capture the geometric structure
and the discriminative information of the samples, we also
dynamically learn the graph matrix by following the distri-
bution of samples, rather than using the heat kernel func-
tion to learn a fixed graph matrix. Here, we do not need
to tune other parameters such as the heat kernel parameter
in the graph matrix learning process. Thus, we can couple
the graph matrix learning with the low dimensional space
learning together and iteratively optimize them to obtain their
respective optimal solutions. Therefore, DGRLR-SMR not
only relaxes the strict binary label matrix into a slack variable
matrix by introducing a nonnegative label relaxation matrix,
but also obtains a sparse transformation matrix and avoids the
problem of over-fitting. An optimization algorithm is devised
to solve DGRLR-SMR, and it has closed-form solutions in
each iteration so that it can be implemented easily.

The main contributions of this work follow as: 1) our
model can enlarge the margins between different classes as
much as possible, which are beneficial to the correct clas-
sification; 2) it can also learn the graph matrix dynamically
without tuning additional parameter and capture the local
geometric structure of trainingmatrix samples; 3) it can select
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some more meaningful features by the sparse transformation
matrix composed of the left and right regression matrices;
4) we design an alternating iteration algorithm to solve the
optimization model, give the closed-form solutions in each
iteration and analyze the convergence and complexity of the
algorithm; 5) extensive experiments on some datasets demon-
strate the superiority of DGRLR-SMR.

The remainder of this paper is organized as follows.
In Section II, we review and introduce some related models,
including the traditional linear regression (LR), the label
relaxation LR (RLR), the bilinear regression (BLR) and the
sparse matrix regression (SMR). In Section III, we propose
the dynamic graph regularization and label relaxation-based
SMR (DGRLR-SMR) method for image supervised feature
selection, and present its solving algorithm and algorithmic
convergence analyses. In Section IV, we report some exper-
iment results on multiclass classification. Conclusions are
drawn in Section V.

II. RELATED WORKS
Throughout this paper, reals are written as lowercase letters.
Vectors are denoted by boldface lowercase letters, while
matrices are presented as boldface uppercase letters. Given
the set of matrix samples {X i ∈ Rm×n : i = 1, 2, . . . , l},
where m and n are the first and second dimensions of each
matrix sample respectively, and l is the number ofmatrix sam-
ples. Suppose that these l matrix samples are from c classes.
The associated class label vectors are {y1, y2, . . . , yl} ⊂ Rc,
where yi = [yi1, yi2, . . . , yic]T ∈ {0, 1}c is the cluster
indicator vector of X i, that is, yii = 1 if and only if X i
belongs to the j-th cluster and yii = 0 otherwise. Define
1 = [1, 1, . . . , 1]T ∈ Rl be a column vector of all ones,
Ik ∈ Rk×k be an identity matrix. Denote xi = vec(X i) ∈ Rmn

the vector counterparts of the matrix sample X i, i = 1,2,. . . ,l,
where vec(·) as an operator which converts amatrix to a vector
by collecting the columns. X = [x1, x2, . . . , xl] ∈ Rmn×l .

A. LABEL RELAXATION LINEAR REGRESSION (LRLR)
The traditional linear regression (LR) is a simple and very
effective regression analysis method. The LR model is for-
mulated as follows

min
A

∥∥∥ATX − Y∥∥∥2
F
+ α ‖A‖2F =

l∑
i=1

c∑
k=1

(aTk xi − yki)
2

+α

c∑
k=1

aTk ak , (1)

where A = [a1, a2, . . . , ac] ∈ Rmn×c is a regression coef-
ficients matrix or projection matrix, ak is the regression
coefficient vector or projection vector for the k-th classifier.
X = [x1, x2, . . . , xl] ∈ Rmn×l is the vector -based sample
matrix, and Y = [y1, y2, . . . , yl] ∈ R

c×l is the corresponding
label matrix. Generally, the linear regression method assumes
that the training samples should be exactly transformed into
a strict binary label matrix. However, this rigorous assump-
tion cannot learn a discriminative transformation matrix in

many real applications. In order to relax this assumption and
enlarge the distance between different classes, Fang et al. [21]
proposed the following label relaxation LR (LRLR) model by
the ε-dragging technique

min
A

∥∥∥UTX − (Y + B�M)
∥∥∥2
F
+ α ‖U‖2F ,

s.t M ≥ 0 (2)

where,U ∈ Rmn×c is a regression coefficient matrix, the oper-
ator � is the Hadamard product of matrices, M is the label
relaxation matrix, and B is a luxury matrix corresponding
to label matrix Y, the element of which are defined as: if
yki = 1, then bki = +1; if yki = 0, then bki = −1.
In order to avoid over-fitting problems that may occur due
to this label relaxation, they also used a class compact graph
regularization term based on the manifold learning instead of
‖U‖2F in (2).

B. BILINEAR REGRESSION
The above linear regression models are vector-based. If input
data are matrix data, we have general bilinear regression
(GBR) [27]. In this case, we can replace the regression
function aTk xi of linear regression model (1) with a bilinear
regression function uTk X ivk , and have the following bilinear
regression model

min
{uk },{vk }

l∑
i=1

c∑
k=1

(uTk X ivk − yki)2 + α
c∑

k=1

aTk ak , (3)

where uk ∈ Rm and vk ∈ Rn are the left and right regression
coefficient vectors for k-th class, respectively. X i ∈ Rm×n

is the i-th matrix data, and ak = vec(ukvTk ). GBR is the
two-dimensional counterpart of the traditional vector-based
regression model. Comparing with LR, there are m + n
degrees of free variables in ak = vec(ukvTk ), which are too
strict in many real applications. Thus, it cannot characterize
the original data fully and increase the regression error.

C. SPARSE MATRIX REGRESSION (SMR)
In order to address the problem existing in GBR,
Lai et al. [23] proposed to use d couples of left projecting
vectors {u(k)j }

d
j=1 and right projecting vectors {v

(k)
j }

d
j=1 for the

k-th classifier and join them in formulating the regression
item. Thus, the loss function for the k-th classifier is

l∑
i=1

 d∑
j=1

(u(k)j )TX iv
(k)
j − yki

2

=

l∑
i=1

(
Tr((U (k))TX iV (k))− yki

)2
, (4)

where U (k)
= [u(k)1 ,u

(k)
2 , . . . ,u

(k)
d ] ∈ Rm×d , V (k)

=

[v(k)1 , v
(k)
2 , . . . , v

(k)
d ] ∈ Rn×d .

Denote

pk = vec(U (k)(V (k))T ) ∈ Rmn,

P = [p1, p2, . . . , pc] ∈ R
mn×c,
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we have

Tr((U (k))TX iV (k)) =
(
vec(U (k)(V (k))T )

)T
vec(X i)

= (pk )
T xi.

(5)

This indicates that the vector [Tr((U (1))TX iV (1)), . . .,
Tr((U (c))TX iV (c))]T is the projection of the vector xi =
vec(X i) under the transformation matrix P. If we replace the
regression vector ak in (1) with the vector pk , the loss function
for the k-th classifier in (4) will become the first term in (1).
Therefore, the matrix P can be regarded as the linear transfor-
mation matrix as in traditional regression model. To achieve
feature selection, we expect that the transformation matrix
P should have some structure sparsity property. Therefore,
the following sparse matrix regression (SMR) model for two-
dimensional feature selection is obtained

min
{U (k)
},{V (k)

}

c∑
k=1

l∑
i=1

(
Tr((U (k))TX iV (k))− yki

)2
+ α ‖P‖2,1 ,

(6)

with P = [p1, p2, . . . , pc] ∈ Rmn×c, pk =

vec(U (k)(V (k))T ) ∈ Rmn, where ‖·‖2,1 is the l2,1-norm of
matrix.

III. THE PROPOSED MODEL AND ALGORITHM
A. MODEL AND FORMULATION
As pointed out in section II, when the training sam-
ples are accurately transformed into a strict binary label
matrix, the discriminant transformation matrices may not be
learned in many real applications. For classification problem,
we expect that the margins between different classes should
be as large as possible after they are transformed into their
label space. To this end, we can use the ε-dragging technique
to enlarge these margins and obtain a more discriminative
transformation matrix.

Noting that for the i-th training sample X i ∈ Rm×n,
the regression target yki in (4) or (6) is fixed as+1 or 0, which
usually cause wrong penalization to the right classifications
that are far from +1 or 0. To alleviate this situation, we can
introduce the nonnegative label relaxation variable mki and
obtain a new discriminative regression target ȳki = yki +
bkimki, where bki is the element in the luxury matrix B ∈ Rc×l

corresponding to the label matrix Y. The non-negativity of the
label relaxation variable mki can always increase the absolute
value of the new regression target ȳki. As a result, the margins
between different classes will be enlarged. By replacing yki in
the loss function of the problem (6) with ȳki, we can get the
label relaxation sparse matrix regression as follows

min
{U (k)
},{V (k)

},mki≥0

c∑
k=1

l∑
i=1

(
Tr((U (k))TX iV (k))−(yki+bkimki)

)2
+ α ‖P‖2,1 , (7)

with P = [p1, p2, . . . , pc] ∈ Rmn×c, pk =

vec(U (k)(V (k))T ) ∈ Rmn, where mki ≥ 0. Since the

non-negativity of mki can preserve and enlarge the distances
between different classes in the transformation subspace,
we can ensure a more robust performance than the sparse
matrix regression (SMR).

On the other hand, it has shown that both the global
structure and the local structure of the samples may pro-
vide some complementary information to promote the per-
formance of dimensionality reduction. Although the model
(7) can reveal the local correlation of elements in matrix
data while learning the globality and discrimination of
matrix samples, it does not consider the local manifold
structure of matrix samples. According to the idea of
manifold learning, the samples sharing the same labels
should be kept close together in the transformed space.
This local structure of the samples can be preserved via
learning a graph matrix on low-dimensional space. Intu-
itively speaking, it can be described by the following
model:

min
P

l∑
i=1

l∑
j=1

∥∥∥PT xi − PT xj∥∥∥2
2
wij, (8)

where, xi = vec(X i) ∈ Rmn, the weight wij denotes the
similarity between the i-th matrix sample X i and the j-th
matrix sample X j. In general, the weight wij can be defined
by the heat kernel function as follows: if the sample X i and
X j belong to the same class or X j is one of the k-nearest

neighbors of X i, then wij = exp
(
−
∥∥X i − X j

∥∥2
F /(2σ

2)
)

where σ is a tuning parameter; otherwise, wij = 0.
Many existing learning methods based on the graph weight

matrix W need to learn a fixed graph matrix from the
original high-dimensional data before learning the
transformation matrix P. In this way, when the orig-
inal data is corrupted by noise, an incorrect graph
matrix may be obtained. In addition, this strategy need
to tune two parameters (i.e. k and σ ), which is time-
consuming. To address such problems, we can com-
bine the learning of graph matrix with the learning
of low-dimensional subspace to obtain the following
model

min
P,W

l∑
i=1

l∑
j=1

∥∥∥PT xi − PT xj∥∥∥2
2
wij + γ ‖W‖22

s.t. wTi 1 = 1, wii = 0, i = 1, 2, . . . , l,

wij ≥ 0 if j ∈ N (i), otherwise wij = 0, (9)

where, γ is a parameter,wi ∈ Rl is the i-th column of the
graph weight matrixW, the regularization term ‖W‖22 is used
to avoid the trivial solution, 1 = [1, 1, . . . , 1]T ∈ Rl is an
all-one-element vector, N (i) is the set of all training matrix
samples with the same labels as X i, the constraint wTi 1 = 1 is
used to obtain shift invariant similarity. Thus, the problem (9)
can output small value of wii for distant samples and large
value of wii for close samples. Therefore, the model (9) will
learn a dynamical graph weight matrixW.
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In addition, according to (5), the model (9) can also be
rewritten as follows

min
P,W

l∑
i=1

l∑
j=1

c∑
k=1

(
Tr((U (k))TX iV (k))−Tr((U (k))TX jV (k))

)2
× wij + γ ‖W‖22

s.t. wTi 1 = 1, wii = 0, i = 1, 2, . . . , l,

wij ≥ 0 if j ∈ N (i), otherwise wij = 0, (10)

Since both the graph weight matrixW and the transformation
matrix P = [p1, p2, . . . , pc] ∈ Rmn×c are unknown, (10)
may output unreliable models. By integrating (7) with (10),
we obtain the following dynamic graph regularized label
relaxation sparse matrix regression (DGRLR-SMR) model

min
{U (k)
},{V (k)

},M,W

c∑
k=1

l∑
i=1

(
Tr((U (k))TX iV (k))−(yki+bkimki)

)2
+α ‖P‖2,1

+β

l∑
i=1

l∑
j=1

c∑
k=1

(
Tr((U (k))TX iV (k))−Tr((U (k))TX jV (k))

)2
×wij + γ ‖W‖22
s.t. wTi 1 = 1, wii = 0, i = 1, 2, . . . , l,

wij ≥ 0 if j ∈ N (i), otherwise wij = 0,

mki ≥ 0, k = 1, 2, . . . , c, i = 1, 2, . . . , l, (11)

with P = [p1, p2, . . . , pc] ∈ Rmn×c, pk =

vec(U (k)(V (k))T ) ∈ Rmn, where α, β and γ are nonnegative
parameters. The first and second terms are used to character-
ize the sparse matrix regression with label relaxation, from
which the sparse transformation matrix can be learned while
enlarging the margins between different classes, thus improv-
ing the classification accuracy. The third and fourth terms
can iteratively update the left and right regression matrices
and the graph weight matrix, so that the global structure of
the samples can be revealed and the local structure of the
samples can be preserved while avoiding the trivial solution,
thus ensuring that the similar training samples are kept close
together in the transformed space.

In the optimization problem (11), there are essentially three
types of variables, that is, the regression matrices {U (k)

}
c
k=1

and {V (k)
}
c
k=1, the label relaxation matrix M and the graph

weight matrix W. The regression matrix variables U(k) and
V(k) are coupled in the loss function. On the other hand,
all regression matrices U(k) and V(k) are coupled together in
formulating matrix P, and so the elements of the matrix P are
the complex combinations of U(k) and V(k) for k = 1,2,. . . ,c.
In addition, the objection function is also non-smooth. Thus,
it is difficult to solve the problem (11) simultaneously. Here,
we will design an alternating iteration algorithm to optimize
these variables.

B. SOLUTION
Since it is difficult to directly solve the optimization prob-
lem (10) or (11), we will design an alternating iteration

algorithm to optimize these variables, that is, we will alter-
natively update one of {U (k)

}
c
k=1, {V

(k)
}
c
k=1,M andW while

fixing other variables, respectively.
1) Update {U (k)

}
c
k=1 by fixing W, {V (k)

}
c
k=1 and

M = (mki).
After some simple mathematical deductions, the prob-

lem (10) or (11) can be rewritten as

min
{U (k)
}

c∑
k=1

l∑
i=1

(
Tr((U (k))TX iV (k))− (yki + bkimki)

)2
+ αTr(PTD(v)P)+ βTr(PTXLXTP) (12)

where, D(v) is a mn×mn diagonal matrix with the r-th diago-
nal element D(v)

rr defined by

D(v)
rr =


1

2 ‖pr‖2
, if pr 6= 0,

r = 1, 2, . . . ,mn,
δ, otherwise ,

(13)

δ is a very small positive constant, pr is the r-th row vector
of P in the previous iteration, r = 1,2,. . . , mn; the matrix
L = S−W is graph Laplacian matrix, S is a diagonal matrix

and its diagonal entries are defined as Sii =
l∑
j=1

wij.

Denote û(k) = vec(U (k)) ∈ Rmd , g(k)i = vec(X iV (k)) ∈
Rmd and G(k)

= [g(k)1 , g
(k)
2 , . . . , g

(k)
l ] ∈ Rmd×l , then we have

pk = vec(U (k)(V (k))T ) = (V (k)
⊗ Im)û

(k)
,

pTk xi = (vec(U (k)(V (k))T ))T vec(X i)

= Tr((U (k))TX iV (k)) = (û(k))T g(k)i ,

Tr(PTD(v)P) =
c∑

k=1

pTk D
(v)pk =

c∑
k=1

(û(k))TA(k)
1 û(k),

Tr(PTXLXTP) =
c∑

k=1

pTk XLX
T pk =

c∑
k=1

(û(k))TB(k)
1 û(k),

where, the operator ⊗ is the Kronecker product, A(k)
1 =

(V (k)
⊗Im)TD(v)(V (k)

⊗Im) andB
(k)
1 = G(k)L(G(k))T . Hence,

when D(v) is fixed, we can decompose the problem (12) into
the following c independent sub-problems

min
U (k)

∥∥∥(û(k))TG(k)
− (Y (k)

+ B(k)
�M (k))

∥∥∥2
2

+ (û(k))T (αA(k)
1 + βB

(k)
1 )û(k),

k = 1, 2, . . . , c. (14)

where, the operator� is the Hadamard product; Y(k),B(k) and
M(k) are the k-th row of the label matrix Y, the luxury matrix
B and the label relaxation matrixM, respectively.
Taking the derivative of objective function in (14) with

respect to û(k), and set it to zero, we obtain the following
optimal solution for (14)

û(k) =
[
G(k)(G(k))T + αA(k)

1 + βB
(k)
1

]−1
× G(k)(Y (k)

+ B(k)
�M (k))T ,

k = 1, 2, . . . , c. (15)
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And, we can obtain the left regression matrix U (k)
∈ Rm×d

from û(k), k = 1,2,. . . ,c.
2) Update {V (k)

}
c
k=1 by fixing W,{U (k)

}
c
k=1 and

M = (mki).
Noting that when {U (k)

}
c
k=1 is fixed, pk = (In ⊗

U (k))vec((V (k))T ), so pk cannot be formulated by vec(V(k))
and so the above deduction cannot be used directly. How-
ever, it can be seen from (U(k)(V(k))T )T=V(k)(U(k))T that all
elements inU(k)(V(k))T and V(k)(U(k))T are exactly the same.
As a result, the vectors vec(U(k)(V(k))T ) and vec(V(k)(U(k))T )
are different permutation of the same elements. Denote
qk = vec(V (k)(U (k))T ), then the rows of the matrix Q =
[q1, q2, . . . , qc] ∈ Rmn×c are just different arrangements
of the rows of the matrix P. Thus, by the definition of the
l2,1-norm, it holds ‖P‖2,1 = ‖Q‖2,1. We define the diagonal
matrix D(u) with the r-th diagonal element

D(u)
rr =


1

2 ‖qr‖2
, if qr 6= 0,

r = 1, 2, · · · ,mn,
δ, otherwise ,

(16)

then the problem (11) can be equivalently reformulated as

min
{V (k)
}

c∑
k=1

l∑
i=1

(
Tr((U (k))TX iV (k))− (yki + bkimki)

)2
+ αTr(QTD(u)Q)+ βTr(PTXLXTP) (17)

Denote v̂(k) = vec(V (k)) ∈ Rnd , h(k)i = vec(XT
i U

(k)) ∈ Rnd

and H (k)
= [h(k)1 ,h

(k)
2 , . . . ,h

(k)
l ] ∈ Rnd×l , we have

qk = (U (k)
⊗ In)vec(V (k)) = (U (k)

⊗ In)v̂
(k)
,

pTk xi = (vec(U (k)(V (k))T ))T vec(X i) = Tr((U (k))TX iV (k))

= Tr((V (k))TXT
i U

(k)) = (v̂(k))Th(k)i .

Then, when D(u) is fixed, the problem (17) can also be sepa-
rated into the following c independent sub-problems

min
v̂(k),bk

∥∥∥(v̂(k))TH (k)
− (Y (k)

+ B(k)
�M (k))

∥∥∥2
2

+ (v̂(k))T [αA(k)
2 + βB

(k)
2 ]v̂(k), (18)

where,A(k)
2 = (U (k)

⊗ In)TD(u)(U (k)
⊗ In) and B(k)

2 =

H (k)L(H (k))T , k = 1,2,. . . ,c.
The optimal solutions should be

v̂(k) =
[
H (k)(H (k))T + αA(k)

2 + βB
(k)
2

]−1
×H (k)(Y (k)

+ B(k)
�M (k))T ,

k = 1, 2, . . . , c. (19)

And, we can get the right regression matrix V (k)
∈ Rn×d

from v̂(k).
3) Update M = (mki) by fixing W,{U (k)

}
c
k=1

and {V (k)
}
c
k=1.

In this case, the problem (11) is equivalent to the following
optimization problem

min
mki≥0

c∑
k=1

l∑
i=1

(
bkimki − (Tr((U (k))TX iV (k))− yki)

)2
. (20)

It can also be decomposed into the cl independent sub-
problems as follows

min
mki≥0

(
bkimki − (Tr((U (k))TX iV (k))− yki)

)2
,

k = 1, 2, . . . , c, i = 1, 2, . . . , l.

The optimal solution ofM = (mki) is

mki = max{bki(Tr((U (k))TX iV (k))− yki), 0},

k = 1, 2, . . . , c, i = 1, 2, . . . , l. (21)

4) UpdateW by fixing {U (k)
}
c
k=1, {V

(k)
}
c
k=1 andM = (mki).

Here, the problem (11) will be transformed into the follow-
ing minimization problem

min
W

c∑
k=1

l∑
i=1

l∑
j=1

z(k)ij wij +
γ

β

l∑
i=1

l∑
j=1

w2
ij

s.t. wTi 1 = 1, wii = 0, i = 1, 2, . . . , l,

wij ≥ 0 if j ∈ N (i), otherwise wij = 0, i = 1, 2, . . . , l.

(22)

where, z(k)ij =
∥∥Tr((U (k))TX iV (k))− Tr((U (k))TX jV (k))

∥∥2
2,

j = 1,2,. . . ,l, i = 1,2,. . . ,l.
This quadratic programming problem can be solved by the

dual method. The optimal solution of the problem (22) is
obtained by

wij = max

 1
|N (i)|

−
β

2γ

c∑
k=1

z(k)ij − 1
|N (i)|

∑
j∈N (i)

z(k)ij

, 0
 ,

j ∈ N (i) (23)

For the training matrix sample X i, if it comes from the k-th
class, then |N (i)| = nk , where nk is the number of the training

matrix samples in the k-th class, and
c∑

k=1
nk = l. Thus, the

graph weight matrixW obtained by (23) should be a diagonal
block matrix W=diag(W(1), W(2),. . . , W(c)), where W(k) is a
nk × nk matrix defined by (23), k = 1,2,. . . ,c.
We iteratively update {U (k)

}
c
k=1, {V

(k)
}
c
k=1, M and W

by solving the above problems until a convergence crite-
rion is satisfied. The whole iterative procedure for solving
the model (11) is summarized in the following algorithm
DGRLR-SMR.

After obtaining the final transformation matrix P by the
algorithm DGRLR-SMR, we use the l2-norm of the row
vectors of P to evaluate the importance of each feature. Thus,
we can either select a fixed number of the most important
elements or set a threshold and select the element whose
importance is larger than this value. In this way, we can
preserve the selected rows in P and change the other rows
to zero vectors to implement feature selection of the samples.
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Algorithm 1 DGRLR-SMR
Input: Data matrixes X i for i = 1,2,. . . , l, labels matrix
Y = [y1, y2, . . . , yl] ∈ R

c×l ; tuning parameters α, β, γ ; the
number of couples d ∈ {1, 2, . . .}
Initialization:V=[Id×d , 0d×(n−d)]T and M=1c×l ; L=Il×l ;
D(v)
=Imn×mn

Repeat
Update û(k) by (15) and obtain U(k), k = 1,2,. . . ,c;
Update D(u) by (16);
Update v̂(k) by (19) and obtain V(k), k = 1,2,. . . ,c;
Update D(v) by (13);
UpdateM by (21);
UpdateW by (23);

Calculate the Laplacian matrix L=S - (W+WT )/2;
Until convergence
Output:P = [p1, p2, . . . , pc], pk = vec(U (k)(V (k))T ).

When we determine the features, we can use the 1-nearst
neighborhood classifier (i.e. NN-classifier) to perform clas-
sification on the data with selected features.

C. CONVERGENCE ANALYSIS AND COMPUTATIONAL
COMPLEXITY
In this section, we will prove the convergence of the proposed
algorithm, and then analyze the complexity.
Theorem 1. The objective function value in the prob-

lem (10) or (11) monotonically decreases until algorithm
converges.

Proof. Suppose that after the t-th iteration, we have
obtained {U (k)

t }
c
k=1, {V

(k)
t }

c
k=1,M t ,W t ,D

(u)
t andD(v)

t . Denote
the value of the objective function during t-th iteration as
f ({U (k)

t }
c
k=1, {V

(k)
t }

c
k=1,M t ,W t ).

By Algorithm, variables {U (k)
}
c
k=1 are updated by

{U (k)
t+1}

c
k=1 = argmin

{U (k)
}
c
k=1

f ({U (k)
}
c
k=1, {V

(k)
t }

c
k=1,M t ,

W t ) with fixing {V (k)
t }

c
k=1,M t and W t . Then, {U

(k)
t+1}

c
k=1

satisfy the following inequality

c∑
k=1

l∑
i=1

(
Tr((U (k)

t+1)
TX iV

(k)
t )− (yki + bki(mki)t

)2
+ αTr((PTt+1,tD

(v)
t P t+1,t )+ βTr(PTt+1,tXLtX

TP t+1,t )

≤

c∑
k=1

l∑
i=1

(
Tr((U (k)

t )TX iV
(k)
t )− (yki + bki(mki)t

)2
+ αTr((PTt,tD

(v)
t P t,t )+ βTr(PTt,tXLtX

TP t,t ) (24)

where

P t+1,t = [(p1)t+1,t , (p2)t+1,t , . . . , (pc)t+1,t ],

(pk )t+1,t = vec(U (k)
t+1(V

(k)
t )T ),

P t,t = [(p1)t,t , (p2)t,t , . . . , (pc)t,t ],

(pk )t,t = vec(U (k)
t (V (k)

t )T ),

and Lt = St −W t . By the definition of D(v)
t , it holds

Tr((PTt+1,tD
(v)
t P t+1,t )

=
∥∥P t+1,t∥∥2,1 + mn∑

r=1

(∥∥(P t+1,t )r∥∥22
2
∥∥(P t,t )r∥∥2 −

∥∥(P t+1,t )r∥∥2
)
(25)

Tr((PTt,tD
(v)
t P t,t )

=
∥∥P t,t∥∥2,1 + mn∑

r=1

( ∥∥(P t,t )r∥∥22
2
∥∥(P t,t )r∥∥2 −

∥∥(P t,t )r∥∥2
)
.

(26)

Combining (24), (25) and (26) with the inequality
‖a‖22
2‖b‖2

−

‖a‖2 ≥
‖b‖22
2‖b‖2

− ‖b‖2, it yields the following result

c∑
k=1

l∑
i=1

(
Tr((U (k)

t+1)
TX iV

(k)
t )− (yki + bki(mki)t

)2
+ α

∥∥P t+1,t∥∥2,1 + βTr(PTt+1,tXLtXTP t+1,t )

≤

c∑
k=1

l∑
i=1

(
Tr((U (k)

t )TX iV
(k)
t )− (yki + bki(mki)t

)2
+ α

∥∥P t,t∥∥2,1 + βTr(PTt,tXLtXTP t,t ),

that is,

f ({U (k)
t+1}

c
k=1, {V

(k)
t }

c
k=1,M t ,W t )

≤ f ({U (k)
t }

c
k=1, {V

(k)
t }

c
k=1,M t ,W t ). (27)

Similarly, we can also get the following inequality when
fixing {U (k)

t+1}
c
k=1,M t andW t

c∑
k=1

l∑
i=1

(
Tr((U (k)

t+1)
TX iV

(k)
t+1)− (yki + bki(mki)t

)2
+ α

∥∥Qt+1,t+1∥∥2,1 + βTr(PTt+1,t+1XLtXTP t+1,t+1)

≤

c∑
k=1

l∑
i=1

(
Tr((U (k)

t+1)
TX iV

(k)
t )− (yki + bki(mki)t

)2
+ α

∥∥Qt+1,t∥∥2,1 + βTr(PTt+1,tXLtXTP t+1,t )

Since
∥∥Qt+1,t+1∥∥2,1 = ∥∥P t+1,t+1∥∥2,1 and

∥∥Qt+1,t∥∥2,1 =∥∥P t+1,t∥∥2,1, we have
f ({U (k)

t+1}
c
k=1, {V

(k)
t+1}

c
k=1,M t ,W t )

≤ f ({U (k)
t+1}

c
k=1, {V

(k)
t }

c
k=1,M t ,W t ). (28)

When fixing {U (k)
t+1}

c
k=1, {V

(k)
t+1}

c
k=1 andW t , we obtain

c∑
k=1

l∑
i=1

(
Tr((U (k)

t+1)
TX iV

(k)
t+1)− (yki + bki(mki)t+1

)2
≤

c∑
k=1

l∑
i=1

(
Tr((U (k)

t+1)
TX iV

(k)
t+1)− (yki + bki(mki)t

)2
.
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Thus, the following inequality holds

f ({U (k)
t+1}

c
k=1, {V

(k)
t+1}

c
k=1,M t+1,W t )

≤ f ({U (k)
t+1}

c
k=1, {V

(k)
t+1}

c
k=1,M t ,W t ) (29)

And when {U (k)
t+1}

c
k=1, {V

(k)
t+1}

c
k=1 and M t+1 are fixed,

it yields by (22)

β

c∑
k=1

l∑
i=1

l∑
j=1

(z(k)ij )t+1(wij)t+1 + γ ‖W t+1‖
2
F

≤ β

c∑
k=1

l∑
i=1

l∑
j=1

(z(k)ij )t+1(wij)t + γ ‖W t‖
2
F ,

where

(z(k)ij )t+1 =
∥∥∥Tr((U (k)

t+1)
TX iV

(k)
t+1)− Tr((U

(k)
t+1)

TX jV
(k)
t+1)

∥∥∥2
2
.

So, we can get

f ({U (k)
t+1}

c
k=1, {V

(k)
t+1}

c
k=1,M t+1,W t+1)

≤ f ({U (k)
t+1}

c
k=1, {V

(k)
t+1}

c
k=1,M t+1,W t ). (30)

Therefore, we obtain from (27), (28), (29) and (30)

f ({U (k)
t+1}

c
k=1, {V

(k)
t+1}

c
k=1,M t+1,W t+1)

≤ f ({U (k)
t }

c
k=1, {V

(k)
t }

c
k=1,M t ,W t ),

which indicates that the objective value of (11) monotonically
decrease in each iteration.

On the other hand, since the objective value of (11) is lower
bounded, the sequence of objective function values obtained
by algorithm is convergent.

Next, we briefly analyze the computational complexity of
the iterative optimization procedure of the proposed DGRLR-
SMR algorithm. In each iteration of the algorithm, the time
cost focuses on updating {Uk

}
c
k=1, {V

k
}
c
k=1,M andW. Since

1 ≤ d ≤ min(m, n) holds [12], the computational complexity
of updating {Uk

}
c
k=1, {V

k
}
c
k=1,M andW is, respectively,

O(mndlc+ m3d3c+ m2d2lc+ mdl2c),

O(mndlc+ n3d3c+ n2d2lc+ ndl2c),

O(mn(m+ n)dlc)

and O(l2c) from (15), (19), (21) and (23). Therefore, the total
computational complexity of algorithm is

O(((m3
+ n3)d3c+ (m+ n)(mn+ l)dlc)T ),

where T is the total number of iterations.

IV. EXPERIMENTS AND ANALYSIS
In this section, we compare DGRLR-SMR with some other
existing feature selection approaches on several benchmark
datasets to test and verify its effectiveness.

TABLE 1. Characters of different data sets.

FIGURE 1. Some images from six public data sets.

FIGURE 2. Some noisy images from (a) UMIST and (b) COIL-20.

A. DATASETS AND EVALUATION METRICS
In our experiments, six public datasets are employed to show
the performance of different feature selection methods. These
different datasets are four face image datasets, including
UMIST [16], ORL [29], BioID [30] and JAFFE [31], one
handwritten digit dataset USPS [32] and one object image
dataset COIL-20 [33]. The detailed statistical characters of
all datasets are listed in Table 1.

Fig. 1 shows some of the images on each dataset. And,
Fig. 2 shows some of ‘‘clean’’ images and corrupted images
from COIL-20 and UMIST data sets, respectively.

In order to verify the effectiveness of the proposed method,
we will compare it with seven existing methods. These meth-
ods include Fisher score ( Fisher - Scor ) [1], global and
local structure preservation framework for feature selection

62862 VOLUME 8, 2020



X. Chen, Y. Lu: DGRLR-SMR for Two-Dimensional Feature Selection

(GLSPFS) [5], local and global structure preservation for
robust unsupervised spectral feature selection(LGSP) [6],
discriminative least squares regressions(DLSR) [10], sparse
matrix regression (SMR) [12], regularized label relaxation
linear regression (RLR) [21] and general bilinear regression
(GBR) [27].

In DGRLR-SMR, the regularization parameters α, β
and γ are fine-tuned by searching in the range of
{10−4, 10−3, 10−2, . . . , 102, 103, 104} via using cross vali-
dation method.

To test the quality of the selected features, we employ the
following four different kinds of evaluation metrics. The first
metric is the classification accuracy achieved by classifier
using the selected features. The second one is the redundancy
rate (RED) contained in the selected features. The third one is
the variance of classifier using the selected features. The forth
one is the normalized mutual information (NMI) as an evalu-
ation indicator. Intuitively, an ideal feature selection approach
should select features with high classification accuracy, few
redundancies, low variance and high mutuality.

The classification accuracy serves as the evaluation metric
for all the experiments, which is defined as

Accuracy =

∑n
i=1 δ(yi, ŷi)

n
, (31)

where yi is the ground truth of each label, ŷi is the correspond-
ing predicted label, and n is the number of test samples. The
function δ(·, ·) measures the two input arguments, and outputs
‘‘1’’ if the two arguments are equal; or outputs ‘‘0’’ otherwise.

The redundancy is a popular evaluation metric for feature
selection. Denote F the set of selected features, XF the data
represented by the features in F . The redundancy rate of
F [34] is defined as follows

RED(F ) =
1

|F | (|F | − 1)

corri,j∑
si,sj∈F,i>j

, (32)

where |F | is the cardinality ofF , i.e., the number of selected
feature, and corri,j is the Pearson’s correlation coefficient
between two features si and sj, computed by using the data
points in XF . This measurement assesses the averaged cor-
relation among all feature pairs in F , and a large value
indicates that many selected features are correlated and thus
high redundancy is expected to exist in F .
The variance is also an important feature selection evalua-

tion metric used to reflect algorithm stability. The variance is
defined as follows

var(x) = ED[(f (x;D)− f̄ (x))2], (33)

where f (x;D) is the predictive output of function f to x
learned in training set D, and f̄ (x) is expectation prediction
of algorithm, i.e. f̄ (x) = ED[f (x;D)].
Normalized mutual information (NMI) [35] is also a com-

mon metric for feature selection calculated by

NMI =
MI (C,C ′)

max(0(C), 0(C ′))
, (34)

where C is a set of the truth labels and C ′ is a set of predicted
labels.MI (C,C ′) is the mutual information metric, 0(C) and
0(C ′) are the entropies of C and C ′, respectively. A larger
NMI means better performance.

In all experiments, we use the 1-nearest neighborhood
(1-NN) classifier [1] to perform classification on the testing
data with selected features.We randomly select a proper num-
ber of samples from each class as training samples and the
remaining as testing samples, and perform feature selection
on training samples. To avoid any bias, we report 10 runs to
randomly select the training samples in all experiments.

B. CLASSIFICATION ACCURACY, REDUNDANCY RATE,
VARIANCE AND NORMALIZED MUTUAL INFORMATION
First, we compare the classification accuracy of different
methods. For the given six data sets, 5 image samples are
randomly selected from each class as training samples, and
the remaining as test samples. Since different data sets have
different scales, the number of selected features in the exper-
iments is different for different data sets. The total number of
selected features for each data set is listed in Table 1.

Since the aim of feature selection is to find a compact
representation, the number of selected features is generally
limited to a small range, instead of displaying all features.
Each feature selection algorithm is first performed on the
training data set to determine the selected feature. Then,
a classifier is trained with training samples containing only
the selected features. And, the learned classifier is used to
classify the testing samples with the selected features. Repeat
this process 10 times, and the average classification accuracy
is the results as shown in Fig. 3.

Fig. 3 depicts the case where the classification accura-
cies of different feature selection methods vary with the
increase of the number of selected features. From this, we can
get the following observations. For all data sets, with more
selected features, the classification accuracies of all methods
monotonously increase and can achieve higher values. And,
DGRLR-SMR is superior to all other feature selection meth-
ods on all data sets in most cases. For example, on the USPS
data set, DGRLR-SMR is improved by about 7% on average
compared with the best results of other feature selection
methods. On the ORL data set, DGRLR-SMR gets about
6% improvements in average. In addition, for different meth-
ods, the classification accuracy corresponding to the number
of different training samples per class is shown in Fig. 4.
Obviously, regardless of the number training samples in
each class, DGRLR-SMR algorithm has higher classification
accuracy than all other comparison algorithms. Note that
in our experiments, we have observed that DGRLR-SMR
algorithm is superior to other comparison methods on all
given data sets, and these methods show similar performance
relationships on these different data sets. Therefore, for the
sake of simplification and saving page space, we only select
some representative datasets in future experiments and give
the experimental results of corresponding evaluation metric
on these selected data sets.
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FIGURE 3. Classification accuracies of different methods on six data sets with different numbers of selected features.

FIGURE 4. Classification accuracies of different methods on the BioID, the USPS and the COIL-20 data sets with different number of training samples
per class.

We can also compare DGRLR-SMR algorithm with other
seven algorithms on the noisy data sets. Here, we only con-
sider the classification performance of the proposed method
on noisy UMIST and COIL-20 data sets with various levels
of contiguous occlusions and random pixel corruptions as
follows:
• Contiguous Occlusions: The block occlusions are ran-
domly added to different location in each training image
sample from the UMIST data set with the white block
size of 8× 8 and 12× 12, respectively.

• Random Pixel Corruptions: Pixels are randomly
selected from each training image sample in the COIL-
20 data set and corrupted by salt & pepper noise. The
rates of corrupted pixels are 10% and 20%, respectively.

Fig. 2 shows some of the corrupted images from UMIST
and COIL-20 data sets. The classification accuracies of dif-
ferent methods are also shown in Fig. 5.

It can be seen from the Fig. 5 that on noisy UMIST and
COIL-20 data sets, the classification accuracy of DGRLR-
SMR is still higher than that of other methods. In other words,
DGRLR-SMR outperforms all the other methods.

As we can see from Fig. 5(a) and (b), despite the increasing
size of white block, DGRLR-SMR is still able to achieve bet-
ter classification performance than other algorithms. More-
over, even if the density of salt and pepper noise increases,
it can still keep best performance compared with other meth-
ods (see Fig. 5(c) and (d)), which also confirms the robustness
of the DGRLR-SMR to noises. One of the main reasons is
that DGRLR-SMR algorithm enlarges the margins between
different classes in the projection space, so that it has good
robustness.

Next, we will calculate the RED values between selected
features obtained by different feature selection methods.
For different training data sets, the number of selected
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FIGURE 5. Classification accuracies of different methods on two corrupted data sets.

features is also different. Denote F the most important s
features selected by the related methods, and then calculate
the RED value by (32). For each feature selection methods
with different the number of selected features s, the average
of 10 independent RED values is listed in Table 2. Here,
we only report the results on the three representative data
sets BioID UMIST and USPS, and the smallest values are
boldfaced.

As the smaller the RED value is, the better the performance
of feature selection is, so it can be seen from Table 2 that
compared with other feature selection methods, the feature
redundancies of DGRLR-SMR are the smallest, which also
shows the effectiveness of DGRLR-SMR.

Then, we can compare the stability of all feature selection
algorithms by their variance. The variance of different feature
selection methods is calculated by the equation (33). For each
feature selectionmethodwith the different number of selected
features s, we calculate the average of 10 independent vari-
ance values. The results are listed in Table 3. Here, we only
report the results on three representative data sets BioID,
UMIST and USPS, and the smallest values are boldfaced.

As we all know, the smaller the variance is, the more stable
the algorithm is, and thus the better its robustness is. The
results in Table 3 show that compared with other feature
selection algorithms, the variances of our DGRLR- SMR
method are the smallest, which also indicates that our method
is the most stable and robust.

FIGURE 6. The convergences of DGRLR-SMR algorithm.

Finally, we will calculate the NMI values between selected
features obtained by different feature selection methods. The
value of NMI is calculated by (34). For each feature selection
method with different the number of selected features s,
the average of 10 independent NMI values is listed in Table 4.
Here, we only report the results on three data sets BioID,
UMIST and USPS, and the best values are boldfaced.

As the higher the NMI value is, the better the perfor-
mance of feature selection is. Therefore, it can be seen from
Table 4 that comparedwith other feature selection algorithms,
the NMIs of DGRLR-SMR are relatively higher, which also
indicates the high performance of DGRLR-SMR.
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TABLE 2. Feature redundancies (RED) of different methods on BioID, UMIST and USPS data sets.

Based on the above experimental results and analysis,
we can get some reasons why the proposed algorithms are
superior to other comparison methods are as follows. Firstly,
our methods take matrix as input and preserve the location
information of elements in the original matrix. However,
some other methods, such as FisherScore, LGSP, DLSR and
RLR, are all vector-based. All these methods ignore the
location information of pixels in image and convert directly
the original matrix data into vectors before feature selection.
As a result, they disrupt the location relationship between
pixels in the original image, and only select features with
discriminative power. And, for noisy images, the vector-based
methods may select pixel points from the occlusion of noise.
With the increase of selected feature number, more and more
useless features (i.e. features from occlusion) are selected by
the vector-based methods.

Secondly, several other contrast algorithms, such as SMR
and Fisher Score algorithms, assume that the training samples
should be accurately transform into a linear model or a strict
binary label matrix. However, this assumption is too strict
to accurately learn discriminant transformed matrix in the
practical application. Our DGRLR-SMR algorithm adopts
ε-dragging technology to enlarge the margin between differ-
ent classes and get more discriminant transformation matrix.
Thus the classification performance of the proposed algo-
rithm is superior to other comparison algorithms.

Thirdly, instead of the fixed graph matrix defined by the
heat kernel function in the manifold learning, our method can
dynamically learn the graph matrix, which makes the similar

samples to be close enough in the transformed space. By iter-
atively updating the graph sparse matrix and transformation
matrix, the selected features can reveal the global structure of
the samples and preserve their local structure. However, other
some comparison algorithms, such as FisherScore, SMR and
RLR, ignore the local relationship of similar samples, and do
not fully consider the spatial structure and global structure of
samples. Therefore, the performance of these methods is not
as good as that of the proposed DGRLR-SMR algorithm.

C. CONVERGENCE
In order to prove the convergence of the proposed method,
we further consider the variation of the objective function
values of the proposed algorithm. Because the algorithm has
similar convergence on different data sets, we only report
the experimental results on UMIST and USPS data sets.
Fig. 6 shows that the behavior of the objective function values
of our proposed optimization algorithm with respect to the
increase of the iterations. As can be seen from Fig. 6, the pro-
posed algorithm to optimize the proposed objective functions
in (10) or (11) monotonically decreases the objective function
values until algorithm achieves converges. And, it needs a few
iterations (i.e., less than 20 iterations). This also shows from
another perspective that the proposed methods are efficient
and effective.

D. PARAMETERS SETTINGS
In this sub-section, we will analyze the parameters settings
in DGRLR-SMR. In our proposed model (10) or (11), there
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TABLE 3. The variances of different methods on BioID, UMIST and USPS data sets.

TABLE 4. The NMI of different methods on BioID, UMIST and USPS data sets.
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FIGURE 7. ACA results of proposed method with different parameter combinations of α and β.

FIGURE 8. ACA results of proposed method with different parameter combinations of α and γ .

FIGURE 9. ACA results of proposed method with different parameter combinations of β and γ .

are two types of parameters to dominate their performance:
three regularization parameters α, β and γ ; the number of
regression vectors d . The parameter α is used to adjust the
sparsity of the transformation matrix P, β is used to control
trade-off between the loss function and the dynamic graph
local preserving, and γ is used to avoid over-fitting when
the dynamic graph is found. Therefore, parameters α, β
and γ balance the effectiveness of regression and feature
selection.

Because it is still a challenge to search a proper parameter
combination for specific data set, we will run the proposed
our algorithm on UMIST and USPS data sets with different
parameters combinations by two dimensional grid searches,
respectively, and empirically determine and choose the best
one. Fig. 7–9 show the variation of the average classification
accuracies (ACA) of the proposed method with different
combinations of parameters on UMIST and USPS data sets
respectively. Obviously, with the increase of α and β (or α
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TABLE 5. The values of parameters in different methods on BioID, UMIST and USPS datasets.

FIGURE 10. ACA of our proposed method with different numbers of regression vectors d.

and γ , or β and γ ), the classification accuracy of our method
on UMIST and USPS data sets will increase first and then
decreases. Table 5 lists the specific values of three parameters
α, β and γ when each method achieves the highest classifi-
cation accuracy.

Another parameter d in our model is the number of left and
right regression vectors, which could play an important role
in balancing the capacity of learning and generalization for
the regression models. To verify the effectiveness of multiple
regression vectors, we will calculate the classification accu-
racies of DGRLR-SMR with fixed {α, β, γ } and different
d on the UMIST and USPS data sets. In our experiments,
it assumes that d varies within the range [1,min(m, n)]. The
variation curve of classification accuracy of our method is
shown in Fig. 10. Obviously, with the increase of parameter d,
classification accuracy does not always increase consistently.
For the UMIST data set, when the number of regression vec-
tors d is small (e.g., less than 8), the classification accuracy
will increase with the increase of d. After the value of d
increases to a certain value (e.g., 8), the accuracy will fluctu-
ate and decrease. For the USPS data set, when the number of
regression vectors d is less than 11, the classification accuracy
will fluctuate with the increase of d. After the value of d
increases to 11, the accuracy will fluctuate and decrease.

Therefore, it is not that the more the number of left and right
regression vectors, the better the classification performance.
As a result, we should choose the appropriate value of d
to make the algorithm achieve the best performance in real
applications. The value of parameter d that each method
achieves its highest classification accuracy in our experiments
is listed in Table 5.

V. CONCLUSION
In this paper, we have proposed the dynamic graph reg-
ularized label relaxation sparse matrix regression model
(DGRLR-SMR), which joins the dynamic graph learning
with the label relaxation sparse matrix regression to per-
form feature selection for two-dimensional matrix data. First,
comparing with the traditional vector-based supervised meth-
ods for feature selection, DGRLR-SMR can directly use the
matrix data as input data and select the discriminative features
on the matrix data. Thus, the proposed method considers
the location information of elements in the original image
data. Secondly, we also dynamically learn the graph matrix
to uncover the discriminative information and the local geo-
metric structure of the image samples. Thus, DGRLR-SMR
not only relaxes the strict binary label matrix into a slack
variable matrix by introducing a nonnegative label relaxation
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matrix, but also obtains a sparse transformed matrix (gener-
ated by several pairs of left and right regression matrices) and
avoids the problem of over-fitting. Therefore, we can couple
the graph matrix learning with the low dimensional space
learning together to iteratively optimize them so that achiev-
ing their individually optimal result. We have analyzed the
computational complexity and convergence of our proposed
algorithm. Numerical experiments results on several data sets
indicate that this algorithm outperform the state-of-the-art
algorithms in term of classification accuracy, the redundancy
rate, the variance and the normalized mutual information.
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