
Received January 31, 2020, accepted March 11, 2020, date of publication March 27, 2020, date of current version April 14, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2983762

Testing Method for Software With Randomness
Using Genetic Algorithm
XIANGJUAN YAO 1, DUNWEI GONG2, (Member, IEEE), BIN LI1, XIANGYING DANG2,
AND GONGJIE ZHANG 3
1School of Mathematics, China University of Mining and Technology, Xuzhou 221116, China
2School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
3School of Computer Science and Technology, Jiangsu Normal University, Xuzhou 221116, China

Corresponding author: Xiangjuan Yao (yaoxj@cumt.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61573362, Grant 61773384,
and Grant 61203304, and in part by the National Key Research and Development Program of China under Grant 2018YFB1003802-01.

ABSTRACT The main task of software testing is the generation of test data with high quality in restricted
time. But for software with uncertainties, such as randomness, existing methods of generating test data often
lose their effectiveness. For software with randomness, a test datummight cover the test target in one run, but
obtains different results in the next run. Therefore, special testing methods must be exploited for this kind
of software. In order to test software with randomness, we first propose a novel test adequacy criterion, and
then build a mathematical model for generating test data according to the new criterion. Finally, we present
a method of solving the optimization model using a set-based genetic algorithm. We apply the proposed
method to test 12 programs, and compare with traditional genetic algorithm and the random method. From
the experimental results we can see that, the proposed adequacy criterion is available for the software with
randomness and the proposed algorithm can effectively generate test data.

INDEX TERMS Software testing, genetic algorithm, adequacy criterion, test data generation, software with
randomness.

I. INTRODUCTION
In recent years, the importance of software quality continu-
ously grows, for software is playing a vital role in national
economy and social development. Poor software may result
in not only a high maintenance cost, but also a huge amount
of property loss and even serious national security or environ-
mental issues [1], [2].

Software testing plays an important role in ensuring the
quality of software, and thus has a critical position in soft-
ware engineering. It has been observed that software testing
may occupy more than 50% of the development cost in
the software life cycle [3]. Moreover, according to Boehm’s
results, the later a defect is discovered, the more expensive
it will be to modify it [4]. Therefore, it is very impor-
tant to improve the effectiveness and efficiency of software
testing.

Existing methods of software testing are mainly for deter-
ministic programs. In face, there are various forms of uncer-
tainty in many practical programs, such as randomness or

The associate editor coordinating the review of this manuscript and

approving it for publication was Geng-Ming Jiang .

fuzziness, suggesting that the behavior of these programs
is uncertain. Specifically, for the program with uncertainty,
when repeatedly running the program with the same test
datum, it may traverse different paths, cover different state-
ments or even have different outputs. On this circumstance,
previous test adequacy criteria are not applicable.

At present, there have been some research results oriented
to test a program with nondeterminism [5], but few of these
researches aim at the programs containing randomness. On
the other hand, programs with randomness widely exist in
real-world applications, such as game software, Windows
operating system, and network software [7].

For example, when a human player challenges the Chinese
chess game by a computer program. In general, the program
determines its operation according to some strategies. But the
strategy may include some random choices. The computer
decisions will be left unspecified as nondeterministic choices.
So research on testing a program with randomness is quiet
necessary and meaningful. If we can detect the impact of
random behavior on the program through some test cases
generated by random numbers, the stability of the program
will be guaranteed.

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 61999

https://orcid.org/0000-0003-3207-703X
https://orcid.org/0000-0002-5837-1344
https://orcid.org/0000-0002-8022-1959


X. Yao et al.: Testing Method for Software With Randomness Using Genetic Algorithm

Given the fact that the key step of software testing is to
produce effective test data [8], this paper intends to study
the problem of generating test data for programs with ran-
domness. First, we propose a novel adequacy criterion for
testing programs with randomness, and then establish an
optimizationmodel for the problem of generating test data for
this kind of programs. Finally, we present a method of solving
the optimization problem using a set-based genetic algorithm.
Our experimental results illustrate that the proposed adequacy
criterion is available for the software with randomness; In
addition, the proposed algorithm can effectively generate test
data.

The main contributions of this paper are as follows:

1) A novel adequacy criterion is proposed for testing a
program with randomness.

2) An optimization method is presented to solve the prob-
lem of generating test data for the program with ran-
domness.

The structure behind this section is as follows. Related
works are put forward in Section 2. Section 3 proposes a
novel adequacy criterion for testing a program with random-
ness. The mathematical model of the problem to produce
test data according to the new criterion is built in Section 4.
Section 5 presents a method of solving the optimization
model based on a genetic algorithm. The applications of
the proposed method in 12 programs and the comparisons
with traditional genetic algorithm and the random method
are demonstrated in Section 6. Finally, Section 7 concludes
the whole paper, and comes out several topics to be further
studied.

II. RELATED WORKS
Automatically generating test data will effectively reduce
the labor intensity of the tester, improve testing efficiency
and software quality, and therefore save the cost of software
development [9].

In general, there are four kinds of methods of test data
generation, i.e. random method, static method and dynamic
method, as well as heuristic method [10].

Random method generates test data by randomly sampling
the input space of the program under test. This kind of meth-
ods is simple and able to quickly generate a large amount of
test data, but has great blindness [11]. In order to improve
the efficiency of random testing, Chan et al. proposed the
method of restricted random testing that offers a significant
improvement over random testing [12].

Static method only carries out static analysis and trans-
formation, and does not involve practical operation of the
program [13]. This kind of methods usually need to perform
many algebra and (or) interval operations, and the needed
storage space is also very huge [14].

Dynamic method generates test data based on actual opera-
tion of the program, and the process is determinate [15]. This
kind of methods need quite long time to generate test data,
and is very sensitive to the initial test data [16]–[18].

Different from dynamic method, the process of generating
test data for heuristic method is not completely determinate
[19], although heuristic method is also based on the actual
operation of the program. These methods include tabu search
algorithm [20], particle swarm optimization algorithm [21],
evolutionary strategy [22], and genetic algorithm [23], etc.

For complex software, using genetic algorithm to speed up
the efficiency of test data generation is a potential research
direction, and has achieved many inspiring results [24].

Baars et al. [25] presented an search-based testing method
to generate test data satisfying branch adequate criterion.
Pachauri and Srivastava [26] proposed an approach to test
data generation for branch coverage with a structured genetic
algorithm. Bueno and Jino [27], Lin and Yeh [28], and
Watkins and Hufnagel [29] separately generated test data
based on GAs for path coverage testing. Mei and Wang [30]
automatically generated test cases to cover the selected paths
using a special GA. Yao et al. [31] proposed a test data
generationmethod for multi-path coverage based on a genetic
algorithm with local evolution.

Although there are many test data generation methods,
most of them are for traditional software. How to fully test the
special software with random numbers has not been studied.
Therefore, this paper focuses on the generation of test data
for software with random numbers, which will no doubt bring
new research topics to the field of software testing.

III. ADEQUACY CRITERION FOR TESTING PROGRAM
WITH RANDOM NUMBER
To test a software product, we need first to generate a test
suite according to some given criterion. Then, the program
will be run to find out if there are errors or faults. To ensure
the adequacy of the test, people put forward different test
criteria to evaluate the testing results. This paper mainly ori-
ents coverage-based software testing. For this kind of testing,
traditional adequacy criterion can be described as follows:

[Test AdequacyCriterion 1] [31] For a given set of targets
(statements, branches, or paths and so on) of a program, find
a test suite in the input domain of the program under test, such
that for each target, there is at least one test datum in the test
suite that can cover it.

Different test targets correspond to different test criteria.
For example, statement coverage criterion requirements that
the test data can cover all executable statements. Generally
speaking, path coverage criterion ismore difficult than branch
coverage criterion, and branch coverage criteria is more dif-
ficult than statement coverage criterion.

For a program without uncertainties, the above criterion
is valid. However, there are some limitations when apply-
ing it to a program with randomness. For a program with
uncertainties, whether a test datum can cover a target or
not is not deterministic. That is to say, the program may
have different execution results with the same test datum. To
clearly illustrate this, let us investigate the program shown in
Figure 1.

62000 VOLUME 8, 2020



X. Yao et al.: Testing Method for Software With Randomness Using Genetic Algorithm

FIGURE 1. Example program.

The program in Figure 1 contains 4 target statements. The
input of this program is a. r is a random number that obeys
the uniform distribution from 0 to 1. When a is larger than 0,
it can cover target statement 1 when r > 0.5 or statement 2
when r ≤ 0.5. When a is smaller than or equal to 0, it can
cover target statement 3 when r > 0.7 and target statement 4
when r ≤ 0.7. Since the value of r is random, for any input
a, which target statement will be covered is uncertain.
For a program without uncertainties, whether a test datum

can cover a target is determined, suggesting that if we repeat-
edly run the program with the same test datum, the results
of these runs are all the same. However, for a program with
randomness, different executions may cause different results.
Therefore, test adequacy criteria 1 does not applicable, and
new test adequacy criteria for this kind of programs should
be presented.

For a program with randomness, whether a test datum can
cover a target is uncertain, therefore, we can regard it as a
random event. Although the occurrence of a random event
is uncertain, the probability of a random event occurring is
determined under a specific condition. Therefore, we can
present a test adequacy criterion for a program with random-
ness based on probability theory.

For the above example, suppose that the input of the pro-
gram, a, is greater than 0. We can see that a can cover target
statement 1 if and only if r > 0.5, where r is a random
number. Assume that the probability density function of r is
f (x), then the probability of a covering target statement 1 is:

p = p{r > 0.5} =
∫ 1

0.5
f (x)dx.

Because r obeys the uniform distribution from 0 to 1,
f (x) = 1 when x ∈ [0.1]. So p = 0.5.
Because of the existence of random number, a test datum

larger than 0 cannot guarantee to cover target statement 1.
In this case, we can increase the probability of test target

being covered by increasing the number of test data. Sup-
pose that there are n test data, a1, a2, · · · , an, where ai >
0, i = 1, 2, · · · , n, the probability that the test suite,
{a1, a2, · · · , an}, covers statement 1 is:

p1 = 1− (1− 0.5)n (1)

We can see from formula (1) that, the value of p1 goes up
as the value of n increases. For some test target, although we
cannot guarantee that it must be covered, we can guarantee
the probability of this test target being covered is larger than
a given positive between 0 and 1. Based on this observation,
we present a novel adequacy criterion for testing a program
with randomness as follows:

[Test Adequacy Criterion 2] For a given set of targets
(statements, branches, paths and so on), seeking for a test
suite in the input domain of the program, such that for each
target, the probability of the test suite covering the target is
not less than a given positive value.

For a program without uncertainties, the probability of
a test datum covering a target is either 1 or 0. Then, the
condition that the probability is larger than a given positive
value is equivalent to the test datum covering the target.
So, test adequacy criterion 2 is equivalent to test adequacy
criterion 1 for a program without uncertainties. In this sense,
test adequacy criterion 2 is a generalization of test adequacy
criterion 1.

In addition, different test targets correspond to different test
methods. For example, if the test targets are statement, the
corresponding method is called statement coverage testing.

IV. OPTIMIZATION MODEL FOR TEST DATA GENERATION
After giving the novel adequacy criterion for testing a pro-
gram with uncertainties, the next step is to generate test
data that satisfy the criterion. Next, we will take the branch
coverage criterion as an example to build the optimization
model for the problem of generating test data to cover a series
of branches of a program with randomness. Of course, this
method can also be applied to other test criteria.

A. DECISION VARIABLE
Let the program under test be G, and the input of G be
x1, x2, · · · , xm. Then, the input of G forms the following
vector, X = (x1, x2, · · · , xm). If the domain of xi is Di, i =
1, 2, · · · ,m, the domain of the input of G can be represented
as D(G) = D1 × D2 × · · · × Dm, where ‘‘×’’ refers to the
cartesian product.

Suppose that program G has b target branches, denoted
as B1,B2, · · · ,Bb. According to test adequacy crite-
rion 2, the problem of generating test data for covering
B1,B2, · · · ,Bb can be described as: seeking for a test suite
{X1,X2, · · · ,Xn} in the domain of the input of G, such that
the probability of each target branch being executed exceeds
a given positive value. Since the task of generating test data is
to determine the value of X1,X2, · · · ,Xn, they are regarded
as the decision variable of the optimization problem.

VOLUME 8, 2020 62001



X. Yao et al.: Testing Method for Software With Randomness Using Genetic Algorithm

B. OPTIMIZATION MODEL
Let X = {X1,X2, · · · ,Xn} be a test suite that contains n test
data. If we take X as the input of a program to run it, and
obtain the minimal probability of all targets being covered,
denoted as q, we call q the credibility of the test suite,X . For
a given positive value, α,X satisfies test adequacy criterion 2
if and only if q ≥ a. In the following, we will discuss how to
obtain the credibility of X .

Let Aij be a random event that Xi covers branch Bj. If
pij = p(Aij) is 0 or 1, Aij is a deterministic event; otherwise,
0 < pij < 1, and Aij is random. Generally, the execution of
a program is related only to its current input, so these test
data can be regarded as independent from each other. Conse-
quently, the events of A1j,A2j, · · · ,Anj are also independent
from each other.

When all test data in X have been executed, the probabil-
ity of Bj being covered is

pBj = p(A1j ∪ A2j ∪ · · · ∪ Anj)

= 1− p(A1j ∪ A2j ∪ · · · ∪ Anj)

= 1− p(A1j ∩ A2j ∩ · · · ∩ Anj)

= 1− p(A1j}p{A2j} · · · p{Anj)

= 1− (1− p(A1j))(1− p(A2j)) · · · (1− p(Anj))

= 1−
n∏
i=1

(1− pij) (2)

Thismeans that the credibility ofX = {X1,X2, · · · ,Xn} is

q = min
1≤j≤b
{pBj} = min

1≤j≤b
{1−

n∏
i=1

(1− pij)} (3)

According to test adequacy criterion 2, q should be larger
than a given positive value, α, i.e.

f (X1,X2, · · · ,Xn) = q = min
1≤j≤b
{1−

n∏
i=1

(1− pij)} ≥ α. (4)

In addition, we wish the number of test data is as small as
possible so as to reduce test cost. Therefore, we take n as the
optimization objective.

Based on the above discussion, the optimization model of
generating test data for covering branches B1,B2, · · · ,Bb
can be formulated as:

min n

s.t.

{
f (X1,X2, · · · ,Xn) ≥ α
Xi ∈ D(G)

(5)

C. FURTHER DISCUSSION
Function f (X1,X2, · · · ,Xn) are given in formula 4. However,
the value of pij is hard to be determined. In the follow-
ing, we will present a method of approximately calculating
f (X1,X2, · · · ,Xn).

Lemma 1:
n∏
i=1

(1− ai) ≤ (1− 1
n

n∑
i=1

ai)n, where 0 ≤ ai ≤ 1,

i = 1, · · · , n.

Proof: Let h(a1, a2, · · · , an) =

n∏
i=1

(1− ai) −

(1− 1
n

n∑
i=1

ai)n,

then

∂h
∂ak
= −

n∏
i=1
i 6=k

(1− ai)− n(1−
1
n

n∑
i=1

ai)n−1(−
1
n
)

= −

n∏
i=1
i 6=k

(1− ai)+ (1−
1
n

n∑
i=1

ai)n−1

Let 

∂h
∂a1
= 0

∂h
∂a2
= 0

· · ·

∂h
∂an
= 0

We obtain the stationary points a1 = a2 = · · · =
an. The maximum value of function h(a1, a2, · · · , an) may
be obtained at stationary points or boundary points. When
a1 = a2 = · · · = an, h(a1, a2, · · · , an) = 0.
Now consider the boundary points. Suppose that ai1 =
ai2 = · · · = aik = 1(k ≥ 1) and for any
i ∈ {1, 2, · · · , n}\{i1, i2, · · · , ik}, ai = 0, we obtain
h(a1, a2, · · · , an) = −(1− k

n )
n
≤ 0. So the maximal value

of h(a1, a2, · · · , an) is 0, thus h(a1, a2, · · · , an) ≤ 0, i.e.,
n∏
i=1

(1− ai) ≤ (1− 1
n

n∑
i=1

ai)n.

Let pj be the probability of an arbitrary test datum in

{X1,X2, · · · ,Xn} covering target Bj, then pj =
1
n

n∑
i=1

pij.

Theorem 2: 1 −
n∏
i=1

(1− pij) ≥ 1 − (1− pj)
n, where

pj =
1
n

n∑
i=1

pij.

Proof: In Lemma 1, let ai = pij, we obtain

n∏
i=1

(1− pij) ≤ (1− pj)
n

By Theorem 2, the credibility of {X1,X2, · · · ,Xn} is

q = min
1≤j≤b
{1−

n∏
i=1

(1− pij)} ≥ min
1≤j≤b
{1− (1− pj)

n
} = q′

If q′ ≥ α, q ≥ α. So we can substitute q with q′ to evaluate
the credibility of {X1,X2, · · · ,Xn}. However, the value of q′

is also not easy to be calculated. In the following, we will
employ a statistical method to estimate it.

Let Yj be the number of test data that coverBj when we run
the program with {X1,X2, · · · ,Xn} as the input, respectively,

62002 VOLUME 8, 2020



X. Yao et al.: Testing Method for Software With Randomness Using Genetic Algorithm

then Yj(j = 1, 2, · · · , b) is a random variable. Let

Zij =

{
1, Xi covers Bj

0, otherwise

Then Yj = Z1j + Z2j + · · · + Znj. So

E(
Yj
n
) =

1
n

n∑
i=1

E(Zij) =
1
n

n∑
i=1

pij = pj

Thus, Yjn is an unbiased estimator of pj, and f (X1,X2, · · · ,Xn)
can be estimated as

f (X1,X2, · · · ,Xn) ≈ min
1≤j≤b
{1− (1−

Yj
n
)n} (6)

V. TEST DATA GENERATION USING SET-BASED
GENETIC ALGORITHM
In order to solve the optimization model formulated in
Section 4.2, we propose a set-based genetic algorithm. In
the following, we will first give the representation of the
individual. Following that, wewill design the fitness function,
and present the genetic operators. Finally, the steps of the
proposed algorithm are listed.

A. INDIVIDUAL REPRESENTATION
The decision variables of optimization model (5) are
X1,X2, · · · ,Xn, so when we solve the model using evolu-
tionary methods, an individual in the population is a test
suite {X1,X2, · · · ,Xn}, where Xi is an input of program G.
If Xi = (xi1, xi2, · · · , xim), individual {X1,X2, · · · ,Xn} can
be represented by the following matrix with n rows and m
columns:

Mn×m =


x11 x12 · · · x1m
x21 x22 · · · x2m
...

...
...

...

xn1 xn2 · · · xnm


X1
X2
...

Xn

(7)

where each input is encoded by the binary coding.

B. FITNESS FUNCTION
In order to solve the optimization model formulated in
Section 4.2 using genetic algorithms, we need to design
a fitness function to evaluate the individuals. For the two
objectives in this model, it is more important to maximum
the required coverage rate than minimum the number of
test data. So, we design the fitness function of individual
{X1,X2, · · · ,Xn} as follows:

fitness(X1,X2, · · · ,Xn) =
f (X1,X2, · · · ,Xn)

n+ θ
(8)

where θ is a positive constant and determined according to
the size of the program.

C. GENETIC OPERATORS
Due to the particularity of the individual representation, it is
necessary to design appropriate genetic operators, including:
selection operator, crossover operator and mutation operator.

1) SELECTION OPERATOR
A part of the existing individuals is selected to breed a new
generation according to the fitness function. We adopt for-
mula (8) as the fitness of an individual. In this paper, we use
the roulette wheel method to select individuals.

2) MUTATION OPERATOR
We employ two kinds of mutation operators: one is called
compression mutation that realizes the decrease of the test
data in a test suite; while the other one called expansion
mutation realizes the increase of the test data in a test suite.

a: COMPRESSION MUTATION
Suppose that Mn×m = {xij} is an individual. We randomly
select a point (a test datum), denoted as k(1 ≤ k < n). Then
we can obtain the new individual by the following way:

x ′i,j =

{
xi,j, if i ≤ k
xi+1,j, if k < i ≤ n− 1

The resulting individual M ′(n−1)×m = [x ′i,j] is the children.

b: EXPANSION MUTATION
Suppose that Mn×m = {xij} is an individual. A single point
is selected randomly, denoted as l(1 ≤ l ≤ n). Then
we randomly generate a test datum X∗, denoted as X∗ =
(x∗1 , x

∗

2 , · · · , x
∗
m). Then let

x ′i,j =


xi,j, if i ≤ l
x∗j , if i = l

xi−1,j, if l + 1 ≤ i ≤ n+ 1

The resulting individual M ′(n+1)×m = [x ′i,j] is the children.
The aim of these two types of operators is to add or reduce

a test suite in the individual. Thus, in the process of evolution,
the number of test data in an individual may change.

3) CROSSOVER OPERATOR
Let Mn1×m = [xi,j] and Nn2×m = [yi,j] be two different indi-
viduals that are represented with two matrixes (The numbers
of their rows may be different.). A crossover point is ran-
domly selected, denoted as (r, c)(1 ≤ r < min{n1, n2}, 1 ≤
c < m). Let

x ′i,j =

{
yi,j, if i ≤ r and j ≤ c
xi,j, if r < i ≤ n1 or c < j ≤ m

y′i,j =

{
xi,j, if i ≤ r and j ≤ c
yi,j, if r < i ≤ n2 or c < j ≤ m

The resulting individuals M ′n1×m = [x ′i,j] and N
′
n2×m =

[y′i,j] are the children.

D. TERMINATION CONDITION
By the discussion in Section 4.2 we know that, for the given
threshold α, the reliability of q ≥ 1 − α, if and only if

VOLUME 8, 2020 62003



X. Yao et al.: Testing Method for Software With Randomness Using Genetic Algorithm

TABLE 1. Basic information of test subjects.

q′ = min
1≤j≤m

(1 − (1− pj)
n) ≥ 1 − α. Let p = min

1≤j≤m
pj, we

obtain

(1− (1− p)n) ≥ 1− α

So

p ≥ 1− α
1
n

That is to say, for the given n, in order to make the relia-
bility q ≥ 1 − α, we only need to assure that p ≥ 1 − α

1
n ,

where p = min
1≤j≤m

pj ≈ min
1≤j≤m

Yj
n . So the termination condition

of the algorithm is that min
1≤j≤m

Yj
n ≥ 1 − α

1
n or the algorithm

have reached the maximal number of generations.

E. STEPS OF THE ALGORITHM
The steps of the proposed algorithm are as follows:

Step 1: Parameter settings.
Determine the values of the control parameters, such as the

population size, the number of test data in each individual,
the maximal number of generations, crossover probability,
mutation probability, the threshold α, etc.

Step 2: Population initialization.
Randomly generate an initial population containing κ indi-

viduals, denoted as Pop(0) = {M1, M2, · · · , Mκ}, where
each individual Mi is a test suit.
Step 3: Fitness value calculation.
Calculate the fitness value of individual Mi according to

formula (8). In the algorithm, the greater the fitness value of
an individual is, the better it is, and thus has a greater chance
to be selected to the next generation.

Step 4: Termination condition determination.
Determine if the termination conditions of the algorithm

are satisfied. If yes, go to step 6; otherwise, go to step 5.
Step 5: Genetic operator implementation.
Perform genetic operators, including selection, crossover

and mutation operators, and go to step 3.
Step 6: Algorithm termination.
Stop the evolution and output the final results.

VI. EXPERIMENTS
This section conducts the experiments to evaluate the effec-
tiveness and the efficiency of the proposed method.

A. TEST SUBJECTS
The experiments are based on 10 C programs with random
numbers. Some basic information of these programs can be
seen in Table 1. The first 8 programs are open source pro-
grams on the Internet, and the last 2 programs are action role
playing games developed by a local company. All of these
programs contain different number of random numbers.

B. RESEARCH QUESTIONS
We have two goals to conduct the experiment, one is to
validate the effectiveness of the optimization model for test
data generation based on the proposed adequacy criterion, the
other is to evaluate the efficiency of the set-based evolutional
algorithm in generating test data. So we consider the follow-
ing research questions:

RQ1: Does the test data generated by the proposed
method have higher quality?

RQ2: Could the set-based genetic algorithm generate test
data more effectively?

C. EXPERIMENTAL DESIGN
1) EXPERIMENTAL DESIGN FOR FIRST
GROUP OF EXPERIMENTS
This set of experiments attends to test the effectiveness of
the proposed test data generation model. We choose three
categories of test targets for coverage, i.e. statement, branch
and path. Because this paper mainly studies the problem of
generating test data for programs with random number, we
selected part of targets influenced by random numbers in the
program for test. The number of test targets for each programs
are listed in Table 2.

In the circumstance of not causing confusion, we also call
them statement coverage, branch coverage and path cover-
age testing, respectively. Unlike traditional test methods, we
ensure that each test target can be covered with a certain
probability. For each program under test and each testing
method, we try to generate a test suite with a higher fitness
value.

For the sake of verifying the performance of the proposed
method, we compare it with traditional genetic algorithm and
the random method [32]. For traditional genetic algorithm,

62004 VOLUME 8, 2020



X. Yao et al.: Testing Method for Software With Randomness Using Genetic Algorithm

TABLE 2. Basic information of test subjects.

an individual is a test datum. Therefore, in order to gener-
ate test data covering all test targets, the algorithm needs
to be run many times. In addition, the random method is
a benchmark test data generation method. We also use it
as a comparison algorithm. First, we generate a test suite
according to the proposedmethod. Then, we generate another
test suite containing the same number of test data as the first
test suite using the random method and traditional genetic
algorithm. We evaluate the performance of different methods
by comparing the coverage rates of the test suites for the test
targets.

2) EXPERIMENTAL DESIGN FOR SECOND
GROUP OF EXPERIMENT
The second group of experiments aims at evaluating the effi-
ciency of the proposed genetic algorithm. For this purpose,
the traditional genetic algorithm and random method are also
taken to compare with our method. In traditional genetic
algorithm, the test data are generated one by one, and the
fitness function is the coverage rate for the uncovered test
targets. While in our method, the individual is a test suite. For
the random method, the test suites are generated randomly.
We will evaluate the performance of each test suite using
formula (5).

We try to generate test data to cover all target statements,
target branches and target paths using the proposed algo-
rithm, traditional genetic algorithm and the random method.
In order to evaluate the performance of our algorithm, and the
other two methods, we compare the performance of different
methods using the number of evaluations and the coverage
rate. For our method and traditional genetic algorithm, the
number of evaluations is equal to the total number of individ-
uals generated during the evolution of the algorithm, while

TABLE 3. Results for statement coverage testing.

that of the random method is the total number of test data
generated.

D. EXPERIMENTAL RESULTS AND ANALYSIS
In the following, we will give the experimental results of each
group of experiments.

1) EXPERIMENTAL RESULTS OF FIRST
GROUP OF EXPERIMENTS
a: RESULTS OF STATEMENT COVERAGE TESTING
We try to generate test data that can cover all statements of the
program under test. We record the number of generated test
data for each program. As a comparison, we also generate the
same number of test data for each program with traditional
genetic algorithm and the random method. Then, we run
the program with the generated test data, and record the
coverage rate of statements for each program. Due to the non-
determinism of the experimental results, we repeatedly run
the program 10 times with the generated test data under the
same conditions, and then calculate the average values. The
final results are listed in Table 3.

As can be seen from Table 3 that, (1) for each program
under test, the proposed method can achieve the highest
coverage rate out of these three methods. The average cov-
erage rate of the proposed method is 95.03%, while those of
traditional genetic algorithm and the randommethod are only
88.78% and 77.93%, respectively; (2) the highest coverage
rate of the proposed method is 100%, and the lowest coverage
rate of the proposed method is 92.1%, whereas those of
traditional genetic algorithm are 92.3% and 78.2%, and those
of the random method are 83.4% and 71.6%, respectively.
In addition, the sample standard deviation of our method is

TABLE 4. T -test results of statement coverage testing.

VOLUME 8, 2020 62005



X. Yao et al.: Testing Method for Software With Randomness Using Genetic Algorithm

TABLE 5. Results for branch coverage testing.

also the smallest, which shows that our method has highest
stability.

In order to analyze the experimental results more scientif-
ically, we use the statistical tool, Spss, to conduct T−test for
the comparison of different methods.

Suppose that the result of the our method is X , that of
traditional genetic algorithm is Y , and that of the random
method is Z . We regard X, Y and Z as three random variables.
Now, we’re going to compare the means of X ,Y and Z using
statistical methods. Because there are 12 programs under
test, the results of these programs can form a sample of size
12. Suppose that the results of the proposed method for the
12 programs under test are X1, · · · ,X12, those of traditional
genetic algorithm are Y1, · · · ,Y12, and those of the random
method are Z1, · · · ,Z12. Then (X1, · · · ,X12), (Y1, · · · ,Y12)
and (Z1, · · · ,Z12) can be regarded as three samples of size 12.
Because the experimental results are affected by many

factors, according to the statistical principle, X ,Y and Z
should obey or approximately obey the normal distribution.
Therefore, we use the T−test method to compare their mean
values. Let the significance level α be 0.01. The final results
are listed in Table 4.

As can be seen from Table 4 that, the value of t1 is 5.677,
and that of t2 is 16.307. The values of both statistics are
much higher than the bound, t0.01 = 2.5083. So we can
conclude that for statement coverage testing, the coverage
rate of the proposed method is significantly greater than
traditional genetic algorithm and the random method.

b: RESULTS OF BRANCH COVERAGE TESTING
We do the same experiments for branch testing as statement
one, and the final results are listed in Table 5.

As can be seen from Table 5 that, (1) for each program
under test, the proposed method can achieve the highest
coverage rate out of these three methods. The average cov-
erage rate of the proposed method is 94.33%, while those
of traditional genetic algorithm and the random method are
only 87.99% and 75.41%, respectively; (2) the highest cov-
erage rate of the proposed method is 96.8%, and the lowest
coverage rate of the proposed method is 90.2%, whereas
those of traditional genetic algorithm are 91.7% and 80.3%,
and those of the random method are 85.8% and 70.3%,
respectively.

We also analyze the experimental results with the Spss tool,
and the final results of the T−test are listed in Table 6.
As can be seen from Table 6 that, the value of t1 is 9.813,

and that of t2 is 10.711. The values of both statistics are
much higher than the bound, t0.01 = 2.5083. So we can
conclude that for branch coverage testing, the coverage rate of
the proposed method is significantly greater than traditional
genetic algorithm and the random method.

c: RESULTS FOR PATH COVERAGE TESTING
The third group of experiments are conducted for path cov-
erage testing. We try to generate test data that can cover all
feasible paths of each program under test. The final results
are listed in Table 7.

As can be seen from Table 7 that, (1) for each program
under test, the proposed method can achieve the highest
coverage rate out of these three methods. The average cov-
erage rate of the proposed method is 93.28%, while those of
traditional genetic algorithm and the randommethod are only
87.64% and 70.55%, respectively; (2) the highest coverage
rate of the proposed method is 100.0%, and the lowest cover-
age rate of the proposed method is 90.2%, whereas those of
traditional genetic algorithm are 90.8% and 80.6%, and those
of the random method are 84.7% and 58.4%, respectively.

We also use the statistical tool, Spss, to conduct T−test
for the comparison of different methods, and The experimen-
tal results of T−test for path coverage testing are listed in
Table 8.

As can be seen from Table 8 that, the value of t1 is 9.521,
and that of t2 is 7.860. The values of both statistics are
much higher than the bound, t0.01 = 2.5083. So we can
conclude that for path coverage testing, the coverage rate of
the proposed method is significantly greater than traditional
genetic algorithm and the random method.

From the above experimental results we can conclude that,
for all testing methods, the test data generated according to
test adequacy criterion 2 can generate test data with a higher

TABLE 6. T -test results of branch coverage testing.

62006 VOLUME 8, 2020



X. Yao et al.: Testing Method for Software With Randomness Using Genetic Algorithm

TABLE 7. Results for path coverage testing.

coverage rate than traditional genetic method and the random
method. So we think the proposed method is of effectiveness.

2) EXPERIMENTAL RESULTS OF SECOND
GROUP OF EXPERIMENTS
a: RESULTS FOR STATEMENT COVERAGE TESTING
We generate test data that can cover all target statements of
each program under test by our method, traditional genetic
algorithm and the random method, respectively. The final
results are listed in Table 9.

As can be seen from Table 9 that, (1) On average, the
random method needs more evaluations to generate test data
satisfying test adequacy criterion 2 than our method and the
traditional genetic algorithm, and the traditional genetic algo-
rithm needs more evaluations than our our method. (2) The
least number of evaluations of our method is 2574. For the
same program, the evaluations of traditional genetic method

is about 1.25 times of that of our method, and the random
method is about 1.45 times of our method. The greatest
number of evaluations of our method is 78546. For the same
program, the evaluation of traditional genetic method is about
1.04 times of that of our method, and the random method is
about 1.27 times of our method. (3) the coverage rates of the
two methods are not quite different. The greatest coverage
rate of our method is 99.8%, while that of traditional genetic
algorithm is 98.1%, and that of the random method is 97.2%
for the same program; the least coverage rate of our method
is 90.7%, whereas that of traditional genetic algorithm is the
same, and that of the random method is 89.9% for the same
program.

b: RESULTS FOR BRANCH COVERAGE TESTING
The experimental results for branch coverage testing are
listed in Table 10.

As can be seen from Table 10 that, (1) For branch coverage
testing, the experimental results are similar with that of state-
ment coverage testing. For most programs, our method needs
less evaluations than the other twomethods. In addition, there
is no obvious difference in the coverage rate for the three
methods. (2) The least number of evaluations of our method
is 2352. For the same program, the evaluations of traditional
genetic method is about 1.13 times of that of our method,
and the random method is about 1.52 times of our method.
The greatest number of evaluations of our method is 46952.
For the same program, the evaluation of traditional genetic
method is about 1.06 times of that of our method, and the
random method is about 1.24 times of our method. (3) the
coverage rates of the two methods are not quite different. The
greatest coverage rate of our method is 98.3%, while that of
traditional genetic algorithm is 97.8%, and that of the random

TABLE 8. T -test results of path coverage testing.

TABLE 9. Results for statement coverage testing.

VOLUME 8, 2020 62007



X. Yao et al.: Testing Method for Software With Randomness Using Genetic Algorithm

TABLE 10. Results for branch coverage testing.

TABLE 11. Results for path coverage testing.

method is 97.3% for the same program; the least coverage rate
of our method is 90.3%, whereas that of traditional genetic
algorithm is 90.7%, and that of the random method is 88.6%
for the same program.

c: RESULTS FOR PATH COVERAGE TESTING
The last experiments are conducted for path coverage testing.
We try to generate test data to cover all target paths by
the evolutionary method and the random method, and the
experimental results are listed in Table 11.

As can be seen from Table 11 that, (1) For path coverage
testing, the experimental results are also similar with that
of statement coverage testing and branch coverage testing.
(2) The least number of evaluations of our method is 2173.
For the same program, the evaluations of traditional genetic
method is about 1.50 times of that of our method, and the ran-
dom method is about 2.19 times of our method. The greatest
number of evaluations of our method is 56737. For the same
program, the evaluation of traditional genetic method is about
1.13 times of that of our method, and the random method is
about 1.58 times of our method. (3) The greatest coverage
rate of our method is 95.4%, while that of traditional genetic
algorithm is 94.7%, and that of the random method is 93.6%
for the same program; the least coverage rate of our method
is 90.1%, whereas that of traditional genetic algorithm is

89.9%, and that of the random method is 90.2% for the same
program.

From the above experimental results we can conclude
that, the genetic algorithm can greatly improve the efficiency
of generating test data for programs with random numbers
comparing with the random method. In addition, the propose
method proves the efficiency of traditional genetic algorithm
further.

VII. CONCLUSION
Test is an important means to improving the quality of soft-
ware before delivery and usage, in which a crucial problem
is the generation of effective test data using suitable theories
and methods. Existing test methods are mainly designed for
conventional software. In fact, there are programs contain-
ing random or other uncertain parameters in practice. Tra-
ditional test adequacy criteria cannot be applicable to those
programs.

This paper intends to study the problem of test data gener-
ation for software with random numbers. First, we propose
a novel test adequacy criterion for software with random
numbers. Second, an optimal model of test data generation
for software with random numbers is established. Finally, we
present an evolutionary algorithm to solve the optimization
model. The experimental results illustrate that the proposed

62008 VOLUME 8, 2020



X. Yao et al.: Testing Method for Software With Randomness Using Genetic Algorithm

method can solve the problem of test data for software with
random numbers.

The test adequacy criteria proposed in this paper can enrich
the theory of software test and improve the test effect and
efficiency of software with random numbers. The set-based
genetic algorithm is used to generate test data, which can
further expand the scope of application of evolutionary opti-
mization. So this paper has important theoretical significance
and practical application value. The research of this paper
can provide useful help and inspiration to the software testing
with random numbers.

Of course, there are still some shortcomings in this paper.
First of all, the proposed test criteria need to be further
improved in practice in order to better improve the quality
of software. Whether our proposed criteria can find more
defects than the traditional criteria needs to be further veri-
fied. In addition, our proposed test data optimization model
also needs to be improved to make the generated test data
have better quality. In addition, we use genetic algorithm
to solve the established model, although the algorithm is
obviously superior to the traditional genetic algorithm and
random method. However, can we find a better algorithm to
solve this problem. The above aspects are also the topics we
want to further study in the future.

ACKNOWLEDGEMENT
This work has been helped by Mark Harman of University
College London, which has great effect on improving the
quality of this article greatly.

REFERENCES
[1] L. M. Surhone, M. T. Tennoe, and S. F. Henssonow, Software Quality

Assurance. Whitefish, MT, USA: Betascript Publishing, Sep. 2010.
[2] M. Böhme, ‘‘STADS: Software testing as species discovery,’’ ACM Trans.

Softw. Eng. Methodol., vol. 27, no. 2, pp. 1–52, Jun. 2018.
[3] B. Beizer, Software Testing Techniques. New York, NY, USA: Van Nos-

trand Rheinhold, Jan. 1990.
[4] B. W. Boehm, Characteristics of Software Quality. Amsterdam, The

Netherlands: North Holland, , 1978.
[5] P. Arcaini, A. Gargantini, and E. Riccobene, ‘‘Combining model-based

testing and runtime monitoring for program testing in the presence of
nondeterminism,’’ in Proc. IEEE 6th Int. Conf. Softw. Test., Verification
Validation Workshops, Mar. 2013, pp. 1–11.

[6] Z. Li, P. Avgeriou, and P. Liang, ‘‘A systematic mapping study on tech-
nical debt and its management,’’ J. Syst. Softw., vol. 101, pp. 193–220,
Mar. 2015.

[7] R. Prado, P. Souza, and S. Souza, ‘‘Valipar service: Structural testing
of concurrent programs as a Web service composition,’’ in Advances in
Intelligent Systems and Computing, vol. 448. Apr. 2016, pp. 581–590.

[8] M.-Z. Zhang, Y.-Z. Gong, Y.-W. Wang, and D.-H. Jin, ‘‘Unit test data
generation for c using rule-directed symbolic execution,’’ J. Comput. Sci.
Technol., vol. 34, no. 3, pp. 670–689, May 2019.

[9] G. J. Myers, T. Badgett, and T. M. Thomas, The Art of Software Testing.
Hoboken, NJ, USA: Wiley, 2004.

[10] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen,
W. Grieskamp, M. Harman, M. J. Harrold, P. Mcminn, A. Bertolino, J.
Jenny Li, and H. Zhu, ‘‘An orchestrated survey of methodologies for
automated software test case generation,’’ J. Syst. Softw., vol. 86, no. 8,
pp. 1978–2001, Aug. 2013.

[11] A. Shahbazi, A. F. Tappenden, and J. Miller, ‘‘Centroidal Voronoi
tessellations-a new approach to random testing,’’ IEEE Trans. Softw. Eng.,
vol. 39, no. 2, pp. 163–183, Feb. 2013.

[12] K. P. Chan, T. Y. Chen, and D. Towey, Restricted Random Testing,
vol. 2349. Springer-Verlag, 2002, pp. 321–330.

[13] D. Baca, B. Carlsson, K. Petersen, and L. Lundberg, ‘‘Improving software
security with static automated code analysis in an industry setting,’’ Softw.,
Pract. Exper., vol. 43, no. 3, pp. 259–279, Mar. 2013.

[14] Z. Zhu, L. Jiao, and X. Xu, ‘‘Combining search-based testing and dynamic
symbolic execution by evolvability metric,’’ in Proc. IEEE Int. Conf. Softw.
Maintenance Evol. (ICSME), Sep. 2018, pp. 58–68.

[15] X. Wang, R. Zhao, and L. Li, ‘‘Program slice algorithm for test data
generation,’’ J. Comput. Appl., vol. 25, no. 6, pp. 1445–1447, Jun. 2005.

[16] W. Miller and D. L. Spooner, ‘‘Automatic generation of floating-point test
data,’’ IEEE Trans. Softw. Eng., vol. SE-2, no. 3, pp. 223–226, Sep. 1976.

[17] B. Korel, ‘‘Automated software test data generation,’’ IEEE Trans. Softw.
Eng., vol. 16, no. 8, pp. 870–879, 1990.

[18] A. Salahirad, H. Almulla, and G. Gay, ‘‘Choosing the fitness function for
the job: Automated generation of test suites that detect real faults,’’ Softw.
Test., Verification Rel., vol. 29, nos. 4–5, pp. 4–5, Jun. 2019.

[19] M. Harman, ‘‘Search based software testing for Android,’’ in Proc.
IEEE/ACM 10th Int. Workshop Search-Based Softw. Test. (SBST),
May 2017, pp. 1–2.

[20] P. R. Srivastava, R. Khandelwal, S. Khandelwal, S. Kumar, and S. San-
tebennur Ranganatha, ‘‘Automated test data generation using cuckoo
search and tabu search (CSTS) algorithm,’’ J. Intell. Syst., vol. 21, no. 2,
pp. 195–224, Jan. 2012.

[21] W. Zhang, Y. Qi, and D. Li, ‘‘Test case prioritization based on discrete
particle swarm optimization algorithm,’’ J. Comput. Appl., vol. 37, no. 1,
pp. 108–113, Jan. 2017.

[22] E. Alba and F. Chicano, ‘‘Observations in using parallel and sequential
evolutionary algorithms for automatic software testing,’’ Comput. Oper.
Res., vol. 35, no. 10, pp. 3161–3183, Oct. 2008.

[23] J. H. Andrews, T. Menzies, and F. C. H. Li, ‘‘Genetic algorithms for ran-
domized unit testing,’’ IEEE Trans. Softw. Eng., vol. 37, no. 1, pp. 80–94,
Jan. 2011.

[24] M. Harman, S. A. Mansouri, and Y. Zhang, ‘‘Search-based software
engineering: Trends, techniques and applications,’’ ACM Comput. Surv.,
vol. 45, no. 1, pp. 1–61, 2012.

[25] A. Baars, M. Harman, Y. Hassoun, K. Lakhotia, P. Mcminn, P. Tonella,
and T. Vos, ‘‘Symbolic search-based testing,’’ in Proc. 26th IEEE/ACM
Int. Conf. Automated Softw. Eng. (ASE ), Nov. 2011, pp. 53–62.

[26] A. Pachauri and G. Srivastava, ‘‘Towards a parallel approach for test data
generation for branch coverage with genetic algorithm using the extended
path prefix strategy,’’ in Proc. 2nd Int. Conf. Comput. Sustain. Global
Develop. (INDIACom), Mar. 2015, pp. 110–122.

[27] P. M. S. Bueno and M. Jino, ‘‘Automatic test data generation for program
paths using genetic algorithms,’’ Int. J. Softw. Eng. Knowl. Eng., vol. 12,
no. 06, pp. 691–709, Dec. 2002.

[28] J.-C. Lin and P.-L. Yeh, ‘‘Automatic test data generation for path testing
using GAs,’’ Inf. Sci., vol. 131, nos. 1–4, pp. 47–64, Jan. 2001.

[29] A. Watkins and E. M. Hufnagel, ‘‘Evolutionary test data generation: A
comparison of fitness functions,’’ Softw., Pract. Exper., vol. 36, no. 1,
pp. 95–116, Jan. 2006.

[30] J. Mei and S. Y. Wang, ‘‘An improved genetic algorithm for test cases
generation oriented paths,’’ Chin. J. Electron., vol. 23, no. 3, pp. 494–498,
Jul. 2014.

[31] X. Yao, D. Gong, and W. Wang, ‘‘Test data generation for multiple paths
based on local evolution,’’ Chin. J. Electron., vol. 24, no. 1, pp. 46–51,
Jan. 2015.

[32] P. J. Boland, H. Singh, and B. Cukic, ‘‘Comparing partition and random
testing via majorization and Schur functions,’’ IEEE Trans. Softw. Eng.,
vol. 29, no. 1, pp. 88–94, Jan. 2003.

XIANGJUAN YAO received the Ph.D. degree in
control theory and control engineering from the
China University of Mining and Technology, in
2011.

She is currently a Professor and a Ph.D. Advisor
with the School of Mathematics, China Univer-
sity of Mining and Technology. Her main research
interests include search-based software testing and
evolutionary computation.

VOLUME 8, 2020 62009



X. Yao et al.: Testing Method for Software With Randomness Using Genetic Algorithm

DUNWEI GONG (Member, IEEE) received the
Ph.D. degree in control theory and control engi-
neering from the China University of Mining and
Technology, in 1999.

He is currently a Professor and a Ph.D. Advi-
sor with the School of Information and Electri-
cal Engineering, China University of Mining and
Technology. His main research interests include
evolutionary computation, intelligence optimiza-
tion, and data mining.

BIN LI received the M.S. degree in computer
science from the School of Mathematics, China
University of Mining and Technology, in 2016.

He is currently an Engineer. His research inter-
ests include software engineering and scheduling
optimization.

XIANGYING DANG received the M.S. degree in
computer science from the School of Information
Engineering, Jiangnan University, in 2008. She
is currently pursuing the Ph.D. degree with the
School of Information and Electronic Engineering,
China University of Mining and Technology. Her
research interests include software engineering-
based search, and mutation testing and analysis.

GONGJIE ZHANG received the Ph.D. degree in
computer application technology from the China
University of Mining and Technology, in 2017.

He is currently a Lecturer with the School of
Computer Science and Technology, Jiangsu Nor-
mal University. His main research interests include
software testing and semantic Web.

62010 VOLUME 8, 2020


	INTRODUCTION
	RELATED WORKS
	ADEQUACY CRITERION FOR TESTING PROGRAM WITH RANDOM NUMBER
	OPTIMIZATION MODEL FOR TEST DATA GENERATION
	DECISION VARIABLE
	OPTIMIZATION MODEL
	FURTHER DISCUSSION

	TEST DATA GENERATION USING SET-BASED GENETIC ALGORITHM
	INDIVIDUAL REPRESENTATION
	FITNESS FUNCTION
	GENETIC OPERATORS
	SELECTION OPERATOR
	MUTATION OPERATOR
	CROSSOVER OPERATOR

	TERMINATION CONDITION
	STEPS OF THE ALGORITHM

	EXPERIMENTS
	TEST SUBJECTS
	RESEARCH QUESTIONS
	EXPERIMENTAL DESIGN
	EXPERIMENTAL DESIGN FOR FIRST GROUP OF EXPERIMENTS
	EXPERIMENTAL DESIGN FOR SECOND GROUP OF EXPERIMENT

	EXPERIMENTAL RESULTS AND ANALYSIS
	EXPERIMENTAL RESULTS OF FIRST GROUP OF EXPERIMENTS
	EXPERIMENTAL RESULTS OF SECOND GROUP OF EXPERIMENTS


	CONCLUSION
	REFERENCES
	Biographies
	XIANGJUAN YAO
	DUNWEI GONG
	BIN LI
	XIANGYING DANG
	GONGJIE ZHANG


