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ABSTRACT With the rapid growth of information generated by online social network platforms and the
increased usage of Location-Based Social Networks, location recommendation research has attracted more
attention both in academic and industry. However, the problem of data sparsity still posses a severe challenge
to the existing location recommendation methods. Moreover, extracting and modeling multiple contextual
information, which is one of the key factors that influences user check-in preferences, is another big challenge
faced by the existing methods. Many of the existing location recommendation methods have low accuracy
because they utilize limited contextual information when modeling user check-in behaviors. In this paper,
we propose a Multi-Context-aware Location Recommendation using Tensor Decomposition (MCLR-TD)
approach that incorporates multiple context information at different granularity scales in modeling user
check-in behavior. We use a four mode tensor to model the relationship among the four dimensions: users,
locations, time and weather. In order to reduce the data sparsity problem, we further construct four feature
matrices that are collaboratively decomposed with the tensor. We carry out extensive experiments on two
real-world datasets collected from Foursquare and Yelp and the results demonstrate the effectiveness of our
approach.

INDEX TERMS Context information, contextual preference, location recommendation, tensor
decomposition.

I. INTRODUCTION
With the huge amount of information available on the web,
many people regularly face the problem of ‘‘choice paraly-
sis’’. It is very hard for them to make a satisfying decision
on which locations to visit from the huge number of Point
of Interests (POIs). POI Recommendation Systems try to
solve this problem by utilizing users’ historical check-in data
available in Location Based Social Networks (LBSNs) and
recommending POIs that users may be interested in. This
is achieved by taking advantage of the increased usage of
mobile devices that store and provide huge amount of users’
check-in information alongside LBSNs like Foursquare,
Brightkite and Yelp. POI recommendation can help users to
explore interesting but unvisited locations of a given region
and enrich their experience. POI recommendation is also very
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important to the location based advertisers as it can help them
acquire more potential customers [1].

Human Check-in behavior is always influenced by multi-
ple factors such as user preference [2]–[4], social influence
[5]–[9] and geographical influence [2], [10]–[12]. Temporal
context such as time is another key factor considered in
many recommendation approaches [13]–[15]. People pre-
fer checking in different POIs under different contextual
scenarios [16], [17]. For example, users will prefer check-
ing in outdoor activities during afternoon hours when the
weather is favorable. Recommendation systems that incor-
porate contextual information have proved to perform better
than those that does not consider it [18]. However, mod-
eling user contextual preference is still a key problem in
Context Aware Recommendation Systems (CARSs). This is
because of two reasons; 1) Lack of context data: many of
the available check-in datasets lack information about the
exact contextual scenario under which a check-in instance
happened. Thus the context information can only be acquired
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through inference. 2) Incorporating multiple contexts
requires high level modeling, hence many traditional recom-
mendation methods stick to one context variable that is easy
to handle. However, considering only one contextual factor
leads to low accuracy in recommendation.

Although there has been a lot of research on location
recommendation methods, many challenges still limit the
performance of the existing POIs recommendation systems.
For instance, one key challenge is the data sparsity problem
[19], [20]. There is a huge number of locations available
in LBSNs, however users have only visited a very limited
number of locations, hence the user location matrix is very
sparse. Another big challenge is how to effectively learn
user’s contextual preference by considering multiple contex-
tual factors and combining information from heterogeneous
sources.

To solve the problems discussed above, we propose a
Multi-Context-aware Location Recommendation using Ten-
sor Decomposition (MCLR-TD) approach. We model user
check-in behaviors by considering two contextual informa-
tion; time and weather. We first carry out extensive data
analysis on the two datasets to learn how user check-in
behavior is affected by the two contexts at different scales.
We then construct a four mode tensor to model the relation-
ship among users, locations, time and weather. In order to
deal with data sparsity problem, we further construct four
feature matrices that are collaboratively decomposed with the
four mode tensor to obtain predicted scores. Finally, we carry
out extensive experiments to compare the performance of
MCLR-TD model with some existing POI recommendation
methods.

Compared with the work in [21], [22] that also consid-
ered temporal context, we model temporal context at three
granular levels namely, hourslot of the day, day of the week
and season of the year. We also consider the influence of
weather context on user check-in behaviors. Our approach
further models the interaction between users, locations, time
and weather by utilizing interaction matrices between these
entities.

In summary, the main contributions of our work are as
follows:
1) We carry out extensive data analysis on the two datasets

to determine how user check-in preference is affected
by the two contexts at different scales.

2) We construct a four mode tensor to model the relation-
ship among users, locations, time and weather simulta-
neously.

3) We construct four feature matrices that are collabora-
tively decomposed with the four mode tensor to solve
the data sparsity problem. The feature matrices models
the interaction between different entities.

4) We evaluate our approach on two large-scale real
world data sets collected from Yelp and Foursquare
and the results obtained shows the effectiveness of our
approach.

The remainder of this paper is organized as follows:
Section II summarizes related works in location recom-
mendation domain. Section III formulates location recom-
mendation problem and describes the datasets used in the
experiments. Section IV presents the proposed MCLR-TD
approach. Section V discusses the experiment settings and the
results. Section VI summarizes our work and presents some
future research directions.

II. RELATED WORK
POI recommendation has been widely researched by the
academic community. In this paper, we mainly focus on
previous studies that apply Matrix Factorization (MF) and
Tensor Factorization (TF) based models.

A. MATRIX FACTORIZATION BASED METHODS
MF models have widely been applied in location recommen-
dation systems. MF models utilize two dimensional user-
location check-in matrices as the input data when modeling
user check-in preferences. Some of the existing MF based
location recommendation methods are discussed below.

The work in [13] proposed a unified framework UTE+SE
that extended user-based Collaborative Filtering (CF) by
leveraging the time factor when computing the similarity
between users. UTE+SE model integrated both temporal
and spatial factors when modeling user’s temporal check-in
preference. However, UTE+SE model considered only hour
of the day as the temporal context but ignored other time
dimensions like day of the week, season and other context
factors. The work in [14] divided user check-in data into
24 matrices based on two temporal properties of user’s daily
check-in preferences: non-uniformness and consecutiveness.
They computed similarity among users before generating the
recommendation list.

Thework in [23] proposed two unified location recommen-
dation models that incorporated spatial, textual and temporal
information. Both models extend the item-based CF and user
based CFmodel by utilizing the proximity factor when calcu-
lating user similarity. However, their models only considered
the month of the year when modeling the temporal influence,
thus may not fully capture the changes in user preference
within a short period of time.

The work in [24] proposed GeoMF++ model that applied
MF to jointly model the geographical influence and implicit
feedback. The model used two dimensional kernel density
estimation to capture the spatial clustering phenomenon from
user’s historical check-in data. However, GeoMF++ models
user location preferences by only considering the spatial
information, but ignores the influence of temporal context
and other factors.

The work in [25] proposed TGSC-PMF method that uti-
lized geographical distance, category information, location
popularity and social relations to recommend locations to
users. They applied Latent Dirichlet Allocation (LDA) model
to learn user topic preferences and location topics. However,
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they never mentioned how to handle the data sparsity problem
which may be prevalent when very few users leave comments
on locations. They also ignore the influence of other context
information like time, weather etc.

In summary, MF models have limited applications in
CARSs because they can only handle data in two dimensions.
Many models that apply matrix factorization approach ignore
the influence of contextual factors like time and other implicit
factors leading to poor performance.

B. TENSOR FACTORIZATION BASED METHODS
Recently, tensor decomposition methods have been widely
used in recommendation systems [26], [27]. This is due
to their ability to handle multi-dimensional data. Using TF
model can best solve the problem of matrix factorization
because multiple dimensions can be modeled together to
provide more useful information to the recommendation
systems.

The work by [28] proposed a method for location recom-
mendation by incorporating time context using TF model.
They modeled user-location-time relations using a three-
mode tensor and extracted user and location similarity matri-
ces. In order to increase efficiency of their model, they also
proposed Threshold Algorithm (TA). However, their model
divided time into 24 hour slots which is hard to capture users
temporal preference because a user will have very limited or
no check-ins within one hour. Furthermore, their model did
not utilize other context factors.

The work in [29] proposed a model that exploited category
information using a TF model. They obtained latent factors
using Stochastic Gradient Descent. However, they did not
consider the influence of temporal context on category transi-
tions. The work by [30] proposed a location recommendation
approach that modeled user’s time aware topic preferences
using TF. They used LDA model to extract user topic distri-
bution from comments and constructed a three mode tensor
to represent temporal user topic distribution. They converted
user topic preferences to user POI preference to generate
recommendation list. However, they modeled different scales
of temporal context separately and ignored the influence of
other context factors such as weather.

Thework in [31] proposed anAggregated Temporal Tensor
Factorization (ATTF) method that modeled three temporal
aspects of human check-in behavior namely: periodicity, con-
secutiveness, and non-uniformness. ATTF model aggregated
the contribution of different temporal latent features at dif-
ferent time scales i.e. hour, week, day, and month through
linear combination. However, this model does not consider
the effect of other context such as weather and also faces data
sparsity problem due to limited check-ins within one hour.

The work in [21] proposed a Collaborative Filtering
approach using a three mode tensor to model user check-
in preferences by incorporating spatial influence, temporal
dependency and social constraints. However, their method
only considered temporal information based on hour of

the day granularity and ignored the effect of other time
dimensions such as day of the week and season of the year
and also other contexts information like weather and category
influence.

The work in [32] proposed a Collaborative Tensor Fac-
torization (CTF) method for recommending points of inter-
est (POIs) using a 3-mode tensor with three feature matrices.
They used an element-wise gradient descent optimization
algorithm to solve the formulation problem. The work in [22]
improved the CTFmodel by proposing a Partition-based Col-
laborative Tensor Factorization (PCTF). PCTF partitioned the
original tensor into small sized tensors using a clustering
algorithm before carrying out decomposition. However, both
works divided a day into 24 time slots leading to high data
sparsity because. Moreover, they do not consider other time
dimensions like day of the week and seasons which also
influence user’s mobility patterns.

Compared with the existing location recommendation
methods, our work differentiates itself by using a four mode
tensor to model user check-in behavior under multiple con-
texts i.e. time and weather simultaneously. The two contexts
are modeled at different scales of granularity. We capture
the influence of each context on both locations and users
by carrying out collaborative decomposition of the tensor
and the feature matrices. We also carry out separate exper-
iments to determine the impact of each feature matrix on our
model performance. Our model could also be easily extended
to incorporate more contextual dimensions without loss of
generality.

III. PRELIMINARIES
A. PROBLEM STATEMENT
Given a set of users U = {u1, u2, . . . , uN }, a set of loca-
tions L = {l1, l2, . . . , lM }, and the current context C =
{c1, c2, . . . , cK }, where N ,M and K denote the number of
users,locations and contexts respectively, the recommenda-
tion system should return a list of top-K {1, 2, . . . ,K } loca-
tions to the given user based on the user’s current context. The
ranking order of locations in the final output list must reflect
user’s preference in the current context. The Top-K locations
are defined as shown in equation 1.

Top(u, c,K ) = argKl∈LMaxR(u,l,c) (1)

where R denotes the predicted score of user u checking in
location l under context c. K denotes the number of locations
to be recommended.

B. DATASET DESCRIPTION
We used two real-world datasets of two cities collected from
Yelp1 and Foursquare [33] to carry out extensive experiments
on our proposed model. Each check-in record in the datasets
contains a unique identifier of the user, POI with longitude

1https://www.yelp.com/dataset
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and latitude coordinates and the check-in timestamp. A sam-
ple check-in record obtained from yelp dataset is as follows.

{userID: 897;
LocationID: 4bf58dd8d48988d1e0931735;

Category: Coffee Shop,
Longitude: −73.974;
Latitude: 40.752;

Time:Tue April 03 18:04:38 2012}.

Table 1 shows the summarized statistical information of
the check-in dataset. Historical weather details for the two
datasets were crawled from the World Weather Online API2

for each of the {latitude,longitude,time} triplet available in
the dataset. The weather data collected include temperature,
humidity, pressure, wind speed, cloud cover, moon phase and
heat index. We also collected daily weather summary tags.
They include overcast, sunny, cloudy, rainy, drizzle, fog and
mist.

TABLE 1. Dataset statistics summary.

IV. MCLR-TD METHODOLOGY
Figure 1 shows the framework of our proposed MCLR-
TD approach. It consists of four main parts: 1) Context
inference and modeling; 2) tensor and feature matrix con-
struction; 3) Collaborative tensor decomposition; 4) POI
recommendation.

FIGURE 1. MCLR-TD system framework.

A. CONTEXT INFERENCE AND MODELING
Context inference and modeling is a very critical stage in
CARSs. Users in LBSNs check-in different POIs under dif-
ferent contexts. We study the distribution of user check-ins
in different time and weather context scenarios and select

2https://www.worldweatheronline.com/

context factors that display high check-in distribution vari-
ance. This improves the performance of our system because
incorporating all context factors without determining which
factors are relevant may adversely affect the accuracy of
the recommendation system and increase the number of
computations.

1) TIME CONTEXT MODELING
User activities are periodical. Users normally visit different
locations during different time periods [13]. For example,
people usually go to restaurants during lunch and dinner
hours, and they go to nightlife spots like bars at night. In order
to capture user check-ins preference in different time peri-
ods, we split time context into three different levels namely,
season, day of the week and hourslot of the day. Every user
check-in instance has a unique timestamp, hence, there are
very huge numbers of timestamps in our check-in dataset.
In order to reduce the time dimension, we encode check-in
timestamp into timeslots that represent both season, day of
the week and hourslot.

a: SEASON
Different users prefer visiting different locations in different
seasons of the year. Similarly, locations also experience vary-
ing check-in distribution in different seasons. For example,
outdoor spots like parks will experience higher check-ins
during summer and spring compared to winter due to the
good weather. Based on the seasonal check-in distribution
in different categories shown in figure 2, it is clear that
season context influences user check-in preferences. Hence,
we incorporate season information in our location recommen-
dation approach.

FIGURE 2. Seasonal distribution of user check-ins in different categories.

b: DAY OF THE WEEK
Users in LBSNs have varying check-in behaviors on different
days of the week [15], [31]. They check in different loca-
tion categories during weekdays and weekends. For example,
work places have higher check-ins during weekdays while
leisure spots have higher check-ins on weekends, as shown
in figure 3. Hence, we divide a week into weekday (Monday-
Friday) and weekends (Saturday and Sunday).
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FIGURE 3. Daily distribution of user check-ins in different location
categories.

FIGURE 4. Hourslot check-in distribution in different categories.

c: HOURSLOT
Different users prefer visiting different locations during dif-
ferent hours of the day. For example, a user may prefer
visiting an animal park in the afternoon and visiting a bar at
night. Figure 4 shows the distribution of check-ins of differ-
ent categories in different hourslots. Based on the figure 4,
it is evident that different location categories have different
check-in distribution during different hours of the day.

Compared to [13], [34] that divided time into 24 hourslots
which may lead to sparsity problem because users have lim-
ited number of check-ins within an hour; we divide a day into
5-hour slots as shown in table 2 below.

With longer time frames, more information and more
check-in data will be integrated into the tensor and the feature
matrices making them more dense, leading to better perfor-
mance [21].

Because, season, day of the week and hour slot represent
time periods of different granularities, we represent them

TABLE 2. Hour slot range.

FIGURE 5. Time hierarchy representation.

FIGURE 6. Time Hashing example.

using a hierarchical model, as shown in figure 5. For example,
a check-in that happened on July 2013 at 17 pm will be rep-
resented as ‘‘Summer_weekday_Afternoon’’. Since there are
4 seasons, 2 types of days in a week and each day has 5-hour
slots, we encode them to obtain a total of 40 unique timeslots.
Thus, our MCLR-TD approach is able to model user check-in
behavior in 40 different hierarchical time periods.

For ease of representation, we encode each timeslot using
2 bits to represent season information, 1 bit to represent the
day of the week and 3 bits to represent the hour slot. The
binary representation is then converted into a unique decimal
digit as the timeslot id. Figure 6 shows an encoding example
of sample check-in timestamp ‘‘Thu Jun 07 05:34:23 +0000
2012’’ extracted from the Yelp dataset.

2) WEATHER CONTEXT MODELING
Users check-in behavior are always influenced by weather
conditions [35]. Users will prefer checking in different loca-
tion categories in different weather conditions. For example,
during favorable weather conditions, many users will prefer
visiting outdoor places like parks, when the weather is not
favorable they will prefer visiting indoor places likemuseums
or stay at home. Based on figure 7, pressure, precipitation and
visibility have a skewed check-in distribution while tempera-
ture and moon illumination have a normal distribution.

A location will experience multiple weather conditions
simultaneously, for example, in winter it may be sunny but
freezing or windy. Thus, we also represent weather con-
text using a hierarchical model. To reduce data sparsity
caused by directly using specific temperature values, we split
the temperature values into four intervals, namely freezing
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FIGURE 7. Check-in distribution in different weather conditions.

(below 0 degrees), cold (0-10 degrees), warm (10-25 degrees
and hot (above 25 degrees). We combine the seven daily
weather summary tags (overcast, sunny, cloudy, rainy, driz-
zle, fog and mist) with the four temperature slots to obtain a
total of 28 weather context dimensions that are used in tensor
construction stage. An example of weather context can be
represented as {overcast_hot}. In order to generate unique
ids for each weather context, we use 2 bits to represent the
temperature range and 3 bits to represent the daily weather
summary tags.

B. CONSTRUCTION OF TENSOR AND FEATURE MATRICES
1) FOUR-MODE TENSOR CONSTRUCTION
From every check-in data quartet (user, location, time,
weather), we construct a four mode tensor A ∈ R(N×M×K×L)

to model user check-in preference to given locations under
different contextual scenarios. Where N, M, K and L repre-
sent the number of users, POIs, timeslots and weather context
respectively. The four modes are summarized as follows:

1) Mode-1 (Users): U = [u1, u2, · · · , uN ] denotes N
different users

2) Mode-2 (POIs): L = [l1, l2, · · · , lM ] denotes M differ-
ent POIs where users checked in.

3) Mode-3 (Hashed Timeslots) T = [t1, t2, · · · , tK ]
denotes K different hashed timestamps when check-in
instance occurred.

4) Mode-4 (Hashed Weather) W = [w1,w2, · · · ,wL]
represents L hashed weather conditions under which
the check-in instance occurred.

We represent user check-in preferences based on check-
in frequency. The higher the check-in frequency, the more a
user prefers that location under the given context. Each entry
A(i, j, k, l) of the tensor A stores the number of times that user
i checked in location j in time slot k and under weather context
w. Thus, we can access the distribution of user check-ins in
different locations under different contexts by accessing the
vector A(i, j, k, l). If a user has no check-in record in a given
location, then A(i, j, k, l) = 0.

Figure 8 below shows the schematic representation of the
constructed four mode tensor. The tensor construction pro-
cess can be interpreted as constructing a three mode tensor
with dimensions (user,location,time) for every weather con-
text in our weather dimension.

FIGURE 8. Schematic representation of 4-mode tensor.

2) CONSTRUCTION OF FEATURE MATRICES
User check-ins in given contexts are always limited to a small
number of locations. The tensor constructed above is very
sparse with very few non-zero values. Filling the missing
entries by only utilizing the non-zero entries of the sparse
tensor is not efficient enough [32].

In order to reduce the sparsity problem, we further con-
struct four feature matrices that are factorized collaboratively
with the tensor. The matrices constructed shares atleast one
mode in common with the four mode tensor. The coupled
factorization of tensor with matrices can best recover the
missing entries of the sparse tensor [36]. The feature matrices
constructed can also aide in recommendation of locations to
new users commonly referred as ‘‘cold start’’ by recommend-
ingmost popular locations in specified context scenarios. The
four matrices are explained below.

a: TIME-CATEGORY MATRIX M1
Every location belongs to a specific category. Different loca-
tion categories will experience varying check-in distribution
in different time slots, as discussed earlier in section IV-A1.
Thus, modeling the distribution of check-ins in different
categories in different time slots can help infer which cate-
gories are most preferred by the users in a given time slot
i.e. category popularity. This is more efficient than model-
ing the distribution of check-ins in single locations directly
with the huge number of locations in the datasets. To gener-
ate the time-category matrix, we first cluster check-in data
into 144 categories available in our dataset. Check-ins in
every category are further clustered into 40 unique timeslots.
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Every entry M1(i, j) of the matrix stores the total counts of
check-ins of time slot ti in category cj. Sample time category
matrix is as shown below.


t1
t2
t3
...

tN





c1 c2 c3 · · · cM
5 0 2 · · · 7
4 8 11 · · · 6

3 0 7
... 15

...
...

. . .
...

13 0 5 · · · 8


b: LOCATION SIMILARITY MATRIX M2
Users tend to prefer visiting locations similar to the ones
they visited in the past [37]. Locations with similar check-
in distribution in different time periods are considered to be
more similar than those with different check-in distribution.
For example, a bar is more related to a night club than a
coffee shop. We calculate the similarity between two loca-
tions based on user check-in distribution in different timeslots
using the cosine similarity. The similarity is computed using
equation 2.

cosSim(li, lj,C) =

∑
ck∈C (rki × rkj)√∑

ck∈C (r
2
ki)×

√∑
ck∈C (r

2
kj)

(2)

where rki and rkj denotes the check-in frequency of timeslot
tk in location li and lj respectively. C is the context scenario.
Using the location similarity information, we construct a

location- location matrixM2, where each row and column of
the matrix denotes a location. Each entry M2(i, j) stores the
similarity between location li and lj.


l1
l2
l3
...

lN





l1 l2 l3 · · · lM
1 0.7 0.5 · · · 0.3
0.7 1 0.3 · · · 0.5

0.5 0.1 1
... 0.6

...
...

. . .
...

0.4 0 0.5 · · · 1


c: LOCATION-WEATHER MATRIX M3
As discussed in section IV-A2, locations have varying check-
in distribution in different weather contexts. Knowing loca-
tions that most users prefer visiting under different weather
conditions can help infer the locations a user may be willing
to visit in a given weather condition. Matrix M3 measures
the popularity of a location in a specific weather context.
For every location in our check-in dataset, we cluster the
check-ins into 28 clusters based on the weather context. Each
element of the matrix stores the total count of check-ins in the
given weather context. A sample location weather matrix is

shown below.
l1
l2
l3
...

lN





w1 w2 w3 · · · wM
11 3 17 · · · 9
3 8 12 · · · 6

13 0 7
... 15

...
...

. . .
...

5 0 9 · · · 4


d: USER CATEGORY MATRIX M4
Different users have a varying preference for locations
belonging to different categories [38]. For example, some
users may prefer checking in shopping malls while others
may prefer checking in nightlife spots. Thus, knowing the
location category that a given user prefers checking in most
can help infer the locations that a given user is most interested
in. For every user in our check-in data, we count the check-
in frequency in every category and store in matrixM4, where
each row denotes a user, while each column denotes a location
category. Algorithm 1 summarizes the process of construct-
ing user-category matrix. A sample user-category matrix is as
shown below.

u1
u2
u3
...

uN





c1 c2 c3 · · · cM
3 0 0 · · · 5
0 6 1 · · · 2

0 2 0
... 1

...
...

. . .
...

1 0 · · · 4 0


C. CONTEXT-AWARE COLLABORATIVE TENSOR
DECOMPOSITION
The ultimate goal of tensor decomposition is to supplement
missing values of a tensor [39]. The most commonly used
decomposition methods are Tucker decomposition (TD) and
Canonical Polyadic decomposition (CP) [40]. In this paper,
we apply CP decomposition method since it is more compu-
tationally flexible to deal with large datasets [39]. The CP
decomposition factorizes a tensor into a sum of rank-one

Algorithm 1 Construction of User-Category Matrix
Input:Pre-processed check-in data
Output:Matrix M4
1: data = Load check-in data
2: Obtain the number of unique users and unique categories
3: Initialize M4 with zeroes
4: for each user i in data do
5: for each category j in data do
6: freq=checkinCount(i,j)
7: M4(i, j) = freq
8: end for
9: end for
10: Return M4
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tensors. For our case, the 4-mode tensor A ∈ R(N×M×K×L)

is decomposed into four low dimensional factor matrices
U ∈ R(u×k),L ∈ R(l×k),T ∈ R(t×k) and W ∈ R(w×k). The
decomposition can be represented as shown in equation 3.

A ≈ [U ,L,T ,W ] =
R∑
r=1

λrur · lr · tr · wr (3)

where U ,L,T ,W are termed as the factor matrices which
is the combination of the vectors from the rank-one com-
ponents. ur ∈ RI , lr ∈ RJ , tr ∈ RK and wr ∈ RL for
r = [1, 2, · · · ,R] represent the rank-one tensors of the four
modes users, locations, timeslots and weather respectively.
R is a positive integer that denotes the number of components
or the rank i.e. the number of rank-one tensors needed to
approximate tensor A as their sum. The rows of the four factor
matrices correspond to each dimension of the tensor while the
columns corresponds to the rank R. Elementwise, equation 3
can be rewritten as shown in equation 4.

A(rec) =
m∑
i=1

(uri · lrj · trk · wrl) (4)

The four feature matrices M1,M2,M3,M4 are factorized
using matrix factorization into their respective factor matri-
ces. For general case, factorization of matrix can be repre-
sented using equation 5.

M = ABTM ∈ Rn×m, A ∈ Rn×r , BT ∈ Rr×m (5)

where r denotes the rank of the factorization. The factor-
ization explains matrix M through r different latent factors,
which are encoded in the matrices A and BT .
In order to perform multiplications of a tensor and

matrices, a tensor must first be matricized into one of its
dimensions as a matrix. Matricization refers to reordering the
elements of N-way array into a matrix. Mode-k unfolding of
the tensor is obtained by assembling all the mode-k fibers
into a matrix. The product is calculated by multiplying each
mode-n fiber by the matrix. For example, with our four mode
tensor, the product of tensor X ∈ R(I×J×K×L) with a matrix
B ∈ R(M×J ) denoted as Y = X×n B ∈ R(I×M×K×L) can be
represented as shown in equation 6; where the Xn denotes the
mode-n product,for our case n = 2.

Y (i,m, k, l) =
∑
j

x(i,j,k,l)b(m,j) (6)

The missing values of the tensor are imputed by extract-
ing common factor matrices with respect to similar modes
of the tensor and the matrices. This is achieved by taking
first order partial derivatives during optimization. With the
collaborative factorization of tensor and matrix, the factor
matrices share parameters when an entity participates in mul-
tiple relations. For example, matrixM1 shares time dimension
with tensor A, Matrix M2 and M3 shares location dimen-
sion with the tensor and matrix M4 shares user dimension
with the tensor. Thus, we can propagate knowledge from the

four feature matrices into our tensor by collaborative tensor
decomposition.

D. FORMULATION OF THE OBJECTIVE FUNCTION
Given tensor A ∈ R(I×J×K×L) and the four feature matrices
M1,M2,M3, M4, our objective is to find the components
U ,L,T ,W ,C that minimizes the equation below:

F(U ,L,T ,W ,C)

=
1
2
||Z × (A− U ◦ L ◦ T ◦W )||2F

+
λ1

2
||M1 − TCT

||
2
F +

λ2

2
||M2 − LLT ||2F

+
λ3

2
||M3 − LW T

||
2
F +

λ4

2
||M4 − UCT

||
2
F

+
λ5

2
(||U ||2 + ||L||2 + ||T ||2 + ||W |2) (7)

where 1
2 ||Z × (A − U ◦ L ◦ T ◦ W )||2 is the least squared

error loss function for the decomposition of the 4-mode tensor
into four factor matrices U ,L,T ,W . Z is the non-negative
weighting tensor that stores 1 for known entries and 0 for
unknown entries of tensor. A. ||.||2 denotes the Frobenius
norm calculated as follow:.

||A||F =

√√√√ m∑
i=1

n∑
j=1

||ai,j||2 (8)

M1 − TCT is the least square error for the factorization of
matrix M1 into factor matrices T and C. M2 − LLT is the
least square error for the factorization of matrix M2 into
factor matrices L ∈ R(l×k) and LT ∈ R(k×l). M3 − LW T is
the least square error for the factorization of matrix M3 into
factor matrices L ∈ R(l×k) and W ∈ R(w×k). M4 − UCT

denotes the least square error for the factorization of matrix
M4 into factor matrices U ∈ R(u×k) and C ∈ R(c×k).
λ5
2 (||U ||

2
+||L||2+||T ||2+||W ||2) is the regularization term

for avoiding overfitting. λ1, λ2, λ3, λ4 and λ5 are the model
parameters that controls the weights of different parts of the
objective function during the decomposition process. Due to
the drawbacks of using Alternating Least Squares (ALS) and
Gradient Descent (GD) [26], we apply Stochastic Gradient
Descent (SGD) [41] to solve the optimization problem by
taking the derivatives of the objective function with respect
to each of the four factors user, location, time and weather.

The optimization algorithm is summarized in Algorithm 2.
It takes the four mode tensor A and the four feature matrices
M1,M2,M3,M4 as the input.We then initialize the four factor
matrices with small random values and run SGD based on
non- zero elements to find the minimum values. We then take
the partial derivatives where Z i and Ai denotes the mode-i
tensor unfolding of the tensors Z and A respectively. Nota-
tion * denotes the Khatri-Rao product. The final outputs are
the four factor matrices which are used in reconstructing a
dense tensor.
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Algorithm 2 Collaborative Tensor Factorization
Input: Tensor A, matrices M1,M2,M3,M4;
Output: Factor matrices U, L, T, W
1: for n = 1 ∈ size(A) do
2: Initialize U ,L,T ,W with small random values
3: end for
4: while not converged do
5: Compute step length αi
6: Compute the gradients as follows:
7: ∇UF = (Z1

−A1)(L ∗T ∗W )+λ5U+λ4(M4−UCT )
8: ∇LF = (Z2

− A2)(U ∗ T ∗ W ) + λ2(M2 − LLT ) +
λ3(M3 − LW T )+ λ5L

9: ∇TF = (Z3
−A3)(U ∗T ∗W )+λ2(M1−TCT )+λ5T

10: ∇WF = (Z4
− A4)(U ∗ L ∗ T ) + λ3(M3 − LW T ) +

λ3(M3 − LW T )+ λ5L
11: Update values based on new gradients
12: Ui+1 = Ui − αiOUFi
13: Li+1 = Li − αiOLFi
14: Ti+1 = Ti − αiOTFi
15: Wi+1 = Wi − αiOWFi
16: Compute Fi+1
17: end while
18: Return U ,L,T ,W

E. GENERATION OF TOP-K LOCATIONS
After the decomposition process, we can recover missing
values of our sparse tensor A by taking the outer product of
the four factor matrices of our output using equation 9.

Arec = U · L · T ·W (9)

The reconstructed tensor measures the associations among
the users, locations, timeslots and weather. Each element
of Arec represent a relation u, l, t,w, s, where s is the pre-
dicted score of user u visiting location l under context (t,w).
The process of generating top-k locations is summarized in
Algorithm 3.

Algorithm 3 Top-K Locations Generation Process
Input:Factor Matrices, userID, timeslotID, weatherID, K
Output:Ranked list of K locations
1: Reconstruct tensor A using equation 9
2: locationList=[]
3: for useru ∈ U do
4: Select all location based on userID and context ID
5: locationList.append(Arec[uid, :, tid,wid])
6: end for
7: Rank locations based on the predicted visiting score.
8: top_k =select(ranked_list ,K)
9: Return top_k

We access the list of candidate locations to recommend
to user u in a given context (t,w) by selecting N corre-
sponding locations with the highest predicted weights from
the reconstructed tensor. Locations are ranked based on the
values of the predicted scores and the Top-K locations are
recommended to the user.

V. EXPERIMENTS AND EVALUATION
In this section, we conduct extensive experiments to demon-
strate the effectiveness of MCLR-TD approach on location
recommendation.

A. EXPERIMENT SETUP
Statistics of the two check-in datasets used in this paper is
summarized in table 1. Datasets from two different LBSNs
collected from different cities New York and Tokyo are used
so as to prove the resiliency of our model on variant datasets.
We only selected check-ins that belong to five primary cat-
egories namely: food, big outdoors, nightlife, entertainment
and shopping. This is aimed at getting rid of residential areas
like homes. Furthermore, we only retained users who have
check-ins in at least 10 distinct POIs and locations with at
least 5 check-in records.

We implemented our approach in MATLAB using MAT-
LAB Tensor Toolbox.3 For each user in our dataset, we first
rank their check-ins based on check-in timestamp and select
30% of their most recent check-ins as the testing data; the
remaining records are used for training and validation. The
input files are text files with one line for each non zero value
in the tensor and matrix. Each line consists of integers that
give the indexes of the non-zero value in the tensor, followed
by a real number that represents the check-in frequency. For
example, for the tensor construction, the text file consists of
five values {uid,Pid, tid,wid, freq} in each line, where freq
represents the check-in frequency.

B. BASELINE METHODS
In order to measure the effectiveness of our approach,
we compare it with the following approaches:

1) Standard CP: Takes only the four dimensional ten-
sor as the input without considering the four feature
matrices. Its objective function is obtained by setting
λ1, λ2, λ3, λ4 of equation 7 to zeros as shown in equa-
tion 10.

F(U ,L,T ,W )=
1
2
||Z × (A− U ◦ L ◦ T ◦W )||2F

+
λ5

2
(||U ||2+||L||2+||T ||2+||W |2)

(10)

2) GeoMF++ [24]. A joint geographical and Matrix fac-
torization model that exploits user mobility data and
location’s spatial information in making location rec-
ommendation.

3) ATTF [31]: A three dimensional tensor based model
that models temporal context in different time scales;
hour, day,week and month but does not incorporate
weather context data.

4) UZT [30]: Content based model that applied tensor
factorization in modeling user check-in preferences
using topic probability distribution learned from user
comments data.

3https://www.sandia.gov/ tgkolda/TensorToolbox/index-2.6.html
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5) ST-DME [34]: Utilized the spatial temporal contexts in
making location recommendation. It incorporates day
of the week and the 24 hours of a day as the time
context.

6) PCTF [22]: A threemode tensor basedmethod that con-
siders 24 hour timeslots and also incorporates feature
matrices when modeling user check-in preferences.

C. EVALUATION METRICS
We evaluate the performance of MCLR-TD model using
three standard performance evaluation metrics. Root Mean
Squared Error (RMSE) and Mean Absolute Error (MAE)
measure the deviation between the true and the predicted val-
ues and are calculated using equation 11 and 12 respectively.

RMSE =

√√√√ 1
N

N∑
i=1

(A(ijkl) − A′(ijkl))
2 (11)

MAE =
1
N

N∑
i=1

|A(ijkl) − A′(ijkl)| (12)

where A(ijkl) and A′(ijkl) denotes the real value and the pre-
dicted value respectively. N is the number of POIs in the
recommendation list.

Because both RMSE and MAE may not be accurate
enough when evaluating the ranked list of locations recom-
mended to the user, we used Mean Reciprical Rank (MRR)
to evaluate the quality of the final ranked list of POIs recom-
mended to the user. MRR is calculated using equation 13.

MRR =
1
|N |

N∑
i=1

(
1

ranki
) (13)

D. EXPERIMENTAL RESULTS
In this subsection we discuss the results of our experiments in
five parts as follows. (1) The first part compares the perfor-
mance of our model on varying parameter values and selects
the optimal values for the parameters. (2) The second part
discusses the effect of multiple contexts on recommendation
performance. (3) The fourth part investigates the impact of
feature matrices on the performance of MCLR-TD model.
(4) Measures the runtime for Standard-CP and MCLR-TD
methods. (5) The last part compares the performance of
MCLR-TD model with baseline approaches.

1) MODEL PARAMETER TUNING
In order to find optimal values for our model parameters,
we used the control variable method in learning the param-
eters. 70% of the training dataset was used for learning the
parameters, while the remaining 30%was used for validation.
The five parameters λ1, λ2, λ3, λ4, λ5 are all set to 0.0001 as
the initial value and then we ran parameter sweeping exper-
iments by varying the values of one parameter at a time.
We computed RMSE on the validation dataset and picked the
optimal parameters with the least RMSE.

FIGURE 9. Variation of RMSE for different values of model parameters on
validation dataset.

Figure 9 above shows the results obtained for different
values of the parameters on the two validation datasets.
We observed that RMSE values varies with different values
of all the five parameters. The RMSE increases when the
value of the parameters is too small. This is because when the
parameter value is too small, the MCLR-TD model cannot
fully utilize the information from the corresponding feature
matrices. Similarly, RMSE increases when the value of the
parameters is too large, this is because the model over utilized
the information from the feature matrices and less informa-
tion from the four mode tensor leading to poor performance.
Hence, selecting optimal parameters is very critical for the
performance of MCLR-TD model.

For the Yelp dataset, the optimal parameter combination
for the five parameters λ1, λ2, λ3, λ4, λ5 for our model was
set to [1.25, 0.473, 0.883, 1.153, 0.438] respectively. For
the Foursquare dataset, the best parameters combination was
[1.351, 0.689, 0.994, 1.607, 0.0.479]. The optimal parameters
for Foursquare dataset are slightly higher than those for Yelp
dataset. This because foursquare dataset is less dense, hence,
learns more information from the feature matrices. Based on
the results, it is evident that all the parameters affected the
performance of the MCLR-TD model. However, λ1, λ3, λ4
were more influential than λ2, λ5. This is because λ1, λ3, λ4
controls the weights of time, weather and category contextual
factors of our model.

2) IMPACT OF MULTIPLE CONTEXTS
In this subsection, we carry out experiments to compare the
performance of our model when it incorporates one con-
text factor at a time and when both contexts are modeled
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FIGURE 10. Impact of contexts on performance.

simultaneously. The first model considers only time con-
text information (user, location, time); the second model
considers only weather context information (user, location,
weather) and the third model incorporates both time and
weather contexts (user, location, time, weather). We carried
out separate experiments for the threemodels on both datasets
and computed the RMSE. Figure 10 show the results for the
three models.

Based on the results, we observed that the model that
considers both temporal context (time) and weather context
simultaneously outperforms models that consider only one
context factor. This is confirms that users mobility pattern is
influenced by multiple contexts, a model that considers mul-
tiple contexts can best capture users’ contextual preferences
compoared to those that consider only one context factor.
Hence, incoprorating multiple contexts in a recommendation
system help improve its performance. We also observed that
the model that only consider time context performed better
than themodel that consider weather context. This proves that
temporal context is a key factor in location recommendation
systems, as also proved in previous works [13], [42]. Thus,
modeling the two contexts time and weather using a four
mode tensor boosts the performance of our model.

3) IMPACT OF FEATURE MATRICES
This experiment was aimed at measuring the effect of each
feature matrix incorporated in our model. We carry out five
separate experiments on collaborative tensor-matrix decom-
position by incorporating only one feature matrix at a time on
both datasets. These models are compared with the Standard
CP (SCP) model which does not include any feature matrix
and the MCLR-TD model that incorporate all the feature
matrices. The results obtained are summarized in Table 3.

Based on the results, we observed that models that incorpo-
rate feature matricesM1 andM4 has better performance than
model that incorporate matrices M2 and M3. This is because
matrices M1 and M4 stores information about time and cat-
egory contexts that have higher influence on user check-in
behavior. We also observed that the results obtained by the
models that consider only one feature matrix does not vary

TABLE 3. Impact of feature matrices on performance.

very much, this is because feature matrices only share one
or two modes with the four mode tensor, hence not effective
enough when recovering the missing values of the original
tensor during decomposition process because the model can
only learn more information from the shared dimension. For
example, matrix M1 only shares the time dimension with
the tensor. When all the 4 feature matrices are combined
together using optimal parameter values, our model achieves
much better performance compared to Standard-CP and the
other models that only incorporate only one feature matrix.
Standard CP method has worst performance because it does
not utilize any external information learned from the feature
matrices. Hence, incorporating all the four feature matrices
in our recommendation model with optimal parameter values
improves its performance by helping reduce the data sparsity
problem.

4) RUNTIME COMPARISON
We carry out experiments to measure the time taken to con-
verge by the Standard-CPmethod and theMCLR-TDmethod
on both datasets. The results obtained are summarized in
table 4. Because the objective function is minimized based on
the known entries of the tensor, we observed that Standard-
CPmethod took longer time to converge compared toMCLR-
TD method. MCLR-TD can obtain missing values from the
feature matrices, hence took less time to converge. Both
methods took longer time to converge on Foursquare dataset
because it’s more sparse compared to Yelp dataset.

TABLE 4. Runtime comparison.

5) COMPARISON WITH BASELINE METHODS
Tables 5 show the results achieved by our approach and
the baseline methods on the two test datasets for the three
evaluation metrics: RMSE, MAE and MRR.

Based on the results, we observed that MCLR-TD outper-
forms the five baseline approaches on both datasets. This
implies that the incorporation of multiple context factors
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TABLE 5. Performance comparison with baseline methods.

modeled at different scales is effective for POI recommen-
dation. Apart from incorporating time and weather contexts,
MCLR-TD approach also incorporates the influence of loca-
tion category information by incorporating user category
transition matrix. MCLR-TD is able to deal with the data
sparsity problem by incorporating four additional feature
matrices that are collaboratively decomposed together with
the tensor, hence more accurate in predicting the missing
values.

ATTF model performs better than PCTF model because it
incorporates temporal context in three different dimensions
while PCTF only consider 24 hours of the day. UZT and
ATTF performs poorer compared to MCLR-TD because they
only utilize the sparse tensor as the input. UZT model also
only considers hour of the day time granularity, hence the
model is not able to fully capture the temporal influence on
user check-in behaviors. GeoMF++ approach has the worst
performance because it only considers the spatial influence
when modeling user check-in behavior, hence it is unable
to model the temporal changes in user check-in preference.
Furthermore, PCTF, UZT, ATTF and ST-DME approaches
only model time context but ignore the influence of other
contextual factors like weather and category information
leading to poor performance. We also observed that all meth-
ods have better performance on the Yelp dataset compared
with Foursquare dataset. This is because the Yelp dataset
has a higher check-in density and more POI compared to
Foursquare dataset; hence low sparsity.

In summary, the results obtained shows the effectiveness
of utilizing multiple contextual factors in a recommendation
system using tensor based approach. The integration of the
tensor and the feature matrices improves the performance of
our model by making it more robust in dealing with sparse
datasets.

VI. CONCLUSION AND FUTURE WORK
In this paper, we proposed MCLR-TD approach that uti-
lizes multiple contextual information of time and weather in
making location recommendation using collaborative tensor-
matrix decomposition. We first carried out an extensive data
analysis on the two datasets to determine how human check-
in behaviors are affected by contextual factors. Based on the
intuitions obtained from data analysis, we constructed a four

mode tensor to model the relationship among users, loca-
tions, time and weather. Our approach further incorporates
four feature matrices constructed using data from different
dimensions. The four mode tensor and the four feature matri-
ces decomposed together hence reducing the data sparsity
problem. The evaluation results on two real world check-
in datasets showed that MCLR-TD performs better than the
baseline methods due to it’s ability to model multiple con-
texts and deal with data sparsity problem by incorporating
information from different dimensions. In future, we intend
to work on scaling to large and more datasets collected from
different LBSNs. We will also work on how to incorporate
other contexts factors such as trip purpose and mode of
transport.
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