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ABSTRACT There is an increasing demand for a novel computing structure for data-intensive applications
such as artificial intelligence and virtual reality. The processing-in-memory (PIM) is a promising alternative
to reduce the overhead caused by data movement. Many studies have been conducted on the utilization
of the PIM taking advantage of the bandwidth increased by the through silicon via (TSV). One approach
is to design an optimized PIM architecture for a specific application, the other is to find the tasks that
will be more advantageous when offloading to PIM. The goal of this paper is to make the PIM, a newly
introduced technology, be easily applied to various applications. The programmable GPU-based PIM is the
target system. The essential but simple task offloading conditions are proposed to secure as many candidate
tasks as possible when there is any potential benefit from the PIM. The PIM design options then are explored
reflecting the characteristics of the candidate tasks actively. When determining offloading conditions, it is
difficult to simultaneously consider three time-energy-power objectives. Thus, the problem is divided into
two sub-problems. The first offloading condition is designed based on time-energy constraints, whereas
the second offloading condition is modeled to satisfy time-power constraints. During the whole processes,
the offloading conditions and the PIM design options are carefully configured in a complementary manner
to reduce the tasks that are excluded from the offloading. In the simulation results, the suitability of the
modeled two offloading conditions and the proposed PIM design are verified using various benchmarks and
then, they are compared with previous works in terms of processing speed and energy.

INDEX TERMS High bandwidth memory, near-data-processing, processing-in-memory, task offloading.

I. INTRODUCTION
Recently, more and more attention is paid to applications that
require massive data processing, such as artificial intelligence
and virtual reality. The parallelism of the graphic processing
unit (GPU) has been used to increase the processing speed
for such applications. However, improving efficiency in terms
of data movement has not been a big concern [1]. Therefore,
there is an increasing demand for a novel computing structure
optimized to the execution of data-intensive applications. The
near-data-processing (NDP), which puts the processing unit
close to the data, is a promising alternative for reducing the
overhead caused by data movement. When the processor is
near memory, it is defined as a processing-in-memory (PIM).
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An example is the packaging of a processing unit within a
memory module or inside a DRAM chip. Recently, the tech-
nology of the through silicon via (TSV) enables CPU,
GPU or hardware accelerator to be mounted on logic die
of 3-dimensional stacked memory. Thanks to this, PIM
technology, which vertically stacks DRAM and a logic
die with processing units, is also gaining popularity. The
programmable GPU-based PIM has been actively studied,
because it can process more various algorithms than hardware
accelerators. The GPU-based PIM is also attractive, because
it allows a use of numerous software development kits (SDK)
such as CUDA and OpenCL. Since a memory can be directly
accessed through a TSV in the PIM, it is expected that many
problems that a host processor has with off-chip memory
accesses may be resolved, including the limited bandwidth,
long latency and energy inefficiency [2].
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The PIM, located at the base layer of the 3D stacked
memory, has several challenges to be tackled for the realiza-
tion and utilization. First, the PIM has a strict area constraint,
which makes it difficult to put a sufficient amount of pro-
cessing units on the logic die of the base layer. In addition,
as the base layer of the stacked memory is far off from the
top heat sink and thus, it is vulnerable to a thermal problem.
This allows just a small power budget for PIM. Under the
these design constraints, many studies have been conducted
on the utilization of the PIM. The most common approach
is to put a PIM simply as a ‘mini’ version of the host to
benefit from the bandwidth increased by the TSV. When the
applications are expected to have a higher speed in PIM than
in the host processor, job offloading to the PIM is performed
with various granularities based on the static or dynamic
characteristics of individual applications [1], [3]–[6]. The
execution at the compact and low power PIM is expected
to result in a high energy-efficiency. Another approach is
to design a PIM architecture targeting a specific application
such as image processing, machine learning and graphic
processing. An optimized hardware accelerator may be pro-
posed [7]–[11]. For the GPU system, the conventional struc-
ture or scheduling schemes can be modified [1], [12], [13].
However, these previous studies are not useful enough to
drive the popularity of PIM. Strict offloading conditions and
PIM design only for specific applications make it difficult
for various tasks to be performed in PIM. To make the PIM,
a newly introduced technology, be easily applied to various
applications, the offloading conditions and the design options
should be comprehensively observed, and both need to be
complementarily optimized.

The goal of this paper is to increase the applicability of the
PIM, taking the processing time, energy and power consump-
tion into consideration in a PIM-enabled GPU consisting of
a host GPU and a PIM GPU (Hereafter, the Host GPU and
the PIM GPU are referred to as Host and PIM, respectively).
The essential but simple task offloading conditions are pro-
posed to secure as many candidate tasks as possible when
there is any potential benefit from the PIM. The proposed
conditions aim at building up an easy-to-use PIM environ-
ment rather than finding the optimal offloading point. The
PIM design options then are explored focusing on the can-
didate tasks. When determining offloading conditions, it is
difficult to simultaneously consider three time-energy-power
objectives. Therefore, it is divided into two sub-problems of
time-energy and time-power. The first offloading condition
selects candidate tasks that have the potential to benefit from
PIM in terms of energy. PIM design exploration targeting for
candidates achieves Host-level processing time with limited
computing capacity of PIM. The second offloading condi-
tion takes care of the power constraint of PIM. Through
the clock frequency scaling technique, the possibility of
candidate tasks falling out of PIM offloading is reduced.
The main contributions of this paper are summarized as
follows.

• Simplified offloading conditions are proposed supported
by PIM design option exploration to make better use of
PIM through potential-based task offloading.

• Design challenges of processing speed, energy effi-
ciency and power budget are considered together.

• Setup and use of PIM environment are easy with a few
intuitive parameters.

The remainder of this paper is organized as follows.
Section II reviews the previous works about PIM offloading.
In Section III, an overview of the proposed PIM-enabledGPU
system is given. Sections IV and V respectively propose the
task offloading conditions and the PIM design in view of the
processing time and energy efficiency. Section VI describes
the task selection process to satisfy the power constraints.
Section VII shows simulation results and the conclusions are
given in Section VIII.

II. RELATED WORKS
Many studies have already pointed out the memory bottle-
neck problem and highlighted the need to shift the paradigm
to data centric computing [14], [15]. They have shown that the
consideration of PIM-specific constraints, a new architecture
for the PIM, the set of memory intensive benchmarks to ben-
efit from the PIM and the methods to accurately identify the
PIMoffloading candidates are necessary. Also, the simulation
infrastructure to measure the performance of the PIM should
be established [14], [15].

In most of the recent studies, out of the many tasks con-
stituting an application, those that require a large amount
of memory bandwidth are offloaded to the PIM [1], [5].
In [1], the offloading tasks are selected by three conditions of
memory intensity, sharedmemory intensity and available par-
allelism. After that, a precise scheduling algorithm is applied.
In [5], the performance after the offloading is predicted based
on the number of the executed vector and scalar commands,
the number of memory access commands, the number of
the local data shared accesses, the utilization rate of various
execution units, the cache hit rate and the amount of memory
access. In these previous studies, the offloading conditions
are too complicated and various to be practically used. Strict
and complex offloading conditions are difficult to use and
lower the utilization of PIM by reducing the chance that tasks
will run in PIM.

Some studies have focused on the power constraints of
the PIM to consider the thermal problem in addition to pro-
cessing speed-up [16]–[19]. Various solutions from passive
cooling to high-end server active cooling have been applied
to demonstrate the feasibility of the PIM with a small power
budget [16]. Reference [17] improves the speed under the
thermal design power limit by designing SW/HW that can
recognize heat during run time and offload instructions to
PIM considering thermal issue in PIM. In [18], an architec-
ture has been proposed to optimize the power efficiency of
PIM. A network on chip of diagonally linked mesh (DMesh),
which is proposed instead of the conventional fully connected
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crossbar, occupies less area. In a saved space, additional
SMs are invested. It greatly increases energy efficiency sat-
isfying the power constraints. The [19] analyzed the effect
of dynamic voltage and frequency scaling (DVFS) on the
performance of the Host and PIM. Tasks are offloaded to the
PIM according to four scenarios of maximum performance,
minimum power, minimum energy delay squared product
(ED2P) and maximum performance under power constraint.
However, these studies [18], [19] focus on reducing the power
consumption of PIM, which can reduce processing speed.

Some works have studied the architecture of GPU-based
PIM for specific area such as image or graph process-
ing [12], [13]. The work in [12] proposed a PIM architecture
and programming model for image processing. Compact
GPU design is achieved by efficiently distributing data
to each SM based on a regular memory access pattern.
Reference [13] designed an HMC-based graphic processor
architecture for 3D rendering applications. The texture fil-
tering performance is significantly improved by applying the
frame tiling technique to the texture unit in HMC. An archi-
tecture optimized for a specific task has the disadvantage of
lack of design flexibility or applicability.

III. OVERVIEW OF THE PROPOSED PIM-ENABLED
SYSTEM
The GPU-based PIM is one of the architectures that draw
most attention. The PIM enable system in this paper consists
of the Host and the PIM, as assumed in many previous
studies [1], [5], [13], [18]–[20]. The Host comprises tens or
hundreds of streaming multiprocessors (SM), which are con-
nected to the HBM through interposers. The PIM is mounted
on a logic die placed in the base layer of the HBM. Due to the
limitations of the area, the PIM has a small number of SMs,
and thus the computing capability is considerably lower than
that of the Host. However, the PIM may have a high memory
bandwidth. Unlike HMC, the current HBM has same exter-
nal and internal memory bandwidth. However, many current
studies, including [1], assume that higher internal BWs can
be utilized when the processor is mounted on logic dies
of 3D stacked memory such as HBM. This is because PIM
is connected to the memory controller through TSV, so there
is no need for unnecessary external interface. This leads to
various possibilities to increase internal memory bandwidth
in the near future. In the proposed PIM-enabled system, 3D
stacked memory with HBM configuration is assumed.

Figure 1 shows the development process of the proposed
PIM-enabled system. It consists of the process of determining
offloading conditions and the PIM design exploration to
support those conditions after test running. Since it is difficult
to acquire the sufficient information for offloading decision
during the compile time, Host collects the performance
counter and power information through a test running. In the
first stage, the OCT-E is modeled for task selection with
energy advantages in PIM. The opportunity to be a candidate
task is given, assuming that the tasks having a difficulty in
the memory access in the Host may benefit from the high

FIGURE 1. development process of the proposed system.

memory bandwidth of the PIM. Then, PIMdesign exploration
is conducted reflecting the characteristics of the candidate
task selected by the OCT-E so that PIM running can be
competitive in terms of processing speed compared to Host
running.

In the second stage, the offloading condition, OCT−P,
is modeled to satisfy the PIM power constraint. Due to the
physical position, the PIM gives a direct effect on thememory
temperature. If the power budget allowed to the PIM is
exceeded and the temperature is increased, the refreshing
period of the memory will be shortened. This can signifi-
cantly decrease the performance of the entire system because
the memory is shared by the PIM and the Host. However,
if the candidate tasks that exceed the power budget are
indiscriminately excluded from the PIM offloading, the appli-
cability of the PIM that may benefit from the high energy effi-
ciency will be decreased. Operating clock scaling techniques
enable power consumption control of candidate tasks. Test
running in Host enables the estimation of power consumption
and processing speed in PIM according to operating clock
scaling.

The two offloading conditions and the power estimation for
PIM are designed by means of straightforward and easy-to-
use linear combinationmodel. The parameters used in model-
ing are intuitive and very small compared to previous studies.
Once the thresholds and weights of OCT-E and OCT−P are
set according to the user’s system following the development
process of Figure 1, only offloading condition checking is
required during the use process. Just marginal time overhead
is required to calculate OCT-E and OCT−P. The accuracy of
the models proposed in this paper is experimentally verified
in Section VII.

IV. POTENTIAL-BASED OFFLOADING CONDITIONS FOR
ENERGY EFFICIENCY
In the Host environment with many SMs, the high parallel
processing may easily improve the task execution speed but
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it significantly decreases the cache efficiency. The high miss
rate of the cache increases the access to a lower level cache
or an off-chip memory, often causing the stall or the lack
of bandwidth. Considering such characteristics, the miss per
total instruction of the L2 cache (L2MPI) and the stall of
the L1 cache (L1S) are selected as the indicators to check the
potential of specific tasks. As the L2MPI, representing the
frequency of miss in the L2 cache, is increased, the access
to the off-chip memory is increased. In [21], tasks with high
misses per kilo instructions showed higher processing speed
and lower energy-delay-product in PIM compared to Host.
In that case, it is advantageous to execute the tasks in a PIM
having a high memory bandwidth. The L1S represents the
stall from the L1 cache to the L2 cache [22]. The tasks that
frequently undergo L1S have the potential to better utilize
the high memory bandwidth of the PIM when the stall is
decreased. The OCT-E in (1) checks whether the weighted
summation of the L1S and L2MPI is greater than the threshold
TH. The weight values and the TH are set empirically through
experiments. If the OCT-E value of a particular task that is
eligible for PIM is less than the threshold, the task may miss
the opportunity to be offloaded to the PIM. The threshold
is therefore set to a sufficiently small value with a margin.
However, if the OCT-E value of which a task that is not
suitable for PIM is rather high, it may be determined as a can-
didate task inappropriately. Wrong offloading decision will
result in poor performance. In this paper, memory-access-
oriented PIM design exploration is performed considering
the characteristics of candidate tasks as well as offloading
conditions. This greatly makes the memory access smooth in
PIM, allowing candidate tasks to achieve higher processing
speed compared to Host. As such, OCT-E and PIM design
exploration are complementary, reducing the risk of setting
the threshold to a small value. The weight values in (1)
are determined to balance different ranges of L2MPI and L
L1S 1S values. For the 17 tasks, the average of L2MPI and
L1S was 0.003 and 0.17, respectively, and thus, a weight
of 58(=0.17/0.003) is given for L2MPI. For L1S, a weight
of 0.22 is set to increase the importance of L2MPI, which
directly affects the utilization of the wide memory bandwidth
of PIM.

58× L2MPI + 0.22× L1S + 0.005 > TH (1)

To test the suitability of the OCT-E, various bench-
marks are executed in the Host and PIM environments.
Seventeen benchmarks from rodinia3.0 [23], Poly-Bench [24]
and NVIDIA SDK CUDA code samples [25] are run in the
gpgpu-sim [22]. The baseline system configuration follows
Pattnaik’s work [1]. A GPU having a Fermi architecture is
assumed. For 3D stacked memory configuration, the dram
latency, bus width, burst length and clock frequency of
GDDR5 are scaled based on [26] and the HBM timing model
of Gem5 [27] is used. To clearly discern the effect of the
memory bandwidth and computing performance, the PIM
is configured to have 1/4 computing capability and 4 times
memory bandwidth compared to the Host. The number of

SMs is 32 and 8 in the Host and the PIM, respectively. The
3D stacked memory bandwidth is assumed to be 256 GB/s
in the PIM and 64 GB/s in the Host. In both Host and PIM,
the L1 data cache size is 16 KB, whereas the L2 cache size is
128 KB per memory partition, and 1 MB in total for all the
eight memory partitions. The operating clock frequency is set
to be 1 GHz for both Host and PIM. Hereafter, the PIM with
this configuration is called a PIMBASE.

Table 1 shows whether the OCT-E can be used to determine
the competitiveness of PIM. The first column shows the
benchmarks used for the experiment, and the second column
shows the calculated value of the left-hand in (1). The third
column shows the instructions per cycle (IPC) ratio obtained
by executing the same benchmarks in the Host and PIMBASE.
At TH=0.1, the shaded twelve tasks satisfy the OCT-E.
Among them, six have a higher IPC in the PIMBASE than
in the Host. Potential does not always guarantee higher PIM
IPC than Host. Considering that SM accounts for about 80%
of the entire power consumption in the GPU [28], the power
consumption of PIM is overwhelmingly low compared to
Host. If task offloading is immediately given up, the oppor-
tunities for energy saving would disappear. In the following
section, the IPC of PIM is improved to the level of the Host by
positively reflecting the characteristics of the candidate tasks
to the PIM design options.

V. PIM DESIGN EXPLORATION FOR ENERGY EFFICIENCY
In Table 1 of Section IV, CS, J2I and Conv2 satisfy the
OCT-E but actually show a lower IPC in PIMBASE than in
Host. Focusing on these target tasks, the PIM design explo-
ration is conducted to make the potential-based OCT-E valid.
To increase the IPC of the target tasks in PIMBASE to the level
of Host, the speed improvement by about 56% is required.

TABLE 1. The relationship between OCT-E and PIM-to-Host IPC Ratio.

A. SM
During memory-intensive workloads, increasing the number
of computation cores does not guarantee a performance boost
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at any point due to the limited memory bandwidth [29]. If the
number of computation cores increases in data-demanding
tasks aimlessly, the performance may even become degraded
due to a large amount of idle state cores caused by a long
memory access latency time. However, in an environment
where the number of SMs is very low and the memory band-
width is sufficient, such as PIM, additional SMs are likely to
contribute directly to a performance improvement. Because
the SM is the most important factor affecting the area of a
GPU, it is necessary to select an appropriate number of SMs
considering both the IPC and area overhead. Figure 2 shows
the candidate task’s IPC based on the number of SMs when
the memory bandwidth is 64 and 256 GB/s. When the mem-
ory bandwidth is small like the Host, IPC increases and soon
saturates due to the memory bottleneck as shown in CS and
J2I. However, when high memory bandwidth such as PIM,
a proportional improvement in IPC is observed as the number
of SMs increases. Conv2 has a lot of memory access, but
the L1 cache is the main bottleneck. Thus, off-chip memory
bandwidth does not significantly affect performance. The 3D
stacked memory chip size is known to be 91.99 mm2, and the
free space is about 72.25 mm2, if the area for physical layer
(PHY), TSV and test ports (19.74 mm2) is excluded [30]. The
area for single SM, an L2 cache and a memory controller
is approximately 5.4 mm2, 3.8 mm2 and 2.04 mm2, respec-
tively. Thus, the total area of PIMBASE comes to 49.04 mm2.
Therefore, up to 12 SMs can be mounted within the PIM’s
area budget. The area of each component is estimated accord-
ing to CACTI7 [31] and MCPAT [32]. When the target tasks
are executed in the PIM with 12 SMs, denoted as PIMSM12,
the IPC is improved by about 48% compared to the PIMBASE
with eight SMs. The IPC needs to be increased 8% more to
have a processing speed similar to that of Host. Therefore,
better design options are necessary for caches.

FIGURE 2. Comparison of IPC values according to the number of SMs.

B. CACHE
Massive multi-threading of the GPU lowers the effective
cache size per thread, causing significant cache conflicts [33].
Even if the size of off-chipmemory is assumed to be infinitely
large, the IPC performance is limited by the cache con-
tention [34]. Therefore, there is an opportunity to increase
IPC if the cause of L1 and L2 cache contention is identified
and resolved well. To analyze cache contention, the reser-
vation fail (RF) [35] is checked. The RF represents the

contention of the resource handling for cache miss and is
classified into four types. The RF_Tag means that a cache
line is reserved by a previous memory request and fails to
be replaced, whereas the RF_Miss_queue represents that a
miss request is failed to be sent to a lower memory level
as the buffer is fully occupied by the bandwidth limitation.
If there is a cache miss of the same data in the miss status
holding register (MSHR), the pending hit is increased after
merging. The RF_Merge_MSHR means that the number of
merges allowed in one MSHR has been exceeded. Finally,
the RF_Scarce_MSHR occurs when a miss request fails to
be registered due to the lack of the entry in the MSHR. This
subsection explores a cache design option that reduces the
RF observed to be high in cache and consequently decreases
the memory access latency. In gpgpu-sim, the latency is mod-
eled through queues between each memory. Among them,
the maximum round trip time between cores and DRAM
is observed through the sum of max_icnt2mem_latency and
max_icnt2sh_latency.

1) L1 CACHE
The L1 cache miss latency plays an essential role for the IPC
of the memory intensive application [34]. In the PIMSM12
of Figure 3, RF_Tags of CS, J2I and Conv2 account for
98.4%, 99.9% and 99.9% in total RF, respectively. Thus,
the L1 cache miss latency can be predicted by the RF_Tag.
As mentioned above, this RF indicates the lack of a replace-
able cache line. When the number of ways of the L1 data
cache is doubled to reduce the conflict, not only does the
RF_Tag value decrease but also the total RF value is lowered
as shown in PIMSM12_L1 of Figure 3. In this case, the number
of sets is halved to maintain the cache size. As a result,
the maximum round trip latency between SM and DRAM is
reduced by an average of 71%. The PIMSM12 with this type
of L1 cache is denoted by PIMSM12_L1, hereafter.

FIGURE 3. Comparison of the RF_TAG of the L1 cache.

2) L2 CACHE
In conventional GPU environment, L2 cache is known to
have a lot of congestion because it receives requests from
both off-chip memory and L1 cache [34]. This tendency is
worse when the memory bandwidth is larger. Therefore, for
applications with high data demands, it is common to increase
the L2 cache size along with the number of SMs. L2 cache
contention will be very low when very few SMs are used,
such as the PIMBASE. However, in the case of PIMSM12_L1,
the number of SMs is slightly increased, and above all,
the data traffic flow to the L2 cache is significantly smoothed
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due to the structure change of the L1 cache. This may increase
L2 cache contention [34]. In fact, the RF_Miss_queue of
L1 cache in PIMSM12_L1 increased significantly by 2 times
for CS and 400 times for J2I compared to PIMSM12. This is
because the miss request is not sent from the L1 cache due to
the contention of the L2 cache.

In Table 2, PIMRPROPSED is a configuration that doubles
the number of MSHR entry and the maximum number of
merges of the L2 cache compared to PIMSM12_L1. The num-
ber of MSHR entries and the maximum number of merges
for PIMSM12_L1 were 32 and 4, respectively, and increased
to 64 and 8, respectively. Also, the area of PIMPROPOSED,
which has doubled the MSHR entry, is 70.67 mm2, meeting
the area budget of PIM. The RF distribution of L2 cache is
compared for three target tasks. The RF_Miss_queue, RF Tag
and RF fail are not given in Table 2 because the memory
bandwidth of the PIM is set to a large value of 256 GB/s and
thus, the probability of those RF is very rare. In PIMSM12_L1,
it is observed that RF_Scarce_MSHR and RF_Merge_MSHR
of CS are very high. In PIMRPROPSED, RF_Scarce_MSHR
and RF_Merge_MSHR of CS is decreased by 89% and 20%,
respectively, and overall L2 cache RF is reduced by 35%. As a
result, for CS, the round-trip latency between SM and DRAM
is reduced by 20%.

TABLE 2. Comparison of the RF_Merge, RF_Scarce MSHR of the L2 cache.

VI. REFINED OFFLOADING CONDITIONS FOR POWER
CONSTRAINTS
The power budget of the PIM depends on the cooling system.
When using high-end-server active heat sink, it is known as
55W [16], but current power consumption of the Host is much
higher. In this section, the power consumed by candidate tasks
in the PIMPROPOSED is modeled based on running tests on the
Host. If their PowerPIM exceeds the allowed power budget,
OCT−P is adopted to give them a second chance for offload-
ing. By lowering the operating clock frequency, it is checked
whether the PIM execution time, TimePIM_Scaled, can still
maintain the level of Host execution time, TimeHost, under
the PowerPIM_Scaled less than the power budget. To do this,
both TimePIM_Scaled and PowerPIM_Scaled need to be modeled
from the test running of Host.

A. POWER ESTIMATION FOR THE PROPOSED PIM
Since static power is proportional to the area of active compo-
nents, it can be roughly estimated by reflecting the difference

of the number of SMs and cache size between the Host and
the PIMPROPOSED. However, dynamic power is more affected
by the characteristics of the task than the GPU structure.
In addition, the dynamic power consumption ratio of the Host
and PIMPROPOSED may be different for each SM, L2 cache,
interconnection network (ICNT), off-chip memory DRAM
and memory controller (MC) components. Therefore, inde-
pendent power estimation is required for each component.
In the PIM environment with a small number of SMs, the idle
SM is very rare and thus, only the power change of the active
SM is considered.

Two steps are conducted in this paper to estimate the power
of PIMPROPOSED. First, the dynamic power ratio between
PIMSM12 and Host is modeled reflecting the SM number
difference. The model is then adjusted to take into account
the changed cache design options. For the power model
of PIMSM12 in (2), the GPU components are divided into
two parts based on the experimentally obtained PSM12-to-H
ratio. GPU component parts with similar PSM12-to-H ratio
values have the same weight. Due to the high memory band-
width, the processing utilization rises, resulting in an overall
increase in the power of the computational part. In the case
of L2 cache, the size is large enough and it is shared by
all SMs and thus, the miss rate change according to the
number of SMs is not large. Thus, it is observed that, in many
target tasks, dividing PSM12-to-H of DRAM by PSM12-to-
H of active SM is about 0.25. From this, the memory part
consisting of MC and DRAM has one quarter the weight of
the computational part.

PIMSM12

= α × ((ActiveSM_Host+ L2_Host+ ICNT_Host)

+0.25× (MC_Host+ DRAM_Host)) (2)

The dynamic power of PIMPROPOSED is obtained by adjust-
ing the model of (2) using the β value as shown in (3). The
power in L2 cache and ICNT is minorly tuned with obtained
constant values.

PIMPROPOSED

= β × ((ActiveSM_PIMSM12 +MC_PIMSM12

+DRAM_PIMSM12)

+0.8× (ICNT_PIMSM12 + L2_PIMSM12)) (3)

In order to utilize the model (2) for a particular task,
α needs to be known, which is obtained using Idle per active
(IPA) and L2MPI collected from the Host’s test running.
If the Host’s L2MPI is small, there will be little change in
power because it will not benefit from the increased memory
bandwidth of the PIM. Otherwise, processing utilization is
improved, which consumes more power than Host. IPA is the
ratio of the number of active SMs to idle SMs. The large IPA
in the Host means that this task can be executed with only a
small number of active SMs. Thus, the power consumption
will not change much when running in PIM. In the first
column of Table 3, the α value is determined by dividing
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TABLE 3. Alpha depending on L2MPI and IPA.

L2MPI by coeff_1. The α is then finely adjusted according to
the IPA divided by coeff_2. Coefficients and the range ofα are
empirically derived through experiments of twelve candidate
tasks, where coeff_1 and coeff_2 are set to 0.0055 and 0.38,
respectively.

In estimating the dynamic power of PIMPROPOSED in (3),
β is set using L1 cache RF_Tag divided by total instructions
(L1R_TPI) from the Host’s test running. Coefficients and the
range of β are empirically derived through experiments of
twelve candidate tasks, where coeff_3 is set to 0.09. ICNT
and L2 cache have a weight of β× 0.8. This is obtained by
dividing the average PIMPROPOSED-to-PIMSM12 power ratio
of the L2 cache by the average PIMPROPOSED-to-PIMSM12
power ratio of the active SM.

Table 4 is derived from the correlation between the power
ratio of PIMPROPOSED to PIMSM12 (PPROPOSED-to- PSM12)
and L1R_TPI in the Host’s test running. It is based on that
the reduction of L1R_TPI from PIMSM12 to PIMPROPOSED
shows a similar tendency with L1R_TPI of Host. In Figure 4,
the left vertical axis represents the power ratio, whereas the
right vertical axis represents L1R_TPI. A dashed graphmeans
the reduction of L1R_TPI when changing from PIMSM12 to
PIMPROPOSED. If this value is small, the task’s PPROPOSED-to-
PSM12 power ratio = 1, showing little change in power. Oth-
erwise, it is observed that the power ratio gets high because
the processing utilization of each component increases as
the contention of the L1 cache decreases. Meanwhile, Host
L1R_TPI marked by solid line and the reduction of L1R_TPI

TABLE 4. Beta depending on L1R_TPI.

FIGURE 4. PIMPROPOSED to PIMSM12 power ratio depending on L1R_TPI
of Host.

also show a roughly proportional relationship. Tasks with
high L1R_TPI in the Host show the same characteristics
in PIM, too. Due to improved processing utilization in
PIMPROPOSED with cache modification, the L1R_TPI reduc-
tion of these tasks is also increased.

B. REFINED OFFLOADING CONDITIONS
In order to apply the OCT−P to candidate tasks whose
PowerPIM estimated in Section IV.A is greater than the
allowed power budget, the amount of downscaling in
operating clock frequency to satisfy the power budget
should be known. The corresponding PowerPIM_Scaled and
TimePIM_Scaled are also necessary.

In Figure 5, for PowerPIM_Scaled estimation, the change
of total power consumption including static and dynamic
according to operating clock frequency is observed for can-
didate tasks. The power value is normalized to PowerPIM at
the operating clock frequency of 1000MHz.When it is down-
scaled to 900, 800, 700 and 600Mhz, the power reduction
rate compared to PowerPIM is about 5.3%, 11%, 17%, and
24.4%, respectively. The standard deviation among tasks is
not large, around 2%. Through this, the amount of down-
scaling that satisfies the power budget and the corresponding
PowerPIM_Scaled information can be estimated.

FIGURE 5. The change of total power consumption according to operating
clock frequency for target tasks.

For TimePIM_Scaled, direct estimation from TimeHost is very
challenging. This paper obtains that indirectly through Tratio
(P-to-H) and Tratio (PScaled-to-P) as shown in (4). In (5),
Tratio (P-to-H) is the time ratio when both PIMPROPOSED
and Host run at the baseline operating clock frequency
of 1000 MHz. Tratio (PScaled-to-P) of (6) shows the ratio
between TimePIM_Scaled and TimePIM.

Tratio(PScaled−to− H ) = TimePIM_Scaled/TimeHost
= Tratio(P− to− H )

×Tratio(PScaled−to− P) (4)

Tratio(P− to− H ) = TimePIM/TimeHost (5)

Tratio(PScaled−to− P) = TimePIM_Scaled/TimePIM (6)

To obtain Tratio (P-to-H) in (5), the dynamic power ratio
of PIMPROPOSED and Host for active SM in Section VI.A
is used. This is an important indicator of the processing
utilization of tasks in PIMPROPOSED versus Host. As shown
in Figure 6, the active SM power ratio and measured IPC ratio
of PIMPROPOSED to Host are almost identical.
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FIGURE 6. In PIMPROPOSED and host, measured IPC ratio and power ratio
of active SM.

FIGURE 7. Execution time ratio depending on the operating clock
frequency in different memory bandwidth.

Figure 7 shows the experiment to obtain Tratio (PScaled-
to-P) of (6). Under the memory bandwidth of 64, 128, and
256 GB/s, the average and standard deviation of the exe-
cution time change is illustrated when the operating clock
frequency changes from 1000 MHz to 900, 800, 700, and
600 MHz. It is observed that the standard deviation is very
small in large memory bandwidth environments. It means
that, in PIMPROPOSED with 256GB/s memory bandwidth,
the execution time ratio (PScaled-to-P) can be determined
mostly according to the change of operating clock frequency
without caring about each task independently. When the
memory bandwidth is 256GB/s, Tratio (PScaled-to-P) gradually
increases to 1.07, 1.18, 1.31 and 1.49 when the operating
clock frequency is downscaled from 1000 MHz to 900, 800,
700 and 600MHz, respectively. At low operating clock fre-
quencies, the standard deviation is not negligible and thus,
there may be tasks that fall outside the estimated time ratio.
That is, there is a risk of offloading even when TimePIM_Scaled
is larger than TimeHost. To avoid this, TimePIM_Scaled is
conservatively estimated from TimePIM by adjusting Tratio
(PScaled-to-P)= 1.1, 1.23, 1.37 and 1.56when operating clock
frequency = 900, 800, 700, 600MHz, respectively.

VII. EXPERIMENTAL EVALUATION
A. SUITABILITY ANALYSIS OF THE OCT-E IN THE
PROPOSED PIM
Table 5 is the recalculation of the Host-to-PIM IPC ratio
of Table 1 based on the newly measured IPC in the
PIMPROPOSED. The gray-shaded tasks have an IPC ratio
greater than 1, meaning that the execution speed is higher
in the PIMPROPOSED than in the Host. Among the twelve

TABLE 5. The relationship between proposed PIM-to-Host IPC and
potential based offloading conditions.

candidate tasks that satisfy the OCT-E > TH (=0.1), only
Sradv_2 has an IPC ratio smaller than 1. All the tasks that
fail to satisfy the OCT-E have a smaller IPC compared to
Host. From Table 5, a quite large number of tasks become
candidates to offload, satisfying the OCT-E thanks to the
modification of the PIM design.

B. SUITABILITY ANALYSIS OF THE OCT-P IN THE
PROPOSED PIM
The power consumption of PIMPROPOSED and TimePIM_Scaled
estimated in Sections VI.A and B are compared with the
actual simulation results. In Table 6, the second column
represents the estimated PowerPIM of PIMPROPOSED, whereas
the third column represents the value measured by the simu-
lator. As presented in the fourth column, the average error
rate is about 3.62%. Tasks whose PowerPIM is over power
budget(=55W) are shaded in gray. Their error rate is 5.62%,
whereas the other tasks have a smaller error rate of 2.25%.
In other words, the task that consume low power is less
likely to be excluded from offloading due to power budget

TABLE 6. Comparison of estimated and measured power consumption.
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limitation. It meets the purpose of this paper to improve the
PIM utilization.

Table 7 compares the estimated TimePIM_Scaled with mea-
sured values through simulation. The average error rate
is 5.8%. TimePIM_Scaled of Sradv_1 is larger than TimeHost
and is excluded from offloading. Four out of five tasks
exceeding the power budget could be offloaded through a sec-
ond chance.

TABLE 7. Comparison of Estimated and Measured TimePIM_Scaled.

C. PERFORMANCE COMPARISON
In this subjection, the contribution of the proposed technique
to the performance improvement of the PIM-enabled system
over Host-only system is verified compared to techniques
in [19]. In addition, performance of the proposed PIM is
compared with [18].

First, techniques proposed in [19] and in this paper are
verified by comparing execution time and ED2P reduction
of PIM-enabled system over Host-only system. The system
environment used in [19] and in this paper are not exactly
the same, but it is reasonable to compare the performance
improvement for the following reasons. In PIM-enabled sys-
tem of [19], PIM has 0.75× SMs compared to Host, whereas
PIM of this paper has 0.375 × SMs compared to Host. The
PIM-to-Host computing capability in [19] is larger than in
this paper. In [19], however, a low-performance embedded
GPU is used for PIM, and the memory bandwidth of Host
is set higher than in this paper. Therefore, it can be said that
the system of [19] has a similar PIM-to-Host computing ratio
as assumed in the proposed system. In addition, the main
technique proposed in [19] is DVFS of which performance
is not largely dependent on small structural differences.

Figure 8 shows the reduction of time and ED2P in
PIMPROPOSED and Marko’s PIM [19]. They are normalized
based on performance when running in the host environment
defined in both studies. Dark and light gray bars represent a
normalized time and a normalized ED2P, respectively. When
eleven tasks are offloaded to PIMPROPOSED, time and ED2P
are decreased by 20.5% and 67.2%, respectively. Compared
to Marko’s host, the average reduction rate of time and ED2P
of Marko’s PIM applied with their DVFS technique is shown
in the rightmost. Time and ED2P are reduced by 20.4%
and 61%, respectively, for the fifteen tasks. Marko drasti-
cally reduces time and ED2P, where the optimized kernel
deployment and operating clock frequency adjustment are
searched to achieve minimum time or minimum ED2P on a
PIM-enabled system with a 14 nm technology. Here, how-
ever, the power budget is not considered. This paper achieves

FIGURE 8. Reduction of time and ED2P in PIMPROPOSED and Marko’s.

a reduction rate of time and ED2P similar to Marko’s,
while satisfying the area and power budget constraints in a
PIM-enabled system with a 28 nm technology.

Second, IPC and ED2P changes are shown for the PIMs
proposed in [18] and in this paper compared to the same
baseline PIM, baseline2 of [18]. Simulation is done using
same benchmarks. The proposed offloading condition and
PIM design options are verified using various tasks not used
for modeling. For the twenty kernels used in Wen [18], the
PIMPROPOSED is compared with Wen’s in terms of IPC and
ED2P. Table 8 shows the Host to PIM IPC ratio andOCT-E for
Wen’s kernels. Ten out of twenty kernels have OCT-E greater
than TH= 0.1, resulting in offloading to PIM. In nine kernels
among them, PIM shows higher IPC than Host.

TABLE 8. The relationship between proposed PIM-to-Host IPC and
potential based offloading conditions.

Figures 9 show the results when Wen’s twenty kernels are
run on PIMPROPOSED and Wen’s PIM. The performance is
normalized based on Wen’s baseline2. Because Wen uses
22 nm technology, the power of PIMPROPOSED is scaled from
28 nm to 22 nm for fair comparison. Compared to Wen’s
PIM with 320 GB/s memory bandwidth, PIMPROPOSED
with slightly lower memory bandwidth of 256 GB/s
achieves 19% higher IPC and 0.5% lower ED2P as shown
in Figure 9.
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FIGURE 9. IPC and ED2P in PIMPROPOSED and Wen’s PIM.

VIII. CONCLUSIONS
Expectations for emerging technologies PIM are very high,
but they are not yet popular due to various constraints. This
paper focuses on maximizing the utilization of PIM with
easy-to-use task offloading conditions, minimal GPU struc-
ture changes, and metrics that can meet the power budget
of PIM. The model and parameter adjustment proposed in
this paper assume specific Host and PIM structures. However,
the methodology itself is based on the basic data movement
and power consumption of the GPU, allowing the proposed
schemes to be applied to other systems with less effort. In the
proposed PIM-enabled system, 11 tasks satisfying offloading
conditions among 17 tasks were performed in PIM, resulting
in a 20.5% increase in IPC performance and a 67.2% reduc-
tion in ED2P compared to a Host-only system. Therefore, this
paper shows that the proposed offloading conditions designed
by selecting intuitive and critical minimum indicators are
close to the optimal performance from the previous works
through intensive experiments.
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