
SPECIAL SECTION ON DEEP LEARNING: SECURITY AND
FORENSICS RESEARCH ADVANCES AND CHALLENGES

Received March 5, 2020, accepted March 23, 2020, date of publication March 26, 2020, date of current version April 9, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2983435

Sentiment Analysis in a Forensic Timeline
With Deep Learning
HUDAN STUDIAWAN 1,2, FERDOUS SOHEL 1, (Senior Member, IEEE),
AND CHRISTIAN PAYNE1
1College of Science, Health, Engineering, and Education, Murdoch University, Perth, WA 6150, Australia
2Department of Informatics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia

Corresponding author: Hudan Studiawan (hudan.studiawan@murdoch.edu.au)

This work was supported by the Indonesia Lecturer Scholarship (BUDI) from the Indonesia Endowment Fund for Education (LPDP). This
scholarship is a collaboration between the Ministry of Finance and Ministry of Research, Technology, and Higher Education of the
Republic of Indonesia.

ABSTRACT A forensic investigator creates a timeline from a forensic disk image after an occurrence of
a security incident. This procedure aims to acquire the time for all events identified from the investigated
artifacts. An investigator usually looks for events of interest by manually searching the timeline. One of
the sources from which to build a timeline is log files, and these events are often found in log messages.
In this paper, we propose a sentiment analysis technique to automatically extract events of interest from
log messages in the forensic timeline. We use a deep learning technique with a context and content attention
model to identify aspect terms and the corresponding sentiments in the forensic timeline. Termswith negative
sentiments indicate events of interest and are highlighted in the timeline. Therefore, the investigator can
quickly examine the events and other activities recorded within the surrounding time frame. Experimental
results on four public forensic case studies show that the proposed method achieves 98.43% and 99.64% for
the F1 score and accuracy, respectively.

INDEX TERMS Forensic timeline, deep learning, context attention, content attention, sentiment analysis,
event logs.

I. INTRODUCTION
Constructing a timeline of events is one of the most important
steps in analyzing a piece of digital evidence [1]. For exam-
ple, an investigator needs to build a forensic timeline from
a forensic disk image right after a cyber security attack. The
timestamps can be extracted fromfile systems and various log
files. It is very critical for an investigator to understand when
a suspicious event occurred and the activities surrounding that
event [2].

The forensic timeline provides a general overview of the
activities that occurred before, during, and after a particular
security incident [3]. In addition, timeline construction is a
part of event reconstruction. Event reconstruction is defined
as processing a set of events and constructing a timeline of
the events related to a forensic case [3].

An event of interest can be viewed as an anomaly in a
forensic timeline. For instance, the investigator can analyze

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhen Qin .

outlier files in a directory from digital evidence [4]. A new
file created by an attacker is defined as an outlier in an inves-
tigated computer directory. The iterative z algorithm [5] has
been used to detect this type of outlier. Marrington et al. [6]
investigated temporal inconsistency in event log data from
theWindows operating system. The timeline was constructed
based on the Lamport relation, and the method determines
out-of-sequence and missing events.

The investigator needs to check the forensic timeline for
suspicious events. Existing methods need a manual search
[2] or require inputting keywords that have a high likeli-
hood of occurring [1]. The use of predefined rules does not
provide flexibility because previously unseen messages may
be recorded in log files. For an automatic process, there are
several methods for generating a forensic timeline [8], [9] but
not for finding events of interest in a timeline.

Furthermore, to support statistics-based anomaly detec-
tion for forensic purposes, natural language processing
approaches, such as sentiment analysis, are needed [10].
On the other hand, an investigator can manually identify the

60664 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-8884-6208
https://orcid.org/0000-0003-1557-4907
https://orcid.org/0000-0001-7857-9719

H. Studiawan et al.: Sentiment Analysis in a Forensic Timeline With Deep Learning

FIGURE 1. An illustration of aspect-based sentiment analysis in a forensic timeline. The log messages are extracted from
an authentication log file [7].

events of interest in a forensic timeline. However, this is time-
consuming; therefore, automatic detection of the events of
interest is needed [11].

As one of the primary sources used to build a forensic
timeline, the messages in event logs offer useful information
about events and contain both positive and negative senti-
ments. The basic idea of this work is that the investigator can
spot any event of interest from negative log messages because
log files contain huge entries to analyze. We do not intend to
remove the positive messages from the investigation context.
After the investigator spots log messages with negative sen-
timents, the investigator can further examine the surrounding
events described in the log messages.

As an illustration, there are log messages containing nega-
tive sentiments such as ‘‘failed password’’ or ‘‘authentication
failure’’, as shown in Figure 1. The aspect term is shown in
blue, while the sentiment term is indicated in red. The aspect
term is the entity or subject being discussed in a log message.
This type of timeline can be generated from a forensic disk
image using the log2timeline tool [12].

Therefore, it is advantageous to examine the log files using
aspect-based sentiment analysis. Unlike document-level or
sentence-level sentiment analysis, aspect-based sentiment
analysis aims to detect polarity in each aspect being examined
[13]. This level of granularity enables us to extract more
detailed information from log messages in the investigated
forensic disk. From Figure 1, we can see that the investigator
is better able to analyze a forensic timeline where the events
of interest are highlighted through sentiment analysis results,
especially the negative sentiments.

Aspect-level sentiment analysis involves two main steps:
extracting the aspect from text data and then identifying the
sentiment for each aspect, specifically positive or negative
[13]. The most common data to be examined for its sentiment
are social media data [14] and customer product reviews [15].
By analyzing sentiment, we can determine the users’ and cus-
tomers’ preferences. In our case, the event logs can contain
suspicious activities such as attempts to gain unauthorized
access to computers, as illustrated in Figure 1. On the other
hand, a normal system or normal user activities are viewed as
positive sentiments.

The use of deep learning for forensic purposes was sug-
gested in [11]. On the other hand, deep-learning-based tech-
niques have been used to detect aspect-based sentiment [13],
[16]. They also provide better performance compared to tra-
ditional machine learning methods. Specifically, we employ
attention-based deep learning for sentiment detection [17].
We use two types of attention, namely, context attention and
content attention, to achieve high accuracy.

Overall, the contributions of this paper are as follows.
1) This work proposes using aspect-based sentiment anal-

ysis in a forensic timeline. The events of interest are
modeled as negative sentiments.

2) We use attention-based deep learning to detect senti-
ment from log messages, which are then displayed in a
forensic timeline. This assists the forensic investigator
in examining a timeline containing various messages.

3) Once the sentiment model is trained, it can be used
to detect the events of interest in a forensic timeline
automatically, and no further input is required.

4) The proposed method achieves very high performance,
indicated by 98.43% and 99.64% for the F1 score and
accuracy, respectively.

The organization of this paper is as follows. Section II
covers the related research on forensic timeline analysis,
sentiment analysis of event logs, and anomaly detection in
a forensic timeline. Section III describes the main pipeline of
the proposed method. The experimental results and analysis
are given in Section IV. In Section V, we give the conclusions
and future work of this paper.

II. RELATED WORK
This section reviews the work related to forensic timeline
analysis and sentiment analysis in event logs. Subsequently,
we explain anomaly detection in a forensic timeline. We dis-
cuss anomaly detection because the negative sentiment found
in log messages can be considered an anomaly or an event of
interest as described in this paper.

A. FORENSIC TIMELINE ANALYSIS
One popular tool used to generate a forensic timeline is
log2timeline [2], [12]. It creates a comprehensive timeline

VOLUME 8, 2020 60665

H. Studiawan et al.: Sentiment Analysis in a Forensic Timeline With Deep Learning

from various log sources, such as browser logs and operating
system logs. log2timeline produces a CSV file, which can be
examined or visualized further by other forensic tools.

A recent tool to analyze a CSV file from log2timeline is
Timeline2GUI [1]. It offers a graphical user interface (GUI)
to investigate the timeline. Timeline2GUI is equipped with
a search box enabling an investigator to look for important
events based on a particular keyword. It can filter the events
inside the CSV file generated from log2timeline with Time-
line2GUI or with log2timeline itself.

Moreover, Timeline2GUI has two views, namely, a
reduced view to obtain a general overview of all events and a
detailed view for more detailed records of activity. It also uses
a color highlighting to inform the investigator about events,
such as red for program execution.

To build a forensic timeline, one can use other commercial
tools such as EnCase and FTK, as demonstrated in [18].
As highlighted in [19], the creation of an event timeline from
various artifacts in an operating system is a critical task for
forensic investigation.

Esposito and Peterson [19] showed the analysis of a CSV
output file from log2timeline with an SQL query. First,
the CSV file is imported to a Microsoft Access database.
Then, there are several queries for examining important
events, namely, application activity, browsing history, access
to recent documents, and executed programs [19]. A foren-
sic timeline is also needed after events are modeled with
semantic-based correlation [3] or ontology-based techniques
[9] to investigate the association between events and their
timeline.

There are several other tools to build a forensic time-
line and its visualization, such as Zeitline [20] and Cyber-
Forensic TimeLab [21]. However, these tools are no longer
updated, and more recent tools for visualization, such as
Timeline2GUI [1], are available to practitioners and the dig-
ital forensic community.

B. SENTIMENT ANALYSIS IN EVENT LOGS
Since sentiment analysis is popularly applied to social media
or product review data, we can apply it to log messages from
an event log file. In software engineering, we can identify
developer emotions from commit logs on the GitHub repos-
itory by using sentiment analysis [22]. This work uses the
SentiStrength method, which is built based on a dictionary
of sentiment words and a machine learning technique [23].
Guzman et al. [22] concluded that a software project with
a larger number of developers tends to have more positive
emotion polarity.

Other work on software commit logs indicated that a large
number of changes in source code files resulted in negative
sentiment in the commit messages [24]. The SentiStrength
method is also used in this work [24]. In addition, these works
[22], [24] concluded that the time to commit the source code
to the repository would have negative sentiments when exe-
cuted at the beginning of the week, specifically on Mondays
or Tuesdays.

These aforementioned works attempted to use sentiment
analysis in event log data. However, none of them have
been applied to operating system logs for forensic purposes.
To build a forensic timeline, we propose applying deep-
learning-based sentiment analysis to system logs, which are
extracted from a forensic disk image. Negative sentiments
indicate an anomaly or an event of interest, which has to be
investigated further.

C. ANOMALY DETECTION IN A FORENSIC TIMELINE
In terms of a temporal anomaly, Marrington et al. [6], [25]
modeledWindows event logs based on the Lamport time rela-
tion. This technique can identify out-of-sequence andmissing
events. The advantage of this method is that it can run auto-
matically to assist an investigation. However, it recognizes
anomalies without correcting or giving a recommendation
about the missing events.

The timestamp-based anomaly detection has also been
developed in a virtual machine [26]. Similar to [6], [25], the
authors used the Lamport model to detect anomalous events
from virtual operating system logs. Another work proposed a
temporal cross-reference in the file system and file metadata
[27]. Different from existing methods, we propose a novel
approach that involves using sentiment analysis to detect
an anomaly or point of interest from system logs and then
plotting them in a forensic timeline.

III. THE PROPOSED METHOD
Ablock diagram of the proposedmethod is shown in Figure 2.
There are two main steps, specifically, a training step and an
investigation step. In the training step, we first preprocess the
log files to extract messages containing negative or positive
sentiments. Second, we build word embeddings to represent
text messages as a vector of numbers. Furthermore, there
are two attention-based techniques in the main deep learning
architecture, namely, a context attention layer and a content
attention layer. We then use a softmax layer to determine
whether a message sentiment is positive or negative. In the
last step of the training phase, we save the sentiment model.

In the investigation step, we first build a forensic timeline
from the forensic disk image. We then detect the sentiments
using the model from the training step. Finally, the negative
messages are displayed in a timeline to assist the forensic
investigation. Each step is described in detail in the following
subsections.

A. EVENT LOG PREPROCESSING
To obtain the sentiment of log messages, each log entry is
split into separate entities. Several entities that are commonly
found in a log entry include the timestamp, hostname, process
name, and a message containing a short description about a
particular event. An illustration of the entity parsing process
for a log entry is depicted in Figure 3. At this stage, we extract
all log messages from a log file to be analyzed for their
sentiments.

60666 VOLUME 8, 2020

H. Studiawan et al.: Sentiment Analysis in a Forensic Timeline With Deep Learning

FIGURE 2. Proposed method for detecting aspect-based sentiment in a forensic timeline with deep learning.

FIGURE 3. An illustration of parsing a log entry.

Unlike the existing approaches, which generally use regu-
lar expressions to parse log files, we employ the nerlogparser
tool [28]. It can automatically split each entity in a log entry
using a pretrained deep learning model, namely, bidirectional
long short-term memory. The output of the nerlogparser is
a JSON file containing the entity names and values for all
records in a log file or a dictionary data structure. We use the
latter because it will be fed to the word embedding as the next
layer of the proposed method.

Finally, in this stage, we define the preprocessed log mes-
sages, which contain sentiments such that P = {p1,p2, . . . ,
p|P|} and pi = {wi1,wi2, . . . ,wi|pi|}, wherewi is a single word
in a message pi, |P| is the total length of log messages, and
|pi| is the length of a particular log message pi.

B. WORD EMBEDDING LAYER
Since deep learning architectures can process only numbers,
we convert each word in preprocessed log messages to a
vector of numbers. This conversion technique is commonly
known as word embedding. The embedding is the first layer
in our proposed attention-based deep learning method.

We use a pretrained word embedding, namely, GloVe
version glove.42B.300 [29]. GloVe produces the embedding
value for each word based on statistical properties such as
word occurrence in a certain context or a particular sentence.
The name of this version indicates that it has been trainedwith
a total of 42 billion words of web text data from Common
Crawl [30], and 300 is the dimension of the embedding.

The advantage of using a pretrained embedding model is
that it can include a relationship between the words and the
context in a sentence. Since it has been trained on 42 billion

words of web text data and the log files also contain readable
texts, GloVe is a reasonable representation for text messages
from event log data. In other words, the embedding vector
values from the training results can be applied to the log
files. In this embedding layer, we look up each word from
log messages in the GloVe embedding. If an unknown word
is found in the preprocessed log messages, we replace it with
a random floating value in the range [−0.1, 0.1].
The word length of messages in log entries can vary. There-

fore, we apply the padding and truncating technique to ensure
that the length of messages is the same. We pad a message
if it is shorter than the embedding size, and we truncate it
if otherwise. If the messages are the same size, the model
training can be conducted in batches, therebymaking it faster.

Formally, we define a preprocessed log message p as a
sentence s = {w1,w2, . . . ,wi, . . . ,wi+L , . . . ,w|s|}, where |s|
is the length of the sentence and wi to wi+L are the aspect
terms, where L is the length of the aspect words. The deep
learning model aims to identify the sentiment of these aspect
terms.

The word embedding matrix, E = {e1, e2, . . . , e|P|},
is extracted from GloVe, where E ∈ Rd×|V |, V is the
vocabulary, and d is the word vector dimension. The word
embedding of wi is denoted as ei ∈ Rd×1. In other words, it is
a column from the embedding matrixE. Therefore, we obtain
an embedding vector e = {e1, e2, . . . , e|s|} to represent a
sentence s.

C. CONTEXT ATTENTION LAYER
An attention model is intended to obtain valuable information
on an aspect sentiment from a sentence. The first attention

VOLUME 8, 2020 60667

H. Studiawan et al.: Sentiment Analysis in a Forensic Timeline With Deep Learning

FIGURE 4. An illustration of the context attention procedure.

layer is the context attention. This layer considers three fac-
tors, namely, the word order, the aspect information, and the
correlation between the word and the aspect [17].

To address the context attention, we use gated recurrent
unit (GRU) networks [31] as the deep learning technique.
Figure 4 depicts an illustration of the context attention pro-
cedure. The GRU learns the long-term dependencies in a
sequence of words in a log message and the positional rela-
tionship between words in the whole log message. The GRU
has two gates in its cell, namely, the reset gate and the update
gate. The reset gate r is defined as:

r = σ (Wrxt + Urht−1), (1)

where σ is the logistic sigmoid function, x is the input vector
and ht−1 is the previous hidden state. Moreover, Wr and Ur
are weight matrices to be optimized in the training step. The
vector input x is the vector E from the word embedding layer.
The reset gate manages the computation when the hidden
state neglects the previous state and then adjusts with the
current input. Moreover, the update gate z is denoted as:

z = σ (Wzxt + Uzht−1), (2)

where the notations are similar to the reset gate r . The update
gate manages information from the previous state to the
current one [31].

Furthermore, the activation unit ht is defined by:

ht = z� ht−1 + (1− z)� h̃t , (3)

where h̃t is computed by:

h̃t = tanh(Wh̃t
xt + Uh̃t

(r � ht−1)), (4)

where � is the element-wise product.

To capture the context between the aspect term and its
surrounding words in a log message, we employ two GRU
networks, namely, GRUl for the left context and GRUr for
the right context. GRUl processes the log messages from left
to right or in a forward direction to learn the aspect term
and its sentiment. On the other hand, GRUr moves from
right to left or in a backward direction. This procedure is
illustrated in Figure 4, where the context of word embedding
from Section III B are learned for the left and the right
context. Finally, GRUl provides hidden state vectors Hl =

{hi+Ll , . . . ,hil ,hi−1, . . . ,h1}, while GRUr generates Hr =

{hir , . . . ,hi+Lr ,hi+L+1, . . . ,hN }, where N is the number of
processed words.

Moreover, we use a multilayer perceptron (MLP) to com-
pute the left context attention weight βl of hl , which is
denoted as:

βl = σ (Whl)+ bl, (5)

whereW is the weight matrix to be optimized and bl is a basic
attention weight. We run the same calculation for the right
context attention weight βr . To obtain the attention weights
for all aspects βa, we calculate the mean of the left attention
weight β l and right attention weight βr .

To produce the weighted memory, which contains the
context attention, we define the memory M, which is built
from a stack of embedding vectors E. It is defined as
M = {m1,m2, . . . ,m|M|}, where M ∈ Rd×N . Finally, the
weighted memory M′ = (mw1,mw2, . . . ,mwN) is denoted
as:

mwi = β �mi, (6)

where β is the concatenation of β l,βr , and βa. The weighted
memoryM′ contains information about contexts in input log
messages and is fed to the content attention layer.

60668 VOLUME 8, 2020

H. Studiawan et al.: Sentiment Analysis in a Forensic Timeline With Deep Learning

FIGURE 5. An illustration of the content attention procedure.

D. CONTENT ATTENTION LAYER
To more accurately detect the aspect sentiment, we use a
second attention layer called the content attention layer that
is used specifically for sentence representation. This rep-
resentation improves the importance of a word for aspect
sentiment within the whole content and enables us to capture
the important sentiment features [17].

An illustrative example of content attention is shown in
Figure 5 and explained in detail as follows. Note that in the
bottom part of Figure 5, the weighted memory M′ is gener-
ated from the previous procedure for the context attention.
We define ci as the attention weight of the memory slice mi.
To calculate ci, we use feedforward neural networks (FNNs)
such that:

ci =W tanh(Wmi +Wva +Wvs), (7)

where mi is from M′, va is the aspect representation, and vs
is the sentence representation. This ci score shows the impor-
tance of word wi to a sentiment aspect. After we calculate all
weights c = {c1, c2, . . . , cN }, the content attention weight αi
is defined by:

αi =
exp(ci)∑N
j=1 exp(cj)

. (8)

At this stage, the attention weights produce an attention
weight vector α = {α1, α2, . . . , αN } of the memoryM′. Note
that the memory M′ used in this layer is the weighted mem-
ory from the previous context attention layer. Furthermore,
we can compute the aspects for sentence representation vsr :

vsr =M′α, (9)

where vsr ∈ Rd . To improve the sentence representation
to handle more complex log messages, we add the sentence

representation from the embedding layer vs and the sentence
representation from the content attention layer vsr , resulting
in vf . Finally, vf is the final representation of the aspect,
considering the context and sentiment information of the log
messages from the previous context attention layer [17].

E. SOFTMAX LAYER
To build the deep learning model, we stack the embedding
layer, content layer, and context attention layer. We use soft-
max as an output layer to identify the sentiment of each aspect
found in the log messages. The softmax layer estimates a
normalized distribution over two possible sentiments for each
aspect term. The softmax is given by:

softmax(xi) =
expxi∑n
j=1 exp

xj
, (10)

where xi = {x1, x2, . . . , xN } is the vector output from the
attention layer. In the model training step, we minimize the
cross-entropy loss H , which is calculated by:

H (g, s) = −
∑
i

gi log(si), (11)

where g is the ground-truth distribution and s is the estimated
distribution from the softmax function.

F. BUILDING A FORENSIC TIMELINE
We use the log2timeline tool [12] to build a forensic time-
line. Since we focus on sentiment analysis for operating
system logs, we filter out other logs when constructing the
timeline. The command for extracting the timeline including
the log files is log2timeline.py forensic-image.plaso forensic-
image.dd, where. plaso file is the plaso storage file for-
mat from log2timeline containing the extraction results from
the forensic disk image. After that, we sort the timeline

VOLUME 8, 2020 60669

H. Studiawan et al.: Sentiment Analysis in a Forensic Timeline With Deep Learning

TABLE 1. A list of public system log datasets used in this paper.

chronologically by accessing the plaso storage format with
the command psort: psort.py -w forensic-sorted.csv forensic-
image.plaso. Note that the CSV format contains the sorted
forensic timeline based on the timestamp found in the log
files. The psort tool is also included in the log2timeline
toolsets.

We cannot access the plaso storage format directly; there-
fore, we have to use the psort tool to extract the time-
line. In our case, we filter the messages extracted by the
log2timeline tool to obtain only the operating system logs
because the messages inside these logs contain sentiments
that can assist in the investigation process.

The CSV file generated by the log2timeline tool pro-
vides 17 predefined and fixed fields, including the date,
time, source, type, and description. For sentiment analysis,
we focus on the description field containing themainmessage
and description of a particular event from the systems. The
sentiment model produced by the proposed deep learning
method is applied to this description field. Therefore, when
building a forensic timeline, we do not use the nerlogparser
tool to parse the log entries. The nerlogparser is used only
for building the deep learning model in the training step.
For timeline visualization, we use the Timesketch tool [34],
which is described in the experiment section.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we describe the four public forensic datasets
used to test the proposed method and five other methods.
We then discuss how we built the ground truth for senti-
ment analysis in the event log data as the primary source of
a forensic timeline. Subsequently, we explain the software
and settings used when conducting the experiments. We also
compare the proposed method with five other deep learning
techniques. Finally, we demonstrate the sentiment analysis
results when displayed in a forensic timeline.

A. PUBLIC FORENSIC DATASETS
We use four public forensic datasets to evaluate the proposed
method and compare the results with those of five other
techniques. These datasets are displayed in Table 1. These
datasets are chosen because they contain various security
incidents. Therefore, the operating system records several
events, which are associated with these incidents. We extract
these log messages and analyze their sentiments with the
proposed method. The negative sentiments refer to negative
events in the log messages. Note that system log files are one
of the main sources used for building a forensic timeline.

The first dataset is nps-2009-casper-rw, a forensic image
from a bootable USB device and provided by Digital

Corpora [32]. The disk file system is ext3 from a Linux
Ubuntu distribution. The main event in this disk is that
the user browsed through several US government websites.
It provides 15 system log files with 11,086 lines in total, 9,874
positive events, and 1,212 negative events.

The second and third datasets are from The Digital Foren-
sic Research Workshop (DFRWS) Challenge 2009 [33]. This
conference is one of the most respected venues in the digi-
tal forensics research area. The 2009 Challenge was related
to a case study about an attacker who illegally transferred
secret data. There were two Linux hosts involved in this
case, namely, ‘‘jhuisi’’ and ‘‘nssal’’. These two hosts were
Sony PlayStation 3 (PS3) devices. ‘‘jhuisi’’ has 25 system
log files with 11,737 log entries, while ‘‘nssal’’ is the largest
dataset, with 91,349 and 15,732 positive and negative entries,
respectively.

The last datasets are extracted from Honeynet Forensic
Challenge 7 2011 [7]. This dataset also provides a disk image
of a compromised Linux server. From 12 files, there are
8,162 and 550 positive and negative activities, respectively.
We recovered the directory /var/log/ from these forensic
disk images for all datasets. From this directory, we extract
several standard log files found in a Linux distribution, such
as authentication logs, kernel logs, and syslog. These files are
the artifacts commonly analyzed for investigation.

B. BUILDING THE GROUND TRUTH
FOR SENTIMENT ANALYSIS
We build a list of negative sentiment terms and a list of
aspect terms from the datasets. We have an initial dictionary
containing several negative words from the log messages,
such as ‘‘invalid’’, ‘‘failed’’, ‘‘disconnect’’, ‘‘error’’ and ‘‘fail-
ure’’. Examples of aspect terms include ‘‘password’’, ‘‘user’’,
‘‘port’’, ‘‘authentication’’, and ‘‘session’’. We iterate through
each entry in the log files in the datasets. After that, we extract
the aspect term from a message. Subsequently, we determine
whether a message contains negative terms from the prede-
fined list. If so, the message and its respective aspect term
are flagged as a negative sentiment. Otherwise, the message
is defined as a positive sentiment.

When a negative log message does not contain any prede-
fined keywords, we add the keyword in that message manu-
ally to the dictionary. All labeled datasets, the complete list
of negative terms, and the aspect terms are provided in a
GitHub repository.1 In the present datasets, the total number
of negative sentiment terms is 90, while that of the aspect
terms is 74.

1https://github.com/studiawan/logaspect

60670 VOLUME 8, 2020

H. Studiawan et al.: Sentiment Analysis in a Forensic Timeline With Deep Learning

FIGURE 6. XML format for log datasets based on SemEval-2014 format [35].

The ground truth is formatted in XML, as this is the
common data format used in aspect-based sentiment datasets.
An example of the XML format we use in the log datasets is
shown in Figure 6. The XML format of the log entry depicted
in Figure 3 is shown in Figure 6. The XML tags are based on
SemEval-2014 Task 4 [35] as the most popular datasets for
aspect-based sentiment analysis. In Figure 6, the aspect term
is ‘‘user’,’ and the sentiment identified is negative, as term the
‘‘Invalid’’ exists in the predefined list of negative sentiments.
This format also records the start and end indices of the aspect
term in the log message.

C. EXPERIMENTAL SETTINGS
For this experiment, we use Python 3.6 to implement the
proposed method. In addition, we use Keras 2.2.4 [36] for the
deep learning library and TensorFlow 1.7.0 [37] as its back-
end engine. We also use scikit-learn 0.21.2 [38] to calculate
the evaluation metrics and split the training and testing data.
For the hardware, we use a computer with a 12-core CPU, 64
GB of RAM, and a GeForce GTX 1080 Ti 12 GB GPU. The
output of the training phase is a model file that can be used
directly by a forensic investigator to analyze sentiments in
a forensic timeline. We split all datasets with the following
proportions: 60% for training, 20% for development, and
20% for testing. Note that these proportions are applied to
the proposed and all compared methods.

Furthermore, we use the following hyperparameters for the
proposed method. The dimension of the word embedding is
300, with GloVe as the pretrained embedding. The dropout
value is 0.1, with a batch size of 32. Furthermore, we run
the training with 50 epochs, with a learning rate of 0.001.
We use Adam [39] as the learning optimizer in the proposed
architecture. Adam is suitable for general cases because it is
efficient, needs only a small amount of RAM, and is invariant
to gradient scaling. The training is stopped early if there is
no improvement in the model accuracy after five iterations to
prevent model overfitting.

For evaluation metrics, we use the precision, recall, F1,
and accuracy. The precision measures the method’s ability to
identify negative sentiments and not label them as positive,
while recall shows the performance when detecting posi-
tive sentiments. Moreover, F1 is a weighted average of the

precision and recall. Finally, the accuracy score provides an
overall measurement of the detection results for all positive
and negative sentiments. These four evaluation metrics are
discussed in the next section.

D. COMPARISON WITH OTHER METHODS
To demonstrate the superior performance of the proposed
method, we compare the proposed method with nine other
deep learning techniques: BRNN (bidirectional recurrent
neural network) [40], BGRU (bidirectional gated recurrent
unit) [41], BLSTM + CRF (bidirectional long short-term
memory and conditional random field) [42], TD-LSTM
(target-dependent long short-term memory) [43], and Mem-
Net (deep memory network) [44]. Note that TD-LSTM and
MemNet are attention-based deep learning but use only one
attention model.

In addition, we compare the proposed method with other
aspect-based sentiment detection methods, namely, the atten-
tion network (AN), word-aspect attention network (WAAN),
lexicon-aware word-aspect attention network (LWAAN),
and interactive lexicon-aware word-aspect attention net-
work (ILWAAN) [45]. These methods are based on the
attention neural networks and incorporate sentiment lexicon
information.

The metric values in the experimental results were from
the testing dataset. The experimental results for each dataset
when analyzed with the aforementioned methods and the
proposed method are shown in Table 2 for the Casper dataset,
Table 3 for the Jhuisi dataset, Table 4 for the Nsaal dataset,
and Table 5 for the Honey dataset. These methods have been
used to detect sentiment in other datasets, such as social
media or product reviews. However, in these experiments,
we evaluate these methods using the system log data. Note
that the system log data are one of the main sources of data
when constructing a forensic timeline.

When applied to the four datasets, the proposed method
achieved the best performance in detecting sentiments,
as indicated by the best mean F1 and accuracy values, with
98.430% and 99.635%, respectively. This superior perfor-
mance is mostly due to the use of two attention layers in
the deep learning model. The difference in the performance
between the BRNN and BGRU is not significant because the

VOLUME 8, 2020 60671

H. Studiawan et al.: Sentiment Analysis in a Forensic Timeline With Deep Learning

TABLE 2. Comparison of the proposed method with other methods on
the Casper dataset (%).

TABLE 3. Comparison of the proposed method with other methods on
the Jhuisi dataset (%).

GRU represents an improvement over the RNN. For example,
it achieved 97.466% and 97.570% accuracy for the BRNN
and BGRU on the Casper dataset, as depicted in Table 2. The
bidirectional approach captures only the left and right context
of each word in a log message. These two directions provide
information about the sequence of words in a log message. In
addition, the bidirectional architecture represents each word
and captures the context from the surrounding words in a log
entry.

BLSTM + CRF is slightly better than the BRNN and
BGRU because it uses a CRF as the last layer. LSTM is
also an improved version of the RNN. The CRF consid-
ers the most optimal path in the neural networks through
all possible label sequences. It assumes that each aspect is
dependent on each other. Therefore, it provides an increase
in accuracy compared to the BRNN and BGRU. In Table 4
and Table 5, BLSTM + CRF produces the highest F1 score
compared to that of the BRNN and BGRU, with 99.424%
and 95.075%, respectively. However, the BRNN, BGRU,
and BLSTM+CRF take into account only the left and right
context. In the proposed method, we use two types of atten-
tion that consider both content and context to achieve better
accuracy.

TD-LSTM performs quite well on the Casper dataset,
as indicated by the second-best F1 score of 95.406%
(Table 2); it also achieves the third-best score on the Nssal
dataset, with 99.570% (Table 4). TD-LSTM models the
left and right contexts with the targets. In other words,
TD-LSTM models the previous and following contexts as
aspect-dependent features and can capture the interactions
between aspects and contexts in the log message data. How-
ever, the recall and F1 score on the Honey dataset are lower

TABLE 4. Comparison of the proposed method with other methods on
the Nssal dataset (%).

TABLE 5. Comparison of the proposed method with other methods on
the Honey dataset (%).

than those of the other methods, with 85.000% and 90.912%,
respectively. The reason is that the majority of sentiments
in this dataset are negative. TD-LSTM is unable to identify
them because targets are represented twice and are focused
specifically on the second representation.

For the Casper and Honey datasets, MemNet demonstrated
the poorest performance compared to the other methods. For
instance, it shows an F1 score of 73.611% (Table 2) and
86.964% (Table 5). This is because it does not use a recurrent
neural network model; thus, it is unable to capture the context
betweenwords. It usesmulti-hop attention, which is not really
applicable to log message data. In addition, MemNet builds
the knowledge directory based on the embedding vectors of
individual words [44]. Therefore, it is harder to learn the
aspect terms provided in more complicated contexts.

The AN, WAAN, and LWAAN are simpler variants of the
ILWAAN; thus, they are similar in terms of their deep learn-
ing architectures [45]. Therefore, they show similar perfor-
mances on all datasets. TheAN is the baselinemodel; it builds
an aspect and its context separately using LSTM networks.
The WAAN does not incorporate sentiment lexicon informa-
tion. The LWAAN is different when calculating aggregation-
level attention. Finally, the ILWAAN is a complete model
that includes multiple attention mechanisms and sentiment
lexicon information. Note that all of the evaluation results are
very high, as shown in Table 2 to Table 5. This is because the
log datasets are not as complex and complicated as regular
text data. Log messages tend to only be short and consist only
of several words or phrases.

On all evaluation metrics, the proposed method achieves
the best value. The proposed method performs well, with
overall F1 and accuracy scores of 98.43% and 99.64%,
respectively. The reason is that we use two attention

60672 VOLUME 8, 2020

H. Studiawan et al.: Sentiment Analysis in a Forensic Timeline With Deep Learning

FIGURE 7. A plot of the sentiment analysis results to a Timesketch forensic timeline from an auth.log [33]. The investigator can easily spot the events of
interest.

techniques to model aspect-based sentiment analysis. The
context attention can capture the word position and informa-
tion on the context and aspect. In addition, this attention also
considers the correlations between each aspect in a sentence.
The second attention, which addresses content, is able to
represent the sentence well. Based on the conducted exper-
iments, it has been proven that these two attention models
can increase the performance of the aspect-based sentiment
analysis in terms of model accuracy.

E. DISPLAYING NEGATIVE SENTIMENTS ON
A FORENSIC TIMELINE
After extracting system logs from a forensic disk image
using the log2timeline tool, we run the proposed method for
sentiment analysis. In this investigation step, we detect the
sentiments using the model from the training step. Finally,
the negative messages are displayed in a timeline to assist the
forensic investigation.We use the Timesketch tool [34] to plot
negative sentiments on a forensic timeline. We use Times-
ketch because it is the latest and most improved application
for displaying the activity timeline. It is a forensic tool that
allows the investigative examination of a timeline. As shown
in Figure 7, we use tabular-based views to display the negative
sentiments of log messages. Blue denotes the aspect word,
while red indicates its sentiment.

An example visualization of the forensic timeline is shown
in Figure 7 with a portion of the case of DFRWS 2009. In the
DFRWS 2009 case, a user is suspected of transferring an
illegal file, which is a drug recipe in this case. Based on
the scenario solution provided in [33], the user ‘‘goatboy’’
is responsible for this recipe file of illegal drug recipes in
exchange for a subscription toMardi Gras images and a video
library. This type of view shown in Figure 7 gives a forensic
investigator a general indication of the timeline before they
examine more specific surrounding events.

A portion of the forensic timeline for the auth.log file
from the DFRWS 2009 jhuisi host [33] is shown in Figure 7.
The forensic investigator can easily distinguish the events
of interest from among all events, as they are highlighted.
In Figure 7, the events of interest are ‘‘authentication fail-
ure’’ and ‘‘failed password’’ for the user ‘‘goatboy’’, which
have negative sentiments. The investigator can then examine
these events and their surrounding events to identify possible
incidents caused by an attacker.

V. CONCLUSIONS AND FUTURE WORK
In conclusion, we propose an aspect-based sentiment anal-
ysis to identify the events of interest in a forensic timeline.
The sentiment analysis is applied to log messages as one
of the primary sources to construct a forensic timeline.
We apply the attention-based deep learning method, an archi-
tecture with two types of attention, namely, context and con-
tent attention. We finally plot the sentiment analysis results
to a forensic timeline using the Timesketch tool. This plot
is easy to navigate, as it is based on a web-based interface.
The proposed method achieves 98.43% and 99.64% for the
F1 score and accuracy, respectively, when evaluated on four
public forensic datasets.

In the future, we will combine the sentiment-based
approach for a forensic timeline with statistics-based
anomaly detection [10]. This combination is expected to
provide even greater assistance to investigators in discover-
ing events of interest or anomalies in a forensic timeline.
The sentiment analysis proposed in this paper can also be
applied to a forensic timeline visualization tool such as Time-
line2GUI [1]. For instance, suspicious events appear in red in
the detailed view of Timeline2GUI so that the investigator
can quickly notice them. Finally, we also plan to apply the
proposed method to log entries, which have been grouped
automatically [46]. The results can help investigators in

VOLUME 8, 2020 60673

H. Studiawan et al.: Sentiment Analysis in a Forensic Timeline With Deep Learning

analyzing log clustering results and in making sense of the
events that have occurred after a particular security incident.

REFERENCES
[1] M. Debinski, F. Breitinger, and P. Mohan, ‘‘Timeline2GUI:

A Log2Timeline CSV parser and training scenarios,’’ Digit. Invest.,
vol. 28, pp. 34–43, Mar. 2019.

[2] K. Guðjónsson, ‘‘Mastering the super timeline with log2timeline,’’ Inf.
Secur. Reading Room, SANS Inst., Bethesda, MD, USA, Tech. Rep.,
2010.

[3] Y. Chabot, A. Bertaux, C. Nicolle, and M.-T. Kechadi, ‘‘A com-
plete formalized knowledge representation model for advanced digi-
tal forensics timeline analysis,’’ Digit. Invest., vol. 11, pp. S95–S105,
Aug. 2014.

[4] B. D. Carrier and E. H. Spafford, ‘‘Automated digital evidence target
definition using outlier analysis and existing evidence,’’ in Proc. Digit.
Forensic Res. Workshop, 2005, pp. 1–10.

[5] C.-T. Lu, D. Chen, and Y. Kou, ‘‘Algorithms for spatial outlier
detection,’’ in Proc. 3rd IEEE Int. Conf. Data Mining, Nov. 2003,
pp. 597–600.

[6] A. Marrington, I. Baggili, G. Mohay, and A. Clark, ‘‘CAT detect (com-
puter activity timeline detection): A tool for detecting inconsistency
in computer activity timelines,’’ Digit. Invest., vol. 8, pp. S52–S61,
Aug. 2011.

[7] G. Arcas, H. Gonzales, and J. Cheng. (2011). Challenge 7 of
the Honeynet Project Forensic Challenge 2011—Forensic Analysis of
a Compromised Server. [Online]. Available: https://old.honeynet.org/
challenges/2011_7_compromised_server

[8] C. Hargreaves and J. Patterson, ‘‘An automated timeline reconstruc-
tion approach for digital forensic investigations,’’ Digit. Invest., vol. 9,
pp. S69–S79, Aug. 2012.

[9] Y. Chabot, A. Bertaux, C. Nicolle, and T. Kechadi, ‘‘Automatic
timeline construction and analysis for computer forensics purposes,’’
in Proc. IEEE Joint Intell. Secur. Informat. Conf., Sep. 2014,
pp. 276–279.

[10] H. Studiawan, C. Payne, and F. Sohel, ‘‘Graph clustering and anomaly
detection of access control log for forensic purposes,’’ Digit. Invest.,
vol. 21, pp. 76–87, Jun. 2017.

[11] H. Studiawan, F. Sohel, and C. Payne, ‘‘A survey on forensic inves-
tigation of operating system logs,’’ Digit. Invest., vol. 29, pp. 1–20,
Jun. 2019.

[12] J. Metz and K. Guðjónsson. (2019). Log2Timeline Plaso: Super Time-
line All the Things. [Online]. Available: https://github.com/log2timeline/
plaso

[13] J. Zhou, J. X. Huang, Q. Chen, Q. V. Hu, T. Wang, and L. He, ‘‘Deep
learning for aspect-level sentiment classification: Survey, vision, and chal-
lenges,’’ IEEE Access, vol. 7, pp. 78454–78483, 2019.

[14] L. Li, Y. Wu, Y. Zhang, and T. Zhao, ‘‘Time+User dual attention based
sentiment prediction for multiple social network texts with time series,’’
IEEE Access, vol. 7, pp. 17644–17653, 2019.

[15] S. Zhang and H. Zhong, ‘‘Mining users trust from E-Commerce
reviews based on sentiment similarity analysis,’’ IEEE Access, vol. 7,
pp. 13523–13535, 2019.

[16] H. H. Do, P. Prasad, A.Maag, and A. Alsadoon, ‘‘Deep learning for aspect-
based sentiment analysis: A comparative review,’’ Expert Syst. Appl.,
vol. 118, pp. 272–299, Mar. 2019.

[17] Q. Liu, H. Zhang, Y. Zeng, Z. Huang, and Z.Wu, ‘‘Content attention model
for aspect based sentiment analysis,’’ in Proc. WorldWideWeb Conf. World
Wide Web (WWW), 2018, pp. 1023–1032.

[18] C. Bryce, ‘‘Timeline creation and analysis guides,’’ Senator Patrick Leahy
Center Digit. Invest., Burlington, Vermont, Tech. Rep., 2013.

[19] S. Esposito and G. Peterson, ‘‘Creating super timelines in Windows inves-
tigations,’’ in Proc. 9th IFIP Int. Conf. Digit. Forensics, 2013, pp. 135–144.

[20] F. Buchholz and C. Falk, ‘‘Design and implementation of Zeitline: A foren-
sic timeline editor,’’ in Proc. Digit. Forensic Res. Conf., 2005, pp. 1–7.

[21] J. Olsson and M. Boldt, ‘‘Computer forensic timeline visualization tool,’’
Digit. Invest., vol. 6, pp. S78–S87, Sep. 2009.

[22] E. Guzman, D. Azócar, and Y. Li, ‘‘Sentiment analysis of
commit comments in GitHub: An empirical study,’’ in Proc.
11th Work. Conf. Mining Softw. Repositories (MSR), 2014,
pp. 352–355.

[23] M. Thelwall, K. Buckley, G. Paltoglou, D. Cai, and A. Kappas, ‘‘Sentiment
strength detection in short informal text,’’ J. Amer. Soc. Inf. Sci. Technol.,
vol. 61, no. 12, pp. 2544–2558, Dec. 2010.

[24] V. Sinha, A. Lazar, and B. Sharif, ‘‘Analyzing developer sentiment in
commit logs,’’ in Proc. 13th Int. Workshop Mining Softw. Repositories
(MSR), 2016, pp. 520–523.

[25] A. Marrington, G. Mohay, A. Clark, and H. Morarji, ‘‘Dealing with tem-
poral inconsistency in automated computer forensic profiling,’’ Dept. Sci.
Technol., Queensland Univ. Technol., Brisbane, QLD, Australia, Tech.
Rep., 2009.

[26] S. Thorpe and I. Ray, ‘‘Detecting temporal inconsistency in virtual machine
activity timelines,’’ J. Inf. Assurance Secur., vol. 7, no. 1, pp. 24–31, 2012.

[27] X. Ding and H. Zou, ‘‘Time based data forensic and cross-reference
analysis,’’ in Proc. ACM Symp. Appl. Comput. (SAC), 2011,
pp. 185–190.

[28] H. Studiawan, F. Sohel, and C. Payne, ‘‘Automatic log parser to support
forensic analysis,’’ in Proc. 16th Austral. Digit. Forensics Conf., 2018,
pp. 1–10.

[29] J. Pennington, R. Socher, and C. Manning, ‘‘Glove: Global vectors for
word representation,’’ in Proc. Conf. Empirical Methods Natural Lang.
Process. (EMNLP), 2014, pp. 1532–1543.

[30] The Common Crawl Foundation. (2019). Common Crawl. [Online]. Avail-
able: http://commoncrawl.org/

[31] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, ‘‘Learning phrase representations using
RNN Encoder–Decoder for statistical machine translation,’’ in Proc.
Conf. Empirical Methods Natural Lang. Process. (EMNLP), 2014,
pp. 1724–1734.

[32] S. Garfinkel. (2009). NPS-2009-Casper-RW: An Ext3 File System From
a Bootable USB. [Online]. Available: http://downloads.digitalcorpora.
org/corpora/drives/nps-2009-casper-rw/

[33] E. Casey and G. G. Richard, III. (2009).DFRWS Forensic Challenge 2009.
[Online]. Available: http://old.dfrws.org/2009/challenge/index.shtml

[34] J. Berggren. (2019). Timesketch: Collaborative Forensic Timeline Analy-
sis. [Online]. Available: https://github.com/google/timesketch

[35] M. Pontiki, D. Galanis, J. Pavlopoulos, H. Papageorgiou,
I. Androutsopoulos, and S. Manandhar, ‘‘SemEval-2014 task 4: Aspect
based sentiment analysis,’’ in Proc. 8th Int. Workshop Semantic Eval.
(SemEval), 2014, pp. 27–35.

[36] F. Chollet. (2015). Keras. [Online]. Available: https://keras.io
[37] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, M. Devin, J. Dean,

S. Ghemawat, G. Irving, M. Isard, and M. Kudlur, ‘‘TensorFlow: A system
for large-scale machine learning,’’ in Proc. 12th USENIX Conf. Operating
Syst. Design Implement., 2016, pp. 265–283.

[38] F. Pedregosa, G. Varoquaux, A. Gramfort, V.Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,
‘‘Scikit-learn: Machine learning in Python,’’ J. Mach. Learn. Res., vol. 12,
pp. 2825–2830, Oct. 2011.

[39] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
in Proc. Int. Conf. Learn. Representations, 2015, pp. 1–15.

[40] O. Irsoy and C. Cardie, ‘‘Opinion mining with deep recurrent neural
networks,’’ in Proc. Conf. Empirical Methods Natural Lang. Process.
(EMNLP), 2014, pp. 720–728.

[41] S. Jebbara and P. Cimiano, ‘‘Aspect-based sentiment analysis using a two-
step neural network architecture,’’ in Proc. Semantic Web Challenges,
2016, pp. 153–167.

[42] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer,
‘‘Neural architectures for named entity recognition,’’ in Proc. Conf. North
Amer. Chapter Assoc. Comput. Linguistics, Hum. Lang. Technol., 2016,
pp. 260–270.

[43] D. Tang, B. Qin, X. Feng, and T. Liu, ‘‘Effective LSTMs for target-
dependent sentiment classification,’’ in Proc. 26th Int. Conf. Comput.
Linguistics, 2016, pp. 3298–3307.

[44] D. Tang, B. Qin, and T. Liu, ‘‘Aspect level sentiment classification with
deep memory network,’’ in Proc. Conf. Empirical Methods Natural Lang.
Process., 2016, pp. 214–224.

[45] H.-T. Nguyen and L.-M. Nguyen, ‘‘ILWAANet: An interactive lexicon-
aware word-aspect attention network for aspect-level sentiment classifi-
cation on social networking,’’ Expert Syst. Appl., vol. 146, May 2020,
Art. no. 113065.

[46] H. Studiawan, C. Payne, and F. Sohel, ‘‘Automatic graph-based cluster-
ing for security logs,’’ in Proc. Int. Conf. Adv. Inf. Netw. Appl., 2019,
pp. 914–926.

60674 VOLUME 8, 2020

H. Studiawan et al.: Sentiment Analysis in a Forensic Timeline With Deep Learning

HUDAN STUDIAWAN received the bachelor’s
and master’s degrees from the Institut Teknologi
Sepuluh Nopember, Indonesia, in 2009 and 2011,
respectively. He is currently pursuing the Ph.D.
degree with Murdoch University, Australia. His
current research interests are digital forensics and
machine learning.

FERDOUS SOHEL (Senior Member, IEEE)
received the Ph.D. degree from Monash Univer-
sity, Australia.

He is currently an Associate Professor in
information technology with Murdoch University,
Australia. Prior to joining Murdoch University,
in 2015, he was a Research Assistant Profes-
sor/Research Fellow of the School of Computer
Science and Software Engineering, The Univer-
sity of Western Australia, from January 2008 to

2015. His research interests include computer vision, image processing,
pattern recognition, multimodal biometrics, scene understanding, robotics,
and video coding. He is a member of the Australian Computer Soci-
ety. He is a recipient of the prestigious Discovery Early Career Research
Award (DECRA) funded by the Australian Research Council, two WA-
State-Government-funded competitive grants on shark hazard mitigation
and digital pathology to improve cancer diagnosis, the VC Early Career
Investigators Award (UWA), and the Best Ph.D. Thesis Medal from Monash
University.

CHRISTIAN PAYNE received the Ph.D. degree
fromMurdochUniversity, Australia, in 2009. He is
an Adjunct Lecturer with the School of Engineer-
ing and Information Technology, Murdoch Uni-
versity. He has previously taught in the areas of
introductory programming and information secu-
rity. His research interests include computer secu-
rity, applied cryptography, and legal issues in
technology.

VOLUME 8, 2020 60675

	INTRODUCTION
	RELATED WORK
	FORENSIC TIMELINE ANALYSIS
	SENTIMENT ANALYSIS IN EVENT LOGS
	ANOMALY DETECTION IN A FORENSIC TIMELINE

	THE PROPOSED METHOD
	EVENT LOG PREPROCESSING
	WORD EMBEDDING LAYER
	CONTEXT ATTENTION LAYER
	CONTENT ATTENTION LAYER
	SOFTMAX LAYER
	BUILDING A FORENSIC TIMELINE

	EXPERIMENTAL RESULTS AND ANALYSIS
	PUBLIC FORENSIC DATASETS
	BUILDING THE GROUND TRUTH FOR SENTIMENT ANALYSIS
	EXPERIMENTAL SETTINGS
	COMPARISON WITH OTHER METHODS
	DISPLAYING NEGATIVE SENTIMENTS ON A FORENSIC TIMELINE

	CONCLUSIONS AND FUTURE WORK
	REFERENCES
	Biographies
	HUDAN STUDIAWAN
	FERDOUS SOHEL
	CHRISTIAN PAYNE

