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ABSTRACT Along with the classical applications like graph partitioning, graph visualization, etc., graph
coarsening has been recently applied in graph convolutional neural network (GCNN) architectures to perform
the pooling operation in the graph domain. In this paper, we propose a novel two-stage graph coarsening
method rooted on the graph signal processing with its application in the GCNN architecture. In the first
stage of coarsening, the graph wavelet transform (GWT) based features are used to obtain a coarsened graph
which preserves the topological characteristics of the original graph. In the second stage, the coarsening
problem is formulated as an optimization problem where the reduced Laplacian operator at each level is
obtained as a restriction of the original Laplacian operator to a specified subspace that also maximizes the
topological similarity. The performance of the proposed coarsening algorithm is quantified in the general
coarsening context using different graph coarsening quality measures. Its effectiveness as a pooling operator
in GCNN is validated by applying it for the graph coarsening operation in the GCNN architecture. This
modified GCNN architecture is then used as a graph signal classifier for the early detection of Alzheimer’s
disease. The results show that the proposed coarsening method outperforms state-of-the-art methods, both
in the general coarsening context and as a pooling operator in the GCNN architecture.

INDEX TERMS Graph coarsening, graph signal processing, convolutional neural network, Alzheimer’s
disease.

I. INTRODUCTION
Recently, a new area of research called graph signal pro-
cessing (GSP) has emerged in the field of signal processing
which deals with the data residing on irregular structure e.g.
biological networks [1], sensor networks [2] etc. Although
the field of GSP has witnessed a significant growth in the
recent years [3]–[5], its application in many real-life prob-
lems is limited by the large size of the graphs involved as
the computational complexity of most of the algorithms in
GSP grow polynomially with the graph size [6]. Tradition-
ally, graph coarsening has been one of the most efficient
ways to circumvent this issue wherein the given graph is
mapped to a corresponding smaller graph which preserves
some of the key properties of the original graph. The required
operation or the analysis is first performed on the coars-
ened graph and the obtained solution is then refined in the
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original domain which brings down the overall computational
complexity.

Graph coarsening has been used extensively in many net-
work analysis tools which includes graph partitioning [7],
graph visualization [8] etc. It has been used in GSP to obtain
a multiscale representation of a graph signal [9]. Critically
sampled graph wavelet filter banks also use the graph coars-
ening at its core for the downsampling and the reduction
of the graph signal [10]. In algebraic multigrid methods,
coarsening has been used to find the solution of differential
equations and to solve the system of linear equations in almost
linear time [11]. Recently, graph coarsening has found its
application in the field of machine learning and artificial
neural network also where the graph coarsening is used to
perform the pooling operation in the graph convolutional
neural network (GCNN) [12], [13].

To solve this graph coarsening problem, different
approaches have been proposed by the researchers working
in different domains ranging from graph theory [6], [7],
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multigrid methods [11], [14], to a more recently developed
graph signal processing (GSP) [9], [10], [15]. Traditionally,
most of the coarsening algorithms have been designed such
that the coarsened graph preserves the geometric or the
topological structure of the original graph [7], [16], although
in few papers [15], [17], [18], the authors proposed the
coarsening algorithms that preserve the spectral and some
related characteristics of the original graph. But most of
these existing coarsening methods suffer from two common
drawbacks: (i) while designing an algorithm which preserves
the topological structure, only the direct connection between
nodes is considered, neglecting the local environment and the
neighbouring nodes [7], [9], [10]. (ii) The relation between
the action of original graph Laplacian operator and the
reduced graph Laplacian operator is not taken into account
while constructing the reduced graph Laplacian operator [7],
[9], [14]. Recently, few attempts [14], [17, [18] have been
made to solve one of these two issues, but none of them
try to address both the issues simultaneously. As far as the
coarsening operation in GCNN is concerned, it comes upwith
an additional challenge associated with the multilevel coars-
ening as the pooling operation in multiple layers requires the
multilevel coarsening of the initial original graph. In most
of the conventional multilevel coarsening methods, at each
level of coarsening, the coarsened graph is constructed to
approximate the graph obtained in the previous level rather
than to approximate the original graph [7], [9], [10]. In
this work, we propose a novel two-stage multilevel graph
coarsening algorithm, in which we attempt to overcome
the above drawbacks using the concepts of graph signal
processing and validate the proposed algorithm in the context
of GCNN.

Graph signal processing deals with the signals residing on
the irregular structure characterized by an associated graph
[3], [4]. In the present era of data explosion, the field of
GSP has received a lot of attention, due to its ability to effi-
ciently process the data that naturally reside on the irregular
structure e.g. social network data, gene expression data etc.
[5], [19]. Basic signal processing operations such as shift-
ing, sampling, Fourier transform etc. have been generalized
from the regular Euclidean domain to the graph domain, thus
forming the basis of the graph signal processing [3]–[5].
Apart from these basic operations, efforts are being made
to extend the more involved concepts in signal processing
such as multiresolution analysis, wavelet transform, convo-
lutional neural networks etc. from the regular domain to
the graph domain [13], [20]–[23]. To circumvent the first
problem associated with the graph coarsening algorithms, in
the first stage of our proposed algorithm, we use the similarity
between the graph wavelets centered around each node to
coarsen the graph as the graph wavelet encodes the local
information in the graph instead of considering only the
direct connections between the nodes [24]. Wavelet trans-
form has been defined for the graph signal using different
approaches [21], [22], out of which, we used the spectral
graph wavelet proposed in [22]. To overcome the second

limitation of the existing coarsening methods along with
the first as described earlier, we propose an optimization
framework in which the final reduced Laplacian operator
is obtained as a restriction of the original graph Laplacian
operator to a specified subspace which also matches with
Laplacian obtained from the first stage. Finally, we extend
the proposed single level coarsening algorithm to a multilevel
coarsening algorithm in which at each level of coarsening,
we try to preserve the characteristics of the original graph
rather than that of the graph obtained by the previous level of
coarsening.

Recently, several architectures have been proposed to gen-
eralize the convolutional neural network (CNN) to the graph
domain [12], [13], [25]. Though, serious efforts are being
made to improve the performance of the graph-CNN, most
of these architectures try to improve the convolution opera-
tion defined on the graph signal while the graph coarsening
process representing the pooling operation largely remains
neglected. In order to improve the overall performance of
the GCNN architectures, we applied our proposed graph
coarsening algorithm in the pooling layer of the GCNN and
the resulting classification accuracy was compared with that
of the existing GCNN classifiers. The improvement in the
classification accuracy of the modified GCNN classifier veri-
fied the effectiveness of the proposed algorithm in the context
of GCNN.

Alongwith the applications in various domains such as net-
work analysis, image processing, and computer vision [13],
the GCNN is also used in the field of biomedical engi-
neering to detect various diseases and abnormalities [26],
[27]. Recently, it has been used for the early detection of
Alzheimer’s disease (AD) which is one of the most com-
mon neurodegenerative diseases affecting around 50 million
patients worldwide. Although no proper treatment exists to
cure this illness, its early detection is helpful in controlling
the disease [28]. Various attempts have been made to detect
the AD in the early stage called mild cognitive impairment
(MCI) using different modalities like graph signal process-
ing [29], machine learning [30], [31] and diffusion model [5]
etc. Recently, GCNN has also been applied for this detection
purpose [26], [27]. In our previous work [27], we successfully
applied the ChebNet architecture of GCNN to detect the AD
in the MCI stage using the resting-state fMRI (rs-fMRI) data
of an individual. In this work, we use the modified GCNN
architecture to improve our previously proposed AD detec-
tion model which is then shown to have the higher overall
classification accuracy.

In summary, the salient contributions of our present work
are as follows.
• A novel two-stage multilevel graph coarsening algo-
rithm is proposed wherein the coarsened graph at each
stage preserves both the topological characteristics and
the action of the original graph Laplacian operator
simultaneously. A comparison study of the proposed
method with the existing coarsening methods demon-
strated the superiority of the proposed method.

VOLUME 8, 2020 60907



H. Padole et al.: Graph Wavelet-Based Multilevel Graph Coarsening and Its Application in Graph-CNN

• The existingGCNNarchitecture ismodified by applying
the proposed graph coarsening method to perform the
pooling operation and its utility is then illustrated in
different graph signal classification applications.

• AD detection model is developed for the early detection
of AD in which the modified GCNN architecture is used
as a graph signal classifier and achieved the state-of-the-
art AD detection performance using the proposed AD
detection model.

The rest of the paper is organized as follows. Section II
explains some basic concepts about the graph wavelet trans-
form and the GCNN along with the existing graph coarsening
algorithms that will be required to appreciate the proposed
graph coarsening method. In section III, we describe in detail,
the proposed two-stage multilevel graph coarsening algo-
rithm. In section IV, the performance of the proposed graph
coarsening method is compared with that of the state-of-the-
art methods in different contexts and applications. Classifica-
tion accuracy of the proposed AD detection model using the
modified GCNN architecture is also compared with that of
the existing methods in this section. Section V concludes the
paper along with some possible extensions and future scope.

II. BASIC PRELIMINARIES AND RELATED WORK
In this section, we review some basic theory and concepts
about the graph wavelet transform, graph coarsening and the
GCNN which form the basis of the proposed GWT-based
graph coarsening method and its application in GCNN.

A. GRAPH WAVELET TRANSFORM
In order to define the notion of wavelets in the graph domain,
we first need to define the graph signal and the corre-
sponding graph Fourier transform (GFT). Consider the graph
G = (V,A) consisting of N nodes where V denotes the set of
nodes {v1, . . . , vN }, and A is N × N adjacency matrix. Each
element Ai,j of this adjacency matrix represents the degree of
similarity between the nodes vi and vj. A graph signal s is then
defined as a mapping:

s : V −→ C

vn 7−→ sn

The graph Laplacian of G is an N × N matrix L = D − A
where D is a degree matrix of G which is diagonal in nature
having the sum of the corresponding rows ofA as its diagonal
elements. The Fourier transform of the graph signal has been
defined in the literature using different approaches e.g. graph
Laplacian based approach [4], Jordan decomposition based
approach [3] etc. In the present work, we used the graph
Laplacian based GFT and the spectral graph wavelets [22]
defined using this GFT that are discussed in brief next.

In classical Fourier transform, a given time domain signal
is expressed in terms of the exponentials ejwt that can be
viewed as the eigenfunctions of the one-dimensional Laplace
operator. In the graph Laplacian based GFT, the same concept
is extended to the graph domain by defining the eigenvectors

of the graph Laplacian L as the graph Fourier basis. So, for a
given graph signal s, its GFT is defined by

ŝ = VTs, (1)

where V = (v1|v2 . . . |vN ) is a N × N matrix consisting of
normalized eigenvectors of L.
In [22], the authors defined the wavelet transform on the

graph signal by choosing a band pass filter h in the graph
Fourier domainwhich acts as amother wavelet in the classical
wavelet transform. In this GWT approach, the authors first
proved that the classical wavelet transform at somefixed scale
t can be expressed as a Fourier multiplier operator where
the signal frequency components are multiplied by a filter
h, scaled at that particular t . Analogously, the GWT at a
particular scale t is defined as

Tts = VHtVTs, (2)

whereHt
= diag(h(tλ1), . . . , h(tλN )) and {λi}i=1,...,N are the

eigenvalues of L.
Having defined the GWT as above, the wavelet ψt,a at

scale t , centred at some particular node a, can be obtained by
operating Tt on δa i.e. by selecting a particular column of the
matrix Tt [22]. The proposed coarsening method makes use
of these graph wavelets for the graph downsampling purpose
as explained in the subsequent sections.

B. GRAPH COARSENING
In general, graph coarsening can be thought of as a two step
process consisting of (i) graph downsampling and (ii) graph
reduction which are explained below.

1) GRAPH DOWNSAMPLING
In this step, for a given graph G = (V,A), the set of nodes V
is partitioned into two complementary sets: a set V1 which is
to be retained and the set Vc1 which is to be discarded. Ideally,
in any downsampling process, the set V1 should be selected
such that the maximum of the original graph structure can be
embedded in it. This can be achieved by maximizing some
sort of correlation between the sets V1 and Vc1 . The above
problem can be mathematically formulated as

argmax
V1

cut(V1,Vc1), (P1)

where cut(V1,Vc1) =
∑
i∈V1

∑
j∈Vc

1

Ai,j.

But it is well-known that the solution of the max cut prob-
lem is NP-complete [10]. Therefore, for most of the practical
applications, it is required to find the approximate solution of
P1. In a particular class of graphs called the bipartite graphs
or the two-colourable graphs, for a given graph G = (V,A),
it is possible to divide the set V into two disjoint subsets
V1 and Vc1 having two different colours such that every non-
zero edge connects the nodes that have different colours. So,
for a bipartite graph, it is easy to downsample the graph by
retaining the set V1 and discarding Vc1 or vice versa as it
maximizes the cut value.
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Many different approaches have been proposed in the lit-
erature to solve the graph downsampling problem [9], [10],
[32]. In [10], the authors approximated a given graph by its
maximum spanning tree using thewell established algorithms
such as Prim’s algorithm. Now, as every tree is a bipartite
graph, the downsampling is obtained by retaining the nodes
of one colour and discarding the others. In [9], the graph was
partitioned according to the polarity of the eigenvector corre-
sponding to the highest eigenvalue of the graph Laplacian. It
was shown that for a bipartite graph, the suggested algorithm
successfully partitions the given graph into two different
coloured sets. The authors also explained the connections of
their algorithm with spectral clustering and the nodal domain
theory. We propose to downsample the graph by using the
eigenvectors of the graph adjacency matrix, which will be
explained in detail in the next section.

2) GRAPH REDUCTION
Once the subset of nodes, that are to be retained, is selected
by applying a downsampling operator on a given graph, the
adjacency matrix and thus the corresponding graph Laplacian
needs to be determined in order to obtain the coarsened graph.
This process of connecting the nodes in the downsampled
node set by defining the edge weights between them is termed
as graph reduction [9]. Several graph reduction methods
such as Kron reduction [9], weighted adjacency matrix based
reduction [33], algebraic multigrid based reduction [14] etc.
have been proposed in the literature. Some graph coarsening
methods like [7] and [11] do not downsample the original
graph explicitly and then define its Laplacian but rather com-
bine these two operations together. For example, in popularly
usedGraclusmethod [7], the nodes are combined using heavy
edge matching algorithm and the edge weight between them
is set as the sum of the individual edge weights. In our paper,
we use the Kron reduction method for the graph reduction
purpose which is explained in brief next.

Consider the given graph G = (V,A) with the graph
Laplacian L and the downsampled node set V1 on which the
reduced graph Laplacian L̃ is to be defined. LetLX ,Y denotes
the submatrix of size |X | × |Y| with elements having row
index in set X and column index in set Y . The Kron reduced
Laplacian L̃ is defined as the Schur complement of L w.r.t.
LVc

1 ,V
c
1
[9] i.e.

L̃ = LV1,V1 − LV1,Vc
1
L−1Vc

1 ,V
c
1
LVc

1 ,V1 . (3)

The adjacency matrix of the coarsened graph can then be
obtained using the relation

Ã = IN � L̃− L̃. (4)

The reduced graph thus obtained satisfies many desired
conditions like: (i) the reduced Laplacian matrix L̃ thus
obtained is indeed a Laplacianmatrix satisfying the necessary
constraints, (ii) L̃ preserves the graph connectivity i.e. if L is
connected, then L̃ is also connected, (iii) the reduced graph is
loopless if the original one is loopless etc. But while reducing

the graph, the Kron reduction scheme does not take into the
account the action of the reduced Laplacian operator on the
graph signal and its relation with the action of the original
Laplacian operator on the same signal. This issue is addressed
by us in the proposed graph coarsening method by using
the restriction of the original Laplacian operator to a smaller
subspace.

C. GRAPH CONVOLUTIONAL NEURAL NETWORK
In the last few years, CNN has provided excellent results in
almost every signal processing application, possibly due to
its ability to learn the nonlinear features from the given data
on its own [13]. But the application of conventional CNN
has been somewhat limited to the data living on a regular
structure e.g images or audio signals owing to the fact that
the algorithms for CNN have been developed primarily for
the regularly structured data. Recently, several attempts have
been made to generalize the CNN to the irregularly structured
data which can be modelled by a graph [12], [13]. Con-
ventional CNN architecture consists of two main operations:
convolution operation followed by a pooling operation. So,
to generalize the CNN to the graph domain, it is required
to extend these two operations for the graph signals. For the
graph convolution operation, we used the method proposed
in the ChebNet architecture [12] wherein the convolution
operation is extended to the graph domain by using the graph
filters that have a local receptive field. The graph filter is
defined as a polynomial of the graph Laplacian L i.e.

y = hθ (L)x, (5)

where x is the input graph signal and y is the output graph
signal after the convolution. The coefficient vector θ of the
polynomial hθ are learned during the training of the network
where the order of the polynomial is decided by the degree of
localization required.

The other main operation in CNN is the pooling operation
which requires grouping of adjacent data points together. So,
the extension of pooling operation to the graph structured
data requires to cluster the similar nodes together and replace
them with a single node which can be thought of as a graph
coarsening operation. While substantial work has been done
to improve the convolution part of the graph-CNN [12], [13],
[25], the graph coarsening in GCNN has received a little
attention and thus making a scope for the improvement in
the performance of the existing GCNN architectures. So,
in the present work, we propose a new multilevel graph
coarsening scheme which is then applied in the ChebNet
architecture [12] to improve its overall performance.

III. PROPOSED GRAPH COARSENING METHOD
In this section, we explain the proposed multilevel graph
coarsening method in detail wherein the graph coarsening
operation is performed by combining two different coars-
ening approaches. First, the coarsening is performed using
the GWT-based features of the original graph in which the
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coarsened graph tries to preserve the topological character-
istics of the original graph. After this initial coarsening step,
at each level of coarsening, we construct the reduced graph
Laplacian by the restriction of the original Laplacian operator
to a dominant subspace which preserves the action of the
original Laplacian operator for the graph signals belonging
to that subspace. In this second step, a reduced Laplacian
is obtained by solving an optimization problem in which
we try to make the reduced Laplacian as close as possible
to the one obtained in the first step so that the topological
characteristics of the original graph are also preserved. The
two stages of the proposed graph coarsening are explained in
the following.

A. GWT-BASED GRAPH COARSENING
In this initial coarsening stage, we try to maximize the topo-
logical similarity between the original graph and the coars-
ened graph. Let G = (V,A) be a given graph which is to be
coarsened to a graph G̃ = (Ṽ, Ã). As discussed in the last
section, graph coarsening process can be divided into two
operations: 1. graph downsampling and 2. graph reduction.
In the graph downsampling operation, most of the existing
algorithms e.g. [7] and [9], select the downsampled node
set Ṽ using only the direct connection between the nodes.
The node selection criterion of maximizing the cut value,
mathematically formulated in P1, takes into the account only
the direct connections between the nodes and ignores the
similarity arising between them by virtue of the indirect
connections through the common neighbours and local envi-
ronment around the nodes. To circumvent this issue, we make
use of the graph wavelet based similarity measure between
the nodes to perform the downsampling operation exploiting
the fact that the wavelet centered at each node encodes the
local information and the topological environment in the
graph [24].

To downsample the graph using the GWT-based features,
we first need to define a graph wavelet centered at each node
a ∈ V . Following the notion of graph wavelets introduced in
the last section, letψt,a be a graph wavelet at scale t , centered
at node a. We construct a correlation matrixC ∈ RN×N such
that each element

Ci,j := 1+ corr(ψt,i,ψt,j) = 1+
ψT
t,iψt,j

||ψt,i||2||ψt,j ||2
, (6)

where i, j denote the index of nodes in V and the offset of
1 ensures the nonnegativity of matrix elements required by
some of the downsampling algorithms. The scaling parameter
t is set as the mean value of the minimum and the maximum
scale values proposed in [24] as it has worked well in most of
the graph coarsening applications.

Once this correlation matrix C is constructed, we need
to downsample the graph by using this matrix so that the
downsampling operation takes into the account the local
environment of the nodes also rather than restricting only to
the direct connections. We now treat this matrix C as a new
weight matrix corresponding to the given graph and hence the

modified node selection criterion can be formulated as

argmax
Ṽ

∑
i∈Ṽ

∑
j∈Ṽc

Ci,j. (7)

As discussed earlier, the above maximization problem is NP-
complete and hence an approximation is required to solve
it. In the present work, we use the approximate coloring
algorithm proposed in [32], in which a given graph is par-
titioned into two complementary sets such that most of the
edges satisfy the coloring condition or in other words, the
cut value associated with these sets is high. In this approx-
imate coloring method, the graph is partitioned according
to polarity of the eigenvector corresponding to the smallest
eigenvalue of the weight matrix. So, the downsmpling of
the given graph G = (V,A) is performed based on the
polarity of the eigenvector corresponding to the smallest
eigenvalue of the associated correlation matrix C. The graph
downsampling step has to be followed by a graph reduction
step. To reduce the obtained downsampled graph, we apply
a Kron reduction method [9] which was explained in the last
section.

B. GRAPH COARSENING USING LAPLACIAN
OPERATOR RESTRICTION
The coarsened graph obtained using the above GWT-based
coarsening approach is able to preserve the topological char-
acteristics of the original graph well as the wavelets capture
the topological environment in the graph. But this coarsening
method does not consider the action of the reduced Laplacian
operator on the coarsened graph signal while constructing the
reduced Laplacian. Ideally, we want that the reduced Lapla-
cian operator should act similar to the original Laplacian
operator when restricted to a specific subspace.

To formulate the idea mathematically, consider a given
graph G = (V,A) consisting of N nodes which is to be
coarsened to a graph Gc = (Vc,Ac) having Nc nodes. Let
L be the graph Laplacian of G and its eigen decomposition
be given by

L = V3VT, (8)

where V = (v1|v2| . . . |vN ) is the matrix consisting of eigen-
vectors ofL and3 = diag(λ1, . . . , λN ) is the diagonal matrix
consisting of eigenvalues of L where λ1 ≤ λ2 · · · ≤ λN . The
eigenvalues of L carry the notion of graph frequency which
implies that the lower indexed eigenvectors correspond to the
lower graph frequency values and vice versa [4]. LetW be the
Nc dimensional subspace spanned by the firstNc eigenvectors
of L corresponding to the lower graph frequencies i.e.

W = span{v1, . . . , vNc}. (9)

In many of the real life applications such as sensor network
analysis and brain imaging networks, the signals are relatively
smooth on the graph, i.e., graph Fourier coefficients of the
signal decay rapidly with the increasing values of graph
frequency [29], [34], [35]. Using equation (1), a graph signal s
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FIGURE 1. Isomorphism preserving action of Laplacian operator.

can be expressed in terms its graph Fourier coefficients and
GFT basis as

s =
N∑
i=1

ŝivi, (10)

where ŝi denotes the graph Fourier coefficient corresponding
to the ith graph frequency. For a smooth signal s, since ŝi
approaches zero as i increases, the projection of signal s onto
the subspaceW, given by

∑Nc
i=1 ŝivi, closely approximates the

original signal s and hence preserves most of its energy con-
tent. W is an Nc dimensional subspace embedded in RN and
its each individual element is a length N vector. Therefore, a
vector space isomorphism

P :W −→ RNc

can be defined which maps a length N vector inW to a length
Nc vector.

Now, we want to define a coarsened Laplacian operator
Lc ∈ RNc×Nc such that it acts as a restriction of the original
Laplacian to Nc dimensional subspace W. This prevents us
from choosing P to be any arbitrary vector space isomor-
phism. In fact, we want P to preserve the action of the
Laplacian operator, which implies that the diagram in Fig. 1
should commute.

The above condition on P can be mathematically formu-
lated as

P(Lvi) = Lc(Pvi) for i = 1, . . . ,Nc. (11)

As vi is an eigenvector of L with an eigenvalue λi,

Lvi = λivi (12)

⇒ P(Lvi) = λi(Pvi). (13)

Substituting (13) in equation (11), we get

Lc(Pvi) = λi(Pvi). (14)

The above equation implies that Pvi is an eigenvector of Lc
with an eigenvalue λi. Hence, Lc can be expressed as

Lc = (PV̂c)3c(PV̂c)T , (15)

where 3c = diag(λ1, . . . , λNc ) and V̂c = (v1|v2| . . . |vNc ).
Substituting PV̂c = Vc in (15) reduces it to

Lc = Vc3cVT
c . (16)

Equation (16) implies that the eigenvalues of the reduced
Laplacian are nothing but the initial eigenvalues of the orig-
inal Laplacian operator L which in turn implies that this

coarsening also preserves the spectral characteristics of the
graph.

But matrix P and hence the matrix Vc are still unspecified
that need to be calculated in order to construct the reduced
graph Laplacian Lc. Elements of the matrices Vc and Lc
cannot assume the arbitrary values and have to satisfy some
conditions which are as follows.

1) Vc is an orthogonal matrix.
2) Lc is indeed a Laplacian operator implying that all the

row sums of Lc are zero i.e. Lc1Nc×1 = 0Nc×1
3) The diagonal elements of Lc are nonnegative and the

nondiagonal elements are nonpositive.

An equation similar to (16) was obtained in [15] where the
authors formulated it as a constrained optimization problem
which was solved using projected subgradient method. So,
in our proposed graph coarsening method, the optimization
problem can be formulated as

min
Vc,t

∑
p 6=q

f (−lp,q)+
Nc∑
p=1

f (lp,p)+ µ||Lc − tL̃||2F

subject to Vc ∈ ONc ∩ SNc , (17)

where lp,q =
∑Nc

k=1 λkVcp,kVcq,k , f (.) is a nonnegative-
inducing penalty function penalizing the negative diagonal
elements and the positive nondiagonal elements, L̃ is the
reduced graph Laplacian obtained from the first stage of
coarsening, ONc denotes the set of all orthogonal matrices in
RNc×Nc andSNc denotes the set of all matrices inRNc×Nc hav-
ing row sums equal to zero. The above optimization problem
is solved using the projected subgradient method as described
in [15] to evaluate the coarsened graph Laplacian Lc.

1) MULTILEVEL COARSENING
The single level coarsening method proposed above produces
a coarsened Laplacian which preserves the action of original
Laplacian operator on the graph signal while the associated
graph still preserves the topological structure of the original
graph and thus addresses the first two issues involved in the
existing graph coarsening schemes. But as discussed earlier,
multiple pooling layers in GCNN demands for a multilevel
graph coarsening scheme. The multilevel extension of our
proposed two-stage coarsening algorithm is presented below
as Algorithm 1.

In the proposed multilevel algorithm, at each level of
coarsening, the Laplacian of the coarsened graph aims to
preserve the action of the original graph Laplacian rather
than preserving that of the graph obtained in the previous
level. So, with this multilevel extension, our proposed graph
coarsening scheme addresses all the three issues associated
with the state-of-the-art graph coarsening methods.

To verify the effectiveness of the proposed coarsening
method, its performance is first quantified using different
coarsening quality measures and then the same is applied in
the graph coarsening layer of the ChebNet architecture [12],
the effect of which is analysed in the next section.
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Algorithm 1 Multilevel Graph Coarsening Algorithm
Input: Original graph G = (V,A),

Number of coarsening levels l.
1: Set k ← 0, Lkc ← L.
2: while k < l do
3: k ← k + 1.
4: Coarsen Lk−1c using GWT-based first stage of coars-

ening. Let L̃k be the resulting initial coarsened Lapla-
cian of size N k .

5: Construct diagonal matrix 3k
c = diag(λ1, . . . , λN k ).

6: Calculate a final k-level coarsened Laplacian Lkc =
Vk
c3

k
c (V

k
c )
T by solving an optimization problem:

min
Vkc ,t

∑
p6=q

f (−lp,q)+
N k∑
p=1

f (lp,p)+ µ||Lkc − tL̃
k
||
2
F

subject to Vk
c ∈ ON k ∩ SN k .

7: return Lkc

IV. EXPERIMENTS AND RESULTS
In this section, we first compare our proposed graph coars-
ening algorithm with state-of-the-art algorithms using three
suitable measures. The proposed coarsening method is then
applied in the GCNN architecture. This modified GCNN
architecture is then used for the classification purpose in
three standard datasets and for the early detection of AD
using rs-fMRI data. The classification performance obtained
using the modified GCNN architecture is compared with that
of different graph signal classifiers in these applications to
analyse the impact of the proposed coarsening method on the
GCNN architecture.

In the graph coarsening process, the first step is graph
downsampling. As discussed earlier, the downsampling prob-
lem can be mathematically formulated as a maximization
problemP1which is NP-complete and hence the approximate
solutions must be used. The quality of the approximation can
be quantified using the quantity called cut index [10] which
is defined as a ratio of sum of the edge weights connecting
two resulting subsets to the sum of all the edge weights in the
graph and can be mathematically expressed as:

cut index =
cut(V1,Vc1)∑
i,j∈V2

Ai,j
. (18)

Obviously, a higher value of cut index implies a better graph
downsampling method which in turn implies a better graph
coarsening method. So, we compared the cut indices obtained
using different existing downsamplingmethods [9], [10], [36]
and used the one leading to the highest cut index in the
proposed coarsening scheme. For the illustration purpose, we
operated these downsampling methods on the following four
different types of graphs [17].

1) Erdös-Rényi random graphs with N = 500 nodes and
probabilty parameter p = 0.02.

2) Airfoil graph consisting of N = 4000 nodes.

FIGURE 2. Cut index values for different graphs and downsampling
methods.

3) Minnesota graph consisting of N = 2642 nodes.
4) Brain functional connectivity graphs of subjects from

ADNI dataset [37] having N = 325 nodes obtained
using MIST [38] brain parcellation.

Fig. 2 compares the resulting values of cut indices obtained
by different downsampling methods on these graphs wherein
the results for the Erdös-Rényi random graphs are averaged
over 100 graphs and for the functional connectivity graphs,
the results are averaged over the graphs of 100 subjects.

From the plot shown in Fig. 2, it can be concluded that the
downsampling based on the eigenvector corresponding to the
smallest eigenvalue is best suited for our graph coarsening
purpose and hence was used in the proposed coarsening
method.

To quantify how closely the reduced Laplacian operator
approximates the action of the original Laplacian operator, we
propose a new measure called operator dissimilarity index.
Mathematically, we define the operator dissimilarity index as:

EX[||(Lx)c − Lcxc||2], (19)

where L is the original normalized graph Laplacian, Lc
denotes the coarsened graph Laplacian, x is the original graph
signal having a unit norm and (.)c denotes the coarsened
graph signal. Following the probabilistic graph signal model
proposed in [29], the probability distribution of the graph
signal is assumed to be given by

P(x) ∝ exp(−xTLx), (20)

which is a reasonable choice as most of the real life graph
signals are predominantly low pass signals and hence the
smoother signals occur with the higher probability.

As it can be seen from equation (19), the operator dissim-
ilarity index measures the expected value of the difference
between the output signals when the same graph signal is
operated by the original Laplacian operator and the coars-
ened Laplacian operator. So, the lower the value of operator
dissimilarity index, the better is the coarsening algorithm. In
Fig. 3, we compare the operator dissimilarity index of our
proposed coarsening method with that of the state-of-the-art
methods using the same graphs which were used to compare
the cut index.
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FIGURE 3. Operator dissimilarity index obtained using different coarsening methods on: (a) Erdös-Rényi graph
(b) Airfoil graph (c) Minnesota graph (d) Brain connectivity graph.

To evaluate the coarsening performance of our pro-
posed method more comprehensively, we compare the
performances of different coarsening methods using another
coarsening quality measure called restricted spectral approx-
imation [17]. It essentially quantifies how well the coarsened
Laplacian operator approximates the action of the original
Laplacian operator w.r.t. the subspaceUk spanned by k lowest
eigenvectors of the original Laplacian. Mathematically, it is
computed as the smallest value of ε for which the following
equation holds.

||x− x̃||L ≤ ε ||x||L for all x ∈ Uk , (21)

where ||x||L =
√
xTLx, x is the original graph signal and x̃ is

the lifted approximation of x. In Fig. 4, we plot the values of
ε for different graphs and graph coarsening methods, where
a smaller value of ε indicates a better coarsening method.
Results in Fig. 3 and Fig. 4 show that the reduced graph

Laplacian obtained using the proposed coarsening method
is better able to preserve the action of original Laplacian
operator as compared to the existing coarsening methods
which in turnmarks the superiority of the proposed algorithm.

After validating the performance of the proposed graph
coarsening algorithm using different graph coarsening quality
measures, we apply it in the coarsening layer of the ChebNet
architecture [12] of GCNN. We analyse the performance

of this modified GCNN model equipped with the proposed
coarsening method in three different applications and com-
pare it with that of the GCNN models constructed using
the existing coarsening methods. The illustrative applications
considered in this paper are:
1. MNIST handwritten digit classification problem [12].
2. Document classification in Cora and Citeseer datasets [25].
3. Early detection of AD using resting-state fMRI data from
ADNI dataset.

In the first application, the objective is to label a given
handwritten digit image as one of the digit between 0 to 9.
To solve this problem using GCNN classifier, we use the
approach presented in [12]. The 8 nearest neighbour graph
having 28 × 28 = 784 nodes is constructed corresponding
to each image from the dataset where the edge weight is
calculated as:

Wi,j = exp

(
−
||zi − zj||22

σ 2

)
, (22)

where zi denotes the 2-D coordinate of pixel i.
The graphs thus obtained from the training dataset are then

used to train the modified GCNN classifier which classifies a
given handwritten digit into one of the 10 classes. The GCNN
architecture consists of two graph convolution layers of 32
and 64 feature maps respectively, each of which is followed
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FIGURE 4. Values of ε obtained using different coarsening methods on: (a) Erdös-Rényi graph (b) Airfoil graph (c)
Minnesota graph (d) Brain connectivity graph. The results are plotted for a representative subspace of size k = 40, as
the same k-value is used in [17].

TABLE 1. Classification accuracies of GCNN architectures with different
graph coarsening methods on MNIST dataset.

by a graph coarsening layer. The output of these layers is
given to a fully connected layer and a softmax regression
layer to obtain a class label.

The authors of [12] used Graclus method [7] for the graph
coarsening purpose. To compare our proposed graph coarsen-
ing algorithm with state-of-the-art algorithms [7], [9], [17],
we constructed GCNN classifiers using the same architec-
ture and parameter values but with different graph coarsen-
ing algorithms and compared their classification accuracies.
Results in table 1 show that our proposed multilevel graph
coarsening algorithm outperforms the existing coarsening
algorithms when applied in the GCNN architecture.

To validate the performance of the proposed coarsening
method in case of graphs constructed from unstructured data
as well, we apply our model for the classification of docu-
ments in Cora and Citeseer datasets. To solve this document
classification problem using GCNN classifier, we again adapt

TABLE 2. Classification accuracies of GCNN architectures with different
graph coarsening methods on Cora and Citeseer datasets.

the approach presented in [12], where a document is first
represented using the bag-of-words model. The vocabulary
words are then represented by the corresponding vectors
using the word2vec embedding and the 16 nearest neigh-
bour graph is constructed using these vectors where the edge
weight between the nodes is calculated using equation (22),
with zi denoting the vector associated with word i. Number
of nodes of the graph obtained using the above approach
depends on the size of the vocabulary of the dataset, thus it
generates 1433-node graph for Cora dataset and 3703-node
graph for Citeseer dataset.

Having obtained the graphs corresponding to documents
in both the datasets, we train the GCNN model described
in the MNIST classification application for both of these
datasets separately and apply those for the document clas-
sification purpose. Table 2 compares the classification accu-
racy percentages of GCNN architectures constructed using
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FIGURE 5. Block diagram of AD detection model using the proposed GCNN classifier.

FIGURE 6. Classification performance of GCNN architectures with different graph coarsening methods in AD Detection.

different graph coarsening schemes for Cora and Citeseer
datasets.

The classification accuracy values in table 1 and table 2
corroborates the effectiveness of the proposed graph coars-
ening algorithm as a coarsening method in the GCNN archi-
tecture.

After verifying the efficacy of the proposed coarsening
scheme in the general classification context, we next apply
the modified GCNN architecture in our previously proposed
GCNN-based AD detection model [27] which is explained in
brief below.

2) AD DETECTION MODEL
Let X ∈ RN×T be rs-fMRI signal of a subject from ADNI
dataset [37] with a known label i.e. normal control (NC) or
having MCI where T denotes the number of timepoints in a
signal and N denotes the number of brain regions into which
the whole brain is parcellated. This fMRI signal X can be
considered as a concatenation of T ,N -dimensional graph sig-
nals represented by the columns of matrixX. We label each of
these individual graph signals with the label of rs-fMRI signal
X. As described in detail in our previous work [27], the graph
high pass filtered signal acts a discriminating feature for AD
detection application. Hence the individual N -dimensional
graph signals are first passed through graph HPF that are
then provided to a graph signal classifier for the classification
purpose. We use the proposed modified GCNN architecture
as a graph signal classifier for the early detection of AD. The
block diagram of the proposed AD detection model is shown
in Fig. 5.

Having discussed the general structure of the proposed AD
detection model, we next analyse its performance using the
rs-fMRI data of 160 subjects from ADNI dataset. The data

consists of rs-fMRI signals of 80 NC subjects and 80 subjects
with MCI which is parcellated into 325 regions using MIST
parcellation scheme [38]. The graph signal lying on 325-node
graph thus obtained is passed throgh graphHPF, which is then
used as an input to the proposed GCNN classifier.

The GCNN architecture consists of two graph convolution
layers having 32 and 64 feature maps respectively and out-
put of each convolution layer is coarsened by our proposed
graph coarsening method. These layers are followed by a
fully connected layer having 256 hidden units and a softmax
regression layer. The above GCNN model is trained using
Adam optimiser for 30 epochs with an initial learning rate
of 0.001. 5-fold stratified cross-validation is used to obtain
the classification performance of the proposed method which
is quantified using three measures viz. accuracy, sensitivity
and specificity. To verify the effectiveness of our modified
GCNN architecture in AD detection application, we repeated
the above classification analysis using GCNN architectures
in which the pooling operation is performed using different
existing graph coarsening methods. Fig. 6 compares the clas-
sification performance of GCNN architectures equipped with
different graph coarsening schemes.

To evaluate the performance of the proposed GCNN based
AD detection model more comprehensively, in Fig. 7, we
compare its classification performance with that of state-of-
the-art AD detection methods. The results show an improve-
ment in all the three classification measures, thereby attesting
the superiority of the proposed modified GCNN classifier
over the existing approaches for early detection of AD.

The improvement in the overall performance can be
attributed to the fact that, in the proposed algorithm, the nodes
were combined using the correlation between graph wavelets
centered at each node which accounted for the similarity
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FIGURE 7. Classification performance of different AD detection methods.

between local neighbourhood and environment of the nodes
unlike the most of the existing algorithms that consider only
the direct connection between them. Apart from that, the con-
strained optimization problem formulation for the multilevel
coarsening ensured that along with topological similarity, the
coarsened Laplacian obtained at each coarsening level also
preserves the operator characteristics of the original Lapla-
cian which may have reduced the overall information loss in
the coarsening process.

V. CONCLUSION AND FUTURE SCOPE
In this paper, a novel two-stage graph coarsening algorithm
was presented wherein both the topological characteristics
and the action of Laplacian operator of the original graph
are simultaneously preserved in the coarsened graph. In the
first stage of coarsening, the GWT-based features were used
to coarsen graph followed by an optimization based second
stage of coarsening in which at each level of coarsening,
the restriction of the original graph Laplacian was used to
obtain the reduced graph Laplacian. The performance of the
proposed algorithm was quantified using graph coarsening
quality measures like cut index and operator dissimilarity
index. Its effectiveness as a pooling operator in the GCNN
was validated by applying it as graph coarsening operator in
the ChebNet architecture. The proposed coarsening method
outperformed state-of-the-art coarsening methods in terms of
coarsening quality measures as well as in the classification
performance of corresponding GCNN classifier in different
applications including early detection of AD.

In the present work, the proposed coarsening scheme was
applied in the ChebNet architecture of the GCNN and its
performance was analysed. We can extend its application in
the other GCNN architectures [13], [25] and analyse their
performance to generalize the proposed coarsening scheme in
the context of GCNN. The value of the scaling parameter t in
the correlation matrix C was selected empirically. Although,
it worked reasonably well, this parameter selection may not
be the optimal and further study about the optimal scaling
parameter selection may improve the overall performance.
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