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ABSTRACT To improve the prediction effect of time series, we make a systematic study of various time
series prediction methods based on statistics and machine learning in this paper. In the experiment, we
compare the prediction results of several prediction methods. In particular, much research has been done
on the selection of experimental data because representative time series data can better test the effectiveness
and practicability of the prediction method. Based on the idea of divide and conquer of complex problems
and the strategy of continuous optimization of machine learning, we proposed the prediction methods of
LSTM-TFE, LR-TFE, and BR-TFE combined the EEMD, LSTM, LR, and BR methods in this paper. These
methods use EEMD to decompose complex time series into several relatively milder, more regular and
stable subsequences. Then the prediction model of each subsequence based on machine learning is carried
out by using the LSTM, LR, or BR methods. We use these prediction models to predict the value of each
subsequence. Finally, the value of multiple subsequences is fused to form the prediction results of the original
complex time series. To verify the proposed method comprehensively, we select three representative time
series data to test this paper. From the experimental results, we found that the proposed method has a good

effect.

INDEX TERMS LSTM, short-term forecasting, EEMD, price prediction, time series.

I. INTRODUCTION

Time series forecasting (TSF) is a hot research field. The
practical application of time series analysis method also
develops with the time series analysis method. In many fields,
time series prediction plays an important role, especially
when social organizations, enterprises or individuals make
critical strategic decisions. Prediction is the basis of the
decision, and the decision is the continuation of prediction.
Therefore, accurate prediction is crucial to make the correct
decision. An accurate prediction can produce the correct deci-
sion. Without accurate prediction, it leads to the wrong deci-
sion. For example, accurate bankruptcy forecast and credit
score [1] can help financial institutions reduce financial risks
or avoid a financial crisis. Forecasting power load [2] can help
power system planning and deployment effectively. Network
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traffic forecasts [3] can help service providers improve their
service quality. Forecasts of physical phenomena in nature,
such as weather [4] and earthquake [5], can help people take
necessary measures to prevent disasters, and so on.

The researchers proposed many linear time series predic-
tion methods based on statistics. The common goal of these
linear methods is to use a time series analysis to predict the
future value of time series. Among them, the more success-
ful methods are Holt winters exponential (HWE) smooth-
ing [6], autoregressive integrated moving average (ARIMA)
[7], and linear regression (LR) [8] based on machine learn-
ing. In recent years, with the rapid development of comput-
ing technology, artificial neural network (ANN) [9], fuzzy
comprehensive evaluation (FCE)[10]-[12], wavelet analysis
(WA) [13]-[16] and support vector machine (SVM) [17]-[19]
are widely used in short-term time series prediction. Many
researchers successfully applied artificial neural networks in
the field of classification [20]-[24] and regression [25]-[29],
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but it is easy to fall into the dilemma of local optimum.
In 2006, Huang et al. [30] proposed the concept of deep
neural networks (DNN). Since then, deep learning (DL)
has gradually become the most popular method in the field
of machine learning [31]-[39]. In recent years, deep learn-
ing methods and deep learning platforms have developed
rapidly. They have been widely used in various fields, such
as Google’s machine translation, Facebook’s chat robot,
Google’s Alphago zero machine chess player, Google and
Oxford University’s lip recognition system, etc.

The prediction of time series is an open and complex
problem, which involves a wide range of fields and is difficult
to predict accurately. For complex problems, people usually
use the divide and conquer method to solve them. In various
integration methods, the divide and conquer method is widely
used [40]-[41]. The divide and conquer method is also often
used in the prediction of time series, which is to decom-
pose time series into multiple subsequences, predict many
subsequences respectively, and finally merge the prediction
results of many subsequences. There are two main methods to
decompose time series: wavelet transform decomposition and
empirical mode decomposition. Wavelet transform decom-
position is the first method applied to time series decom-
position. Through time-frequency analysis, the original time
series is decomposed into several orthogonal subsequences.
Many scholars use the adaptive wavelet neural network model
with feed-forward neurons to predict short-term time series.
Empirical mode decomposition (EMD) is another decom-
position method suitable for time series prediction. It is a
part of the Hilbert Huang transform (HHT) [42]. EMD and
wavelet transform decomposition is different. Wavelet trans-
form decomposition is based on the frequency domain, while
the EMD process is based on the time domain. All the above
solutions are based on the prediction of the time series itself,
without processing the time series itself. How to improve
the prediction effect by combining the existing prediction
methods and decomposing the time series has become a
challenge. As we all know, the change of time series has
uncertainty and complexity. Individual prediction methods
are often only valid for some time series, but not for other time
series. At the same time, the hybrid methods obtained better
prediction results to some extent. Besides, the EEMD method
decomposes the original complex time series into several
sub time series with relatively stable changes. Combined
with the current effective prediction methods, the prediction
results of the sub time series with relatively stable changes are
better in theory. Therefore, in this paper, we proposed some
hybrid methods for short-term time series forecasting based
on an improved EMD method EEMD (Ensemble Empirical
Mode Decomposition) [43], [47], [48] and machine learning
algorithm.

The rest of this paper is organized as follows: Section 2
briefly reviews the related concepts, terms, the LSTM, and
the EEMD. Section 3 demonstrates the hybrid methods for
short-term time series forecasting based on EEMD and the
framework of the proposed methods. In section 4, we mainly
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introduce the experimental data in our study. Section 5
presents the simulation experiment and empirical analyzes of
the proposed methods. Finally, some conclusions are given,
and some future works are pointed out in the final section.

Il. RELATED WORKS

To improve the prediction effect of time series, we pro-
posed three hybrid methods for short-term time series fore-
casting using EEMD and three methods that are long short
term memory (LSTM) neural network, linear regression
(LR), and Bayesian ridge regression (BR). The three pro-
posed methods are based on the idea of divide and conquer
of complex problems and the strategy of continuous opti-
mization of machine learning. In this paper, we call them
LSTM time series forecasting based on EEMD (LSTM-TFE),
LR time series forecasting based on EEMD (LR-TFE),
and BR time series forecasting based on EEMD (BR-TFE)
respectively. Below we first discuss the related concepts and
terms, and then review the ensemble empirical mode decom-
position and long short term memory, as related to this paper.

A. EMPIRICAL MODE DECOMPOSITION

Empirical mode decomposition (EMD) was proposed by
Xu et al. [43] in 1998, which is a very efficient time series
decomposition method. Based on the local characteristics of
time series data, the EMD can effectively extract the orig-
inal time-series data from the time series with noise. The
EMD can also achieve better results in the decomposition of
other complex time series. Therefore, it has been successfully
applied in many practical fields. However, the main disadvan-
tage of EMD is that it is easy to produce pattern mixing, that
is, scale separation. The so-called pattern mixing is that there
are signals of different frequencies or scales in the same sub
time series, or the signals of the same frequency or scale are
decomposed into different sub time series.

Because of the above problems, many researchers put
forward some solutions. In 2009, Xu et al. [43] proposed
an adaptive empirical mode decomposition method (EEMD)
based on the statistical characteristics of white noise sig-
nals. This decomposition method decomposes the original
time series into several sub time series. The sum of all
sub time series is the original time series. Each sub time
series is called Intrinsic Mode Function(IMF). Compared
with wavelet transform decomposition and other decompo-
sition techniques, the EEMD decomposition method has the
characteristics of intuitionistic, direct, adaptive, and experien-
tial. The EEMD no need to set decomposition series and can
automatically complete multi-level decomposition according
to the time series itself. The practical application in many
fields proves that EEMD is an effective method to decompose
time-frequency data from non-stationary and non-linear time
series. The following is a brief introduction to the process of
the EEMD decomposition time series.

Suppose EEMD decomposes a time series X into n subse-
quences IMF; (i = 1,2, ..., n). According to the regulation of
the EEMD decomposition time series, the last subsequence
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FIGURE 1. The process chart of EEMD decomposition time series.

IMF, is called residual subsequence Ry. In fact, EEMD
decomposes a time series X into n-1 subsequence IMF com-
ponent C; (i = 1,2,...,n — 1) and a residual subsequence
Ry. The steps of EEMD decomposition algorithm are as
follows:

(1) For a given time series x(¢) is shown in the black line in
Fig. 1, the three-degree spline interpolation method of local
maximum and minimum values is used to create its upper and
lower envelope lines, which are shown in the blue line and red
line in Fig. 1.

(2) Calculate the mean value m(¢) of the upper and lower
envelope lines, as shown in the thick purple-red line in Fig. 1.

(3) By subtracting the mean value m(¢) of the upper and
lower envelope from the original time series x(¢), the first
subsequence IMF; component A(t) = x(t) - m(¢) is obtained.

(4) Taking the subsequence component A(t) as a new time
series x(t), and repeating steps (1) to (3) until the stop condi-
tion is met. The stop conditions are as follows:

(a) The mean value m(¢) of the upper and lower envelope
lines is approximately equal to zero;

(b) The number of extreme points of component A(t) is
equal to or at most different from the number of zero-crossing
points;

(c) The predefined maximum number of iterations has been
reached.

(5) h(t) is taken as a subsequence IMF component C; (i =
1,2,..., n—1), and calculate the remaining subsequence R
R(t) = x(t) — h(1).

(6) Use the remaining subsequence R(¢) as the new time
series x(¢) to calculate the next IMF, and repeat steps (1) to (5)
until all the IMF is obtained or the maximum decomposition
level is reached.

Finally, EEMD has decomposed time series X into n sub-
sequences, which are expressed by Eq.1.

n—1
X0 =Y" (C)+Ry i=12..n=1 (D

where the number n of sub time series depends on the com-
plexity of the original time series. Fig. 2 shows a decomposi-
tion process of the EEMD for the time series Eq. 2.

x (t) = sin 2w * 10t) + sin (27 * 100¢) 2)
where t =0, f, 2f, ..., 300f, f = 0.001.
B. LSTM NEURAL NETWORK

Long short term memory (LSTM) neural network was pro-
posed by Hochreiter and Schmidhuber [44] in 1997. It is a
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FIGURE 3. The basic structure of recurrent neural network.

typical and efficient recurrent neural network structure, which
can better deal with long-term dependent time series data
and widely used in many practical fields. At present, it has
become a very prevalent time series prediction model. Before
introducing the LSTM neural network, we first introduce the
recurrent neural network.

The design of the recurrent neural network (RNN) is
mainly used to deal with nonlinear time-varying problems.
The internal connection of RNN allows data to be pushed
forward and fed back. The design of feedback connection
is very convenient for the algorithm to update the residual
value or weight value in the forward step. This feature is very
suitable for time-series prediction and can extract rules from
the historical data of the time series to predict the future value
of time series. The basic structure diagram of the recurrent
neural network is shown in Fig. 3. In Fig. 3, the first column
on the left is the overall structure of the RNN. The three
columns on the right are an extension of the overall structure
of the RNN. The RNN neural network module / reads an
input data x; and outputs a value y, at time ¢. Compared with
the traditional neural network, the parameters Wy, Wy, Wy,
of each network layer in the RNN neural network are shared.
Each input layer shares the network parameters Wy, Wy,
Wyp. It is felt that every step of the RNN neural network is
doing the same thing, but the input data x; and output data y;
are different. In this way, the parameters of the RNN neural
network need to learn are significantly reduced. After the
RNN neural network is expanded, it becomes a multilayer
neural network. In the traditional multilayer neural network,
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FIGURE 4. The basic structure of the LSTM neural network.

the parameters of each layer are different. For example, in
the traditional multilayer neural network, the Wj;, parame-
ter between layer i; —1 and layer A, is different from that
between layer 4; and layer h;+1. In the RNN neural network,
the parameters of each layer are the same. Similarly, the
parameters of Wy, between layer x; and layer i, and Wy
between layer &, and layer y, are the same.

Each step of the RNN neural network has input and output,
but the input and output of each step are not necessary.
For example, when predicting the value of a mathematical
expression, we only need to care about the output after the
input of the last expression symbol, rather than knowing
the output after the input of each expression symbol. The
core of the RNN neural network is the hidden layer, which
can capture the long and short term information in the time
series.

However, the RNN neural network cannot solve the prob-
lem of gradient disappearance in network training. When the
gradient disappears, the training time of the network increase
infinitely, which eventually leads to network paralysis. There-
fore, the simple RNN neural network is not the ideal choice
to predict the long-term dependent time series.

The design of the LSTM neural network aims to overcome
the problem of gradient disappearance when simple RNN
neural network processes long-term dependent time series.
Input gate, output gate, and forgetting gate are added to the
network model of LSTM based on a simple RNN neural
network. As shown in Fig. 4, there are three gate modules with
o coincidence in the box, which can effectively eliminate
gradient. Therefore, LSTM neural network is very suitable
for solving the problem of long-term dependence. The design
of memory neurons is the most significant innovation of the
LSTM neural network, which is used to store state informa-
tion. Besides, generally, each door module needs to select
an activation function to make nonlinear conversion or trade-
off for the information passing through the door module. For
example, forgetting gate f; is used to determine which state
information of neurons to clear.

C. ACTIVATION FUNCTION

The activation function plays an essential role in the neural
network. When the input data is weighted and summed, it
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also needs to be applied to a function, which is the acti-
vation function. The activation functions are all nonlinear.
The activation function introduces nonlinear factors to the
neural network, which can approach any nonlinear function
arbitrarily so that the neural network can solve the problems
that the linear model can not solve. If the activation function
is not used, the output of each layer of the neural network
is the linear combination of the input of the previous layer.
If the activation function is not used, the output of the neural
network is a linear combination of input, no matter how many
layers the neural network has.

The commonly used activation functions are Sigmoid func-
tion, Tanh function, ReLU function, Softsign function, Soft-
plus function, and Softmax function, etc. The curves of eight
activation functions are shown in Fig. 5 and Fig. 6. Several
typical activation function formulas are introduced here. The
formulas of Sigmoid function, Tanh function, ReLU func-
tion, and Softmax function are shown in Eq.3, Eq.4, Eq.5,
and Eq.6, respectively. Softmax function is mainly used in
a multi-classification neural network, with slightly different
formulas.

1
f Q= Tren 3)
—tanh@) = & 4
f @) = tan (Z)—m @
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In this paper, the ReL.U function is selected as the activa-
tion function of each gate of the LSTM neural network. For
example, the function of forgetting gate f; is shown in formula
Eq.7.

Ji=oWr - [hi—1, x:]1 + by) (N

The workflow of the LSTM neural network is shown in
Fig. 4, which is briefly described as follows, where W;, Wy,
W, and W, involved in each formula respectively represent
the corresponding weight vector, b;, by, b and b, respectively
represent the corresponding deviation vector.

(1) The external input data x; flows into the LSTM neural
network, connects the output data h;_; of the upper layer to
form the input data x, = [#,_1,x]. The input data x; first
flows into the forgetting gate f;. After the activation function
calculating by Eq.7, the output data of the forgetting gate f;
is obtained. The forgetting gate f; can determine which state
information of the neuron to clear.

(2) The input data x; flows into the input gate at the same
time. After the activation function calculating by Eq.8, the
output data i, of the input gate is obtained. The input gate i,
determines which information needs to be updated and which
information needs to be stored in the memory neuron. The
function of the input gate i; is shown in Eq.8.

ir =0 (Wi [h—1,x]+ b)) (8)

(3) The input data x; flows into the tanh gate at the same time.
After the activation function calculating by Eq.9, the output
data ¢, of the tanh gate is obtained. ¢; is the candidate vector
created by the ranh gate, which is used to update the state data
of neurons. The function of the ranh gate is shown in Eq.9.

¢ = tanh(We - [hi—1, x:1 + be) ©))

(4) The new state information ¢, is obtained by updating
the old state information ¢;_1 of the neuron. The new state
information c; is calculated by the function of Eq.10. The
candidate vector ¢; determines how much state information
to update.

Ct Zﬁ * Cr—1 + i; * 5[ (10)

(5) The input data x; flows into the output gate at the same
time. After the activation function calculating by Eq.11, the
output data o, of the output gate is obtained. The function of
the output gate o, is shown in Eq.11.

0 =0 (Wo - [hi—1, %] + bo) (11)

(6) For the calculation of the output data y;, the activation
function is used to filter the state information of the neuron
first, then input it to the fanh gate, and then multiply the
output data o; of the output gate to get the output data A,
as shown in Eq.12.

Vi = h, = 0, * tanh(c,) (12)
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lll. METHODOLOGY

This chapter mainly introduces the theoretical basis of
LSTM-TFE, LR-TFE, and BR-TFE prediction methods,
EEMD, LSTM, LR, and BR methods firstly. Then the model
structure of LSTM-TFE, LR-TFE, and BR-TFE prediction
methods, which provides a solid theoretical basis for our
proposed prediction method, be introduced. The proposed
LSTM-TFE, LR-TFE, and BR-TFE methods use EEMD to
decompose complex time series into several relatively simple
subsequences firstly. LSTM neural network, LR, and BR
are used to predict the value of each subsequence. Finally,
the prediction results of multiple subsequences are summed
to form the prediction results of the original complex time
series.

The models of LSTM-TFE, LR-TFE, and BR-TFE are
shown in Fig. 7, Fig. 8, and Fig. 9, respectively. The flowchart
of the proposed prediction method is shown in Fig. 10. The
model structure of the three methods is the same, but different
machine learning methods are used in the model to train
and predict the subsequence decomposed by the time series
EEMD. The following is a brief introduction to the models of
the three methods.

These models are divided into five steps: data collection
and data preprocessing, EEMD decomposition to obtain mul-
tiple subsequences, one by one training machine learning
model, and produce prediction results. Finally, the prediction
results of multiple subsequences are summed to form the
prediction results and evaluation model.

(1) Generate simulation data and collect real data in the real
world, preprocess the original time series data, make its data
format meet the format requirements of the EEMD decom-
position algorithm, and form the input data X of EEMD
decomposition algorithm.
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FIGURE 9. Model structure of BR-TFE.

(2) EEMD decomposition algorithm decomposes input
data X to form n subsequences. According to the regulation
of the EEMD decomposition time series, the last subsequence
is generally called residual subsequence R. Therefore, n sub-
sequences include n — 1 IMF subsequence and a residual
subsequence R, which are respectively expressed as IMFy,
IMF,, IMF;3, ..., IMF,_;, R,. Each subsequence data is
divided into training data and test data. The training data is
used to train the machine learning model, and the test data
is used to test the trained model.

(3) Use the training data of each subsequence to train the
machine learning model corresponding to the subsequence
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FIGURE 10. The flowchart of the proposed prediction method.

one by one. For example, train the LSTM machine learning
model in the LSTM-TFE method, train the LR model in the
LR-TFE method, and train the BR model in the BR-TFE
method. Each training process is independent and does not
affect each other. After the model is trained, form the model
LSTMy, LRy, BRx (k =1, 2, 3, ..., n — 1, n), using these
trained models to predict the corresponding subsequence test
data, and get the prediction results Prex (k = 1, 2, 3, ...,
n—1,n).

(4) There are many fusion methods to fuse the prediction
results of multiple subsequences to form the final prediction
results. The fusion method used in this paper is summation,
which is to accumulate the prediction results of each subse-
quence test data to form the final prediction results.

(5) Finally, comparing the prediction results with the actual
results of the test data, three evaluation criteria are used to
calculate the prediction errors RMSE, MAE and R2, and
evaluate the advantages and disadvantages of the model.

IV. EXPERIMENTS DATA

In this section, we mainly introduce the experimental data in
our study. To test the prediction effect of the proposed method
better, we used two kinds of experimental data in our study.
The first one is the artificial simulation experimental data,
which is generated automatically by a computer algorithm
and is mainly used to verify the correctness and validity of the
proposed method. In many literatures, the simulation data is
used to test the proposed method. The second is the real stock
indices data in the real world and the temperature time series
in the meteorological field. Only using the proposed method
to analyze the real social data has practical significance, and it
is also the most effective test to apply the proposed prediction
method to the actual field.

VOLUME 8, 2020
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A. ARTIFICIAL SIMULATION EXPERIMENTAL DATA

To test the effectiveness of the proposed method, we used
an artificial simulation experimental data in experiment.
To obtain sufficient and effective experimental results, the
artificial simulation experimental data generated manually
should not be too short. Therefore, the length of the arti-
ficial simulation experimental data generated manually is
10000. The manually generated data is based on sin function,
which is automatically generated by the computer program
by Eq.13.

X =x (t) = sin 2w * 100¢t) + sin 27w * 10¢) (13)
where t =0, f, 2f, ..., 1000f; f = 0.0001 in Eq.13.

B. REAL SOCIAL EXPERIMENTAL DATA

To test the practicability of the proposed method, we need to
use the real data in the social field to test. In this paper, we
use two real data in the real world, which are the temperature
time series in the meteorological field and the SP500 stock
index time series in the financial market. These two time-
series have good representativeness. One time series in the
field of Meteorology reflects the natural phenomenon without
human intervention, and the temperature time series changes
relatively smoothly. The time series of the SP500 stock index
in the financial market reflects the social phenomenon, which
is complicated, unstable, and is severely affected by human
factors.

The temperature time series used in the experiment is
the temperature data of an air quality data set, which is
the weather and pollution conditions collected by the US
embassy in Beijing within five years (from January 1, 2010 to
December 31,2014). The data set is recorded in hours, includ-
ing PM2.5 data, weather information, date and time, weather
information including dew point, temperature, pressure, wind
direction, wind speed, and accumulated snowfall hours. The
original data for this dataset can be downloaded from the UCI
machine learning repository.

The SP500 stock index used in the experiment is the abbre-
viation of the American Standard & Poor’s stock index. The
SP500 index is one of the primary stock indexes in the Amer-
ican stock market, which has the significance of representing
the American stock market. The original experimental data
of the SP500 stock index can be obtained free of charge
from Yahoo Finance (http://finance.yahoo.com). The data of
each stock index includes five attributes: the opening price,
the closing price, the highest price, the lowest price, and
the trading volume. According to the results of the literature
[45]-[46] analysis on SP500, the closing price of the SP500
stock index on that day is highly representative. Therefore,
the experimental data selects the closing price time series of
the SP500 stock index on that day, including all data from
July 9, 2001 to December 24, 2015.

C. DATA PREPROCESSING
Given the above data are continuous numerical data, this
paper uses these data to build a prediction problem. The
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TABLE 1. Length of data used in the experiment.

Category Sin Temperature ~ SP500
Total length of selected
original data 10000 10000 3761
Total length of experimental
data 9988 9988 3749
Training data length 5992 5992 2049
Test data length 3996 3996 1500

prediction problem is to predict the value of the next sequence
according to the value of 11 consecutive previous time series,
that is, according to the 11 consecutive previous (hours or
days) data of the above data, we can predict the value of
the 12 (hours or days) data of time series. The length of
these data is shown in Table 1. In Table 1, sin, temperature,
and stock represent respectively the artificially generated sin
simulation time series, the temperature time series of the
actual air quality data set collected by the US embassy in
Beijing, and the SP500 stock index time series of the financial
market.

To achieve better experimental results of our proposed
prediction method, we do our best to let the experimental data
should be as much as possible and remove all the noise data
of the experimental data as far as we could. Because there
are some incorrect data in the original experimental data sets
of the four indices, such as the records of two consecutive
days with exactly equal data, the record of the transaction
volume being equal to zero, we firstly should remove all noise
or incorrect data in the experimental data sets of the four stock
indices.

Because the prediction problem is to predict the value of
the next sequence according to the value of the 11 consecutive
previous sequences of the time series, it needs to preprocess
the original time series data. The original time series is stored
in a one-dimensional array. The experiment needs to process
the original one-dimensional data into a two-dimensional
array with 12 data as a group (row), which causes the first
part of the data to be unusable. It causes the total length of
selected original data (the first row in Table 1) is 12 longer
than the total length of experimental data (the second row in
Table 1). To reduce the operation time, we selected the first
10000 pieces of original data in the experiment because the
length of the temperature time series is very long. The length
of the generated sin simulation time series is also 10000. The
actual length of the SP500 stock index time series is 3761.
Therefore, the first row of Table 1 shows the “total length of
selected original data” of the three experimental data, which
is respectively 10000, 10000, and 3761. The total length of the
experimental data after preprocessing is shown in the second
row of Table 1, which is 9988, 9988, and 3749, respectively.
When training the machine learning model, we need to divide
the data into training data and test data. In the experiment, the
ratio of 6:4 is used to segment the data. 60% of the total length
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of the experimental data is used as the training data, and the
rest is used as the test data. The specific length of training
data and test data of each time series is shown in the third and
fourth rows of Table 1, respectively.

V. EXPERIMENTS

The experimental data used in the experiment come from two
fields: one is the artificial simulation experimental data, the
others are the real data in the real world. Besides, to compare
with other methods conveniently, we selected seven predic-
tion methods to test the same experimental data. Therefore,
this section explains and analyzes the experimental results
from three aspects.

A. EVALUATION CRITERION

There are many evaluation criteria for the evaluation model,
most of which are targeted. The typical problems are clus-
tering, regression, classification, ranking, double clustering,
and pairing. To evaluate the proposed method correctly and
effectively, we selected the evaluation criterion of RMSE, R2,
and MAE to calculate the prediction error and evaluate the
model.

Root mean square error (RMSE), also known as standard
error, is a widely used evaluation index, which is very sen-
sitive to extremely small or significant errors in test data. Its
calculation formula is shown in Eq.14.

1
RMSE (y.5) = \/ =D O (14)

where y and y in Eq.14 represent the real value sequence and
predicted value sequence of test data respectively, yx and yi
respectively represent the real value and predicted value of
the & th in the test data sequence, and n represents the length
of test data.

R square (R?) is the ratio of the sum of regression squares
to the sum of total deviation squares. The larger the ratio
is, the better the effect of the model is, and the more accurate
the effect is. At present, it is an indicator used to measure
the prediction ability of the model. The best score is 1. The
closer it is to 1, the better the prediction effect of the model
is. In general, the model over 0.9 is better, and its value may
be negative, indicating that the model is inferior, not as good
as the average prediction. The calculation formula is shown
in Eq.15.

k=t vk = il

RP(.7)=1- =
> rei vk = il

(15)

In Eq.15, y, y=k, and y respectively represent the true value,
average value, and predicted value of test data, n represents
the lenﬁth of test data, and the calculation formula of average
value yy is shown in Eq.16.

— I
T D (16)

n

Mean absolute error (MAE) is the average value of abso-
lute error, which can better reflect the actual situation of
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TABLE 2. Prediction results of three methods for three time-series.

METHOD Sin Temperature SP500

RMSE 0.130662 1.947225 425.013873

SVR MAE 0.117780 1.442153 335.804235
R2 0.981994 0.960849 -0.558416

RMSE 0.000035 1.392644 14.172792

LR MAE 0.000021 0.978153 10.186058
R2 1.000000 0.979974 0.998267

RMSE 0.005341 1.464543 270.957771

RFR MAE 0.003571 1.058784 174.903846
R2 0.999970 0.977853 0.366596

RMSE 0.838632 8.860991 599.048490

KR MAE 0.700675 7.788972 464.725006
R2 0.258231 0.189280 -2.096002

RMSE 0.000035 1.392694 14.177517

BR MAE 0.000021 0.978235 10.194094
R2 1.000000 0.979973 0.998266

RMSE 0.011126 1.885286 278.261273

KNR MAE 0.005177 1.419670 182.983170
R2 0.999869 0.963300 0.331990

predicted value error, and its calculation formula is shown
in Eq. 17.

Sl -
MAE (y,5) =~ 3 Ive =3l (17)

where y and y in Eq.17 respectively represent the real value
and predicted value of test data, and n represents the length
of test data.

B. ANALYSIS OF EXPERIMENTAL RESULTS

OF OTHER METHODS

To compare the effects and characteristics of various pre-
diction methods, we selected seven prediction methods to
predict the same experimental data. The experimental results
are shown in Table 2 and Table 3. The LSTM method is
described in detail above, and the other six methods are
briefly introduced below.

1) SVR

SVR is short for Support Vector Regression, which is the most
basic support vector regression method. According to libsvm,
machine learning is controlled by penalty function and loss
function. In the experiment, the penalty parameter and loss
parameter are 1 and 0.2, respectively.

2) LR
LR is short for linear regression, which is a standard least
square regression method. It is widely used at present.

3) RFR
RFR is short for random forest regression. A random tree is
a basic estimate. A large number of classification decision
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TABLE 3. RMSE evaluation of prediction results of LSTM and LSTM-TFE.

Method Iteration times Sin Temperature SP500
50 0.650849 8.455165 1414.209806
LST™M 500 0.042390 1545091 559.593267
5000 0.038733 1.682006 559.588074
50 0.389935 3.030954 1359.775809
L];TT"&??;E 500 0.038895 0.922435 478.802265
5000 0.020879 0.738811 489.776767

trees are used to fit the subsamples of the data set. Finally,
it is averaged to improve prediction accuracy and control
overfitting.

4) KR

KR is short for kernel ridge regression, combined with the
skills of ridge regression and kernel, adopts the linear least
square L2 norm regularization. In the data space of the linear
kernel, it corresponds to the linear function in the original
space. For the nonlinear kernel, it corresponds to the nonlin-
ear function in the original space.

5) BR

BR is short for Bayesian ridge regression, which uses the reg-
ularized parameters A (accuracy of weight) and « (accuracy
of noise) to fit the model.

6) KNR

KNR is short for K-nearest Neighbors Regression, which is
a kind of regression method based on the k-nearest neighbor
algorithm. It can predict the target by local interpolation of
the target related to the nearest neighbor in the training set.

Table 2 shows the prediction results of six methods of
three-time series: sin, temperature, and stock. The data used
by all methods are the data preprocessed by these three time-
series. The specific length of the data in the experiment is
shown in the second row of Table 1. The prediction problem
is to predict the value of the next time series according to the
value of 11 consecutive previous time series. The experimen-
tal results in Table 2 are calculated by RMSE, MAE, and R2
based on the predicted and real results. The smaller the results
of RMSE and MAE, the better the prediction effect. However,
the larger the result of R? evaluation index, the better the
prediction effect of the method.

For the convenience of comparison, the results of the two
best prediction methods for each time series data are shown in
bold, as shown in Table 2. It is found that LR and BR are the
best methods to predict sin time-series data. The LR and Br
methods are the best methods to predict the time series data
of temperature and SP500. Therefore, LR and BR are the best
methods to predict the three time-series data.

Through careful observation of Table 2, it is found that for
the prediction of sin time series data, except the KR method,
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FIGURE 12. Prediction results of SVR method for temperature time series.

the other five methods have a good prediction effect. The
R? evaluation index of the other five methods is more than
0.98, which shows that the prediction effect of these methods
is better for the time series with regular and stable changes.
Here, we only select the result of one method to display the
prediction effect in the figure, as shown in Fig. 11. It is found
that the overall prediction effect of the KR method inferior.
To make the result graphs clear and distinguishable, all the
result graphs in this section only show the last 300 predicted
results, unless otherwise specified.

Observing the SVR experimental results in Table 2, it is
found that the prediction effect of this method for the time
series data of temperature and sin is better than that of others.
Figure 12 shows the SVR prediction result of the time series
data of temperature, but the prediction effect for the time
series data of stock is inferior. The change of the time series of
temperature and sin is more regular and stable, which shows
that the SVR method is more suitable for regular and stable
time series prediction. Although it belongs to the category
of support vector regression, many improvements have been
made on the traditional SVR method. It is more flexible in
the selection of penalty function and loss function, and it
is suitable for the situation with a more significant sample
number. From the experimental results of SVR in Table 2,
the prediction effect of the three time-series data is not the
best.

By observing the experimental results of RFR and KNR
in Table 2, it is found that the prediction effect of this

61923



IEEE Access

Y. Yang, Y. Yang: Hybrid Method for Short-Term TSF Based on EEMD

TABLE 4. Prediction results of LR, BR and the proposed method for three
time-series.

METHOD Sin Temperature SP500
RMSE 0.000035 1.392644 14.172792
LR MAE 0.000021 0.978153 10.186058
R2 1.000000 0.979974 0.998267
RMSE 0.000027 0.713150 7.302429
Proposed

LR-TFE MAE 0.000021 0.512700 5.307596
R2 1.000000 0.994749 0.999540
RMSE 0.000035 1.392694 14.177517
BR MAE 0.000021 0.978235 10.194094
R2 1.000000 0.979973 0.998266
RMSE 0.000033 0.712299 7.295944

Proposed -
BR-TFE MAE 0.000027 0.512609 5.310422
R2 1.000000 0.994761 0.999541

method for temperature and sin time series data is better
than that of others, but the prediction effect for stock time
series data is inferior. Human factors greatly influence the
stock time series. Since the data composition, which changes
with the most irregular and unstable, is complicated, it is not
suitable to use the KNR method to predict the stock time
series. The experimental results of RFR and KNR show that
RFR and KNR are not suitable for time series prediction
with irregular and unstable changes. LR and BR methods
can achieve better results for the stock time series. Besides,
the other methods are not suitable for the prediction of
financial markets, which are greatly influenced by human
factors.

Observing Table 3, it is found that the prediction effect
of the LSTM method on stock time series data is inferior.
The prediction effect of temperature and sin time series data
is slightly better. With the rapid development of deep learn-
ing algorithms, LSTM should achieve better results, but the
results obtained in the experiment are not good, which may
be related to the LSTM model constructed in the experi-
ment, the parameters set, and the number of iterations during
training. It is concluded that the main reason for such exper-
imental results is that human factors greatly influence the
stock time series, and its changes are the most irregular and
unstable.

C. ANALYSIS OF EXPERIMENTAL RESULTS BASED ON
ARTIFICIAL SIMULATION DATA
To test the effectiveness of the proposed method, we used an
artificial simulation experimental data. To obtain sufficient
and effective experimental results, the artificial simulation
experimental data generated manually should not be too
short. Therefore, the length of the generated sin simulation
time series is 10000.

Before discussing the experimental results of real data
in the actual field, the proposed LSTM-TFE, LR-TFE, and
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FIGURE 13. Prediction results of LSTM-TFE method for temperature time
series and stock time series.

BR-TFE methods are used to predict the Sin artificial simu-
lation time series data. The artificial simulation experiments
can verify the correctness and effectiveness of the three
methods.

Observe the sin data column in Table 3, the RMSE eval-
uation index of the LSTM-TFE method is better than that
of the LSTM method under the same iteration times. Observe
the sin data column in Table 4, the evaluation indexes of
the LR-TFE method are equal to or better than those of the
LR method. The RMSE and R? of the BR-TFE method are
equal to or better than those of the BR method. Although
the MAE evaluation index of the BR-TFE method is slightly
worse than that of the BR method, it is almost negligible. In
conclusion, the proposed LSTM-TFE, LR-TFE, and BR-TFE
methods have a better overall effect than the original methods,
which shows that the three prediction methods are correct and
effective.

D. ANALYSIS OF EXPERIMENTAL RESULTS

BASED ON REAL DATA

To test the practicability of the proposed LSTM-TFE,
LR-TFE, and BR-TFE prediction methods, we used three
methods to predict the temperature time series in the mete-
orological field and a real stock index time series in the
financial market. These two real-time-series can be divided
into two categories: temperature time series belong to natural
phenomenon, while stock index time series belong to social
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FIGURE 14. SP500 stock time-series change and EEMD decomposition.

phenomenon. These two time-series have good representa-
tiveness. The temperature time series are not interfered with
by a human, but the change of temperature time series is rel-
atively stable. The time series of stock index in the financial
market is complex and unstable, which is severely affected by
human factors.

Observing RMSE evaluation indexes of LSTM and
LSTM-TFE prediction results of temperature and stock time
series in Table 3, it is found that the RMSE evaluation index
of LSTM-TFE method is better than that of LSTM method
in the time series of temperature and stock. Fig. 13 shows
the LSTM-TFE prediction results of the temperature time
series.

By observing Table 3 and Table 4, it is found that the
results of the proposed LSTM-TFE, LR-TFE and BR-TFE
methods on the two time series of temperature and stock
are much better than those of the original LSTM, LR and
BR methods. There are two main reasons for such good
results. On the one hand, the three methods proposed in this
paper decompose the time series of temperature and stock
by EEMD, which makes the complex original time series
decompose into more regular and more stable subsequences,
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and the prediction results of subsequences are more accurate
than that of the original sequence. On the other hand, although
the changes in temperature and stock time series are complex,
they can be decomposed into a regular and stable time series.
To clearly understand the change of temperature and stock
time series and EEMD decomposition, Fig. 14 and Fig. 15
show all the changes of these two time-series and EEMD
decomposition, respectively. The first subgraph at the top of
Fig. 14 and Fig. 15 is the original change of the two time-
series, and the other subgraphs are the EEMD decomposition
subgraphs of the two time-series. It is easy to see that the
lower EEMD decomposition subgraph is milder, more reg-
ular, more stable, easier to predict, and the better prediction
effect.

In this paper, we put forward three prediction methods
based on EEMD. The experimental results show that the
fusing predicts results is better than that of using the existing
prediction methods to predict the original time series directly.
Although we choose three classical methods in this paper,
such as BR, LR, and LSTM, when someone applies them
in different fields, they can choose one to try in a specific
field. In application, if the effect of the selected method is
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FIGURE 15. Temperature time-series change and EEMD decomposition.
not as expected, the other two methods can be selected one the experimental results, it can be found that the proposed
by one. method has an excellent overall effect. But there are also some
defects, and the prediction effect of time series with more
VI. CONCLUSION AND FUTURE WORK drastic changes is not good.
In this paper, we proposed three hybrid methods for short- The research of time series analysis and prediction method
term time series forecasting based on EEMD, which are has developed rapidly, but its effect can’t meet the high
LSTM-TFE, LR-TFE, and BR-TFE. These methods are all requirements of practical application in some fields in many
based on the idea of divide and conquer of complex prob- aspects, and there are many problems to be solved. Based on

lems and the strategy of machine learning optimization step the research work in this paper, there are still many contents
by step, combined with EEMD, Long-term and Short-Term to study in the future. In the future, the EEMD method needs

Memory neural network, Linear Regression and Bayesian to be improved or combined with other methods, to solve
Ridge Regression. EEMD is used by LSTM-TFE, LR-TFE, the problem of poor prediction effect of such time series.
and BR-TFE to decompose complex time series into sev- We will continue to study the application of deep learning
eral relatively milder, more regular, and stable subsequences. algorithm in time series prediction, try to train the model
Using the LSTM neural network, LR, and BR methods, each with the help of high-performance computer, increase the
subsequence is trained and predicted by machine learning. number of training iterations, and study the construction of
The value of each subsequence is predicted firstly. The pre- deep learning model for different time series, to provide an
diction results of multiple subsequences are fused to form important reference for the application in the actual field. To
the prediction results of the original complex time series. improve the decomposition effect of time series, we will make

To verify the proposed method comprehensively, we select a comparative study on various time series decomposition
three representative time series data to test in this paper. From methods, such as wavelet decomposition, VMD, EEMD, etc.,
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and find their advantages and disadvantages and limitations
in use, so that they can be normally applied in different
fields.
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