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ABSTRACT Although the existing localization andmapping (SLAM) technology of indoor mobile robot has
made great development, its intelligence and environmental perception ability still cannot meet the needs of
service and inspection. Therefore, based on edge computing environment, a 3D semantic map construction
of mobile robot based on improved ORB-SALM2 is proposed. Firstly, the improved yolov3 algorithm
is used to detect indoor objects, and then the real-time semantic segmentation network model based on
deep learning is used to segment indoor objects to achieve the classification of pixel points of objects
on two-dimensional images, and BAFF feature fusion algorithm is introduced to improve the accuracy
of semantic segmentation model. Then, through the SLAM system, we estimate the pose of the image in
the result of semantic segmentation, and use the depth information to project it into the three-dimensional
environment to build the three-dimensional semantic map. Finally, the experiment platform of mobile robot
is built to verify the stability of ORB-D and thermal imaging sensor registration technology, the accuracy and
real-time of building three-dimensional environment thermal fieldmap, and the accuracy of robot positioning
using thermal infrared and depth image.

INDEX TERMS Mobile robot, edge computing, 3D semantic map, improved ORB-SALM2, pose
estimation, image semantic segmentation, deep learning.

I. INTRODUCTION
Due to the lack of simple labor, people’s living standard is get-
ting higher and the population is aging, it has brought greater
pressure on medical and care of society [1]. Driven by the
above factors, service robots show great development poten-
tial and social needs. More and more countries have begun
to focus on the development of the robot field. The number
of countries involved in the development of service robots is
also increasing, and the key technologies are regarded as the
key science and technology for future development [2], [3].
SLAM (Simultaneous localization and mapping) is a process
in which a robot is equipped with vision, laser, odometer and
other sensors to build a map of an unknown environment and
achieve self-localization [4], [5]. It plays a key role in robotic
autonomous navigation task [6]. After decades of theoretical
research and technological precipitation, SLAM technology
has achieved rich results, especially a series of breakthrough
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advances made by visual SLAM in recent years. The desire
of mobile robots to achieve autonomous navigation and
human-machine integration has gradually become reality.

The current research method of SLAM problem is to
estimate the motion information of the robot body and the
characteristic information of the unknown environment by
installing multiple types of sensors on the robot body and use
information fusion to achieve accurate estimation of the robot
pose and spatial modeling of the scene [7].

Due to information accumulation error of odometer and
other sensors, back-end optimization becomes particularly
important. The key is to detect the closed loop cor-
rectly [8], [9]. Compared with the single spatial structure
perception information of the laser sensor, the visual sensor
has huge advantages and potential in improving the accuracy
of inter-frame estimation and the accuracy rate of closed-loop
detection with rich perceptual information such as color and
texture [10]–[12]. Visual SLAM (SLAM) is a SLAM sys-
tem with image as the main source of environmental per-
ception information. It can be applied to applications such
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as unmanned driving and augmented reality. It is a popular
research direction in recent years [13]–[15].

II. RELATED WORKS
Visual SLAM based on SIFT (scale invariant feature trans-
form) feature [16] and visual SLAM based on ORB (oriented
FAST and rotated BRIEF) feature [17] are widely used in
the field of visual SLAM relying on its good robustness,
superior discrimination ability and fast processing speed.
The SIFT-SLAM algorithm proposed in [18] determines the
camera pose and map based on the degree error. It does not
need to extract corner points and descriptors, but it cannot
represent the global feature of an image. It is difficult to solve
the problem of cumulative drift in closed-loop detection. The
ORB feature detection operator is proposed based on FAST
feature detection and BRIEF feature descriptors. Its running
time is far better than SIFT and SURF, and it has scale and
rotation invariance. It also has invariance in noise and its per-
spective transformation and can be applied to real-time fea-
ture detection. The typical vision SLAM algorithm takes the
estimation of camera pose as the main goal and it reconstructs
the 3D map through multi-view geometry theory. To improve
the data processing speed, some vision SLAM algorithms
first extract sparse image features and implement inter-frame
estimation and closed-loop detection by matching between
feature points. However, it is still an unsolved problem in
computer vision that sparse image features represent image
information optimally [19]. On the other hand, sparse image
features still have more challenges in dealing with changes
of lighting, dynamic target movement, changes of camera
parameters and lack of texture or the single environment of
texture.

Faced with these problems, [20] proposed a hierarchi-
cal image feature extraction method represented by deep
learning technology in the field of visual SLAM, and it
was successfully applied to SLAM inter-frame estimation
and closed-loop detection. Deep learning algorithm is the
mainstream recognition algorithm in the current computer
vision field. They rely on multi-layer neural network to learn
the hierarchical feature representation of images. Compared
with traditional recognition methods, they can achieve higher
recognition accuracy [21], [22]. Meanwhile, the algorithm
in [23] can associate image with semantic and combine with
SLAM technology to generate a semantic map of the environ-
ment. Then, it builds a semantic knowledge base of the envi-
ronment for the robot to perform cognitive and task reasoning
and improve the service capability of robot and intelligence of
human-computer interaction [23]. Reference [24] proposed
an end-to-end deep neural network architecture to predict
changes in camera speed and direction. The main feature
of the method is to use a single type of calculation module
and learning rule to extract visual motion, depth information
and odometer information, which is mainly divided into two
steps. First is the extraction of image sequence depth and
motion information. However, in term of accuracy, the algo-
rithm has not yet reached the mainstream visual odometer

accuracy. Reference [25] et al. used the convolutional neural
network to learn the optimal feature representation of image
data for visual odometer estimation and demonstrated the
robustness of its algorithm in dealing with image motion
blur and illumination changes. However, the experimental
results also show the dependence of the proposed algorithm
on training data, especially when the frame speed of the image
sequence is too fast, the algorithm error is large. The rea-
son is that the lack of high-speed training samples in the
training set results in a large estimated rotation error. Ref-
erences [26] et al. have expanded based on spatial transform
network and chose to regress classic computer vision method
when designing network, such as end-to-end visual odometry
and image depth estimation.

However, the existing mobile robots still have problems.
For example, it mainly uses similar vision sensor and lacks
the complementarity of multi-source sensors and percep-
tion information is relatively single. The ability of robots to
understand and apply information is still weak. Therefore,
an indoor 3D semantic map construction of mobile robot
based on improved ORB-SLAM2 is proposed. The main
innovations are summarized as follows:
(1) The accuracy of the existing semantic segmentation

model is low. Therefore, the proposed method uses
deep learning to achieve target detection based on
the improved YOLOv3 algorithm. Then, it uses deep
learning to segment indoor target objects and classify
the target pixel points on a two-dimensional image.
And it introduces the BAFF feature fusion algorithm
to improve the accuracy of the semantic segmentation
model.

(2) RGB camera has poor SLAM stability based on
the ORB-SLAM2 algorithm in low-light environment.
Therefore, the proposed method uses thermal infrared
images and depth images that are less affected by light
to estimate robot pose and improve robot positioning
stability.

(3) To improve the understanding of mobile robot for
the environment, the proposed method uses real-time
semantic segmentation technology of deep learning
to achieve the positioning and recognition of target
objects. Then, it combines the poses obtained by the
SLAM algorithm to project a two-dimensional image
of semantic information and builds a three-dimensional
semantic map to improve the intelligence and environ-
ment perception depth of robot.

III. THE OVERALL ARCHITECTURE OF
THE PROPOSED METHOD
The overall architecture of SLAM based on edge computing
is shown in Figure 1. The data involved in data collection,
feature extraction, data matching, semantic segmentation and
map building are stored to the edge by encryption, and the
real-time processing of data is realized by using the edge
computing module, at the same time, the computing with
low real-time requirements is solved by cloud computing.
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FIGURE 1. Front-end and back-end in a typical SLAM system.

The front-end inter-frame estimation and back-end optimiza-
tion. The front-end inter-frame estimation solves the motion
estimation of the robot in the time interval between acquiring
the sensor information of the two frames before and after.
The back-end optimization solves the optimization of the
historical trajectory after the robot detects the closed loop of
the path.

The mobile robot of the indoor environment uses the vision
system and the motion system to obtain an image of the
environment. After analyzing and processing the core pro-
cessor by the robot, the three-dimensional coordinate of the
robot is obtained to construct a 3D semantic map. The overall
architecture of the proposed method is shown in Figure 2.

The vision system ofmobile robot uses RGB-D camera and
thermal imaging sensor and combines with themotion system
to process the acquired images for target detection, semantic
image segmentation, feature point matching, pose estimation
and optimization, etc. And the 3D semantic map of mobile
robot is obtained.

IV. CONSTRUCTION OF 3D SEMANTIC MAP BASED
ON IMPROVED ORB-SLAM2
Based on the system framework of the proposed mobile
robot 3D semantic map construction method, the proposed
method uses the improved YOLOv3 for indoor target detec-
tion and uses the real-time semantic segmentation network
model of deep learning to classify detected targets. Finally,
the image in the result of semantic segmentation is estimated
by SLAM system, and the depth information is used to project
it into a three-dimensional environment to construct a three-
dimensional semantic map.

A. OBJECT DETECTION USING IMPROVED YOLOV3
The feature extraction network Darknet53 of the YOLOv3
real-time target detection model is composed of 53 convo-
lutional layers and 24 residual layers [27], [28]. The last
20 layers are the feature interaction layer of the YOLO net-
work, which is divided into 3 scales. Within each scale, local

feature interaction is realized by convolution kernel, which
is similar as full connection layer. Local feature interaction
between feature images is realized by convolution kernel
(3 × 3 and 5 × 5), and the fully connected layer performs
global feature interaction. The convolutional layer extracts
the image features, and the fully connected layer predicts the
image position and class estimated probability value. Based
on the input image data, YOLOv3 uses regression analysis to
output multiple sliding window positions of image data and
the target categories detected in the window.

To improve the ability of detecting small targets of
YOLOv3 network in infrared images, an IR-YOLO neural
network structure is proposed. The characteristics of small
infrared targets are low resolution (small infrared targets are
generally 20′20 pixels), the fuzzy details and the lack of
color features. Therefore, the improvement of the network
structure focuses on the compression feature to extract the
network depth. The shallow convolution feature perception
field contains little background noise, which is suitable for
extracting the semantic features of small target with low reso-
lution and has better representation ability for infrared target.
Deep convolution layers are more suitable for processing
high-resolution detail features, and for low-resolution image
features such as infrared images, there is more background
noise in the field of view. Less effective information can be
used, so compression can be performed [29]. Meanwhile,
to further improve the real-time detection, the original detec-
tion layer of YOLOv3 uses an anchorless CenterNet struc-
ture. The structure of IR-YOLO neural network is shown
in Figure 3.

In the IR-YOLO neural network structure, a total of 9 con-
volutional layers from 44 to 53 and the last 4 residual layers
in the YOLOv3 dry feature extraction network (Darknet53)
are clipped, reducing the original backbone feature extraction
network from 74 to 61 layers and forming a compressed
network structure. The CenterNet used by IR-YOLO is com-
posed of cascading corner pooling and center pooling to
obtain rich information from the upper left and lower right
corner and obtain more identification information in the
middle area. The structure of the detection part is shown
in Figure 4.

The central pooling model in the CenterNet network con-
sists of 2 convolution normalized residual fusion layers, 1 left
pooling layer, 1 right pooling layer, 1 top pooling layer and
1 bottom pooling layer. It is used to predict the branch of
the key point in the center, which is helpful for the center to
obtain more central areas of the target and then perceive the
central position of the proposed areamore easily. Thismethod
is implemented by taking the maximum sum of the horizon-
tal and vertical response values of the center position. The
cascade corner pooling model consists of two convolution
normalized residual fusion layers, one left pooled layer, one
convolution normalized fusion layer and one top pooled layer,
which is used to increase the function of the perceived internal
information [30]. Combine the maximum response sum value
of the interior and boundary directions of the target in the
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FIGURE 2. Overall framework of the proposed method.

FIGURE 3. IR-YOLO neural network structure.

feature map to predict the upper left corner and the lower right
corner. After fusing the output of the central pooling module
and the cascaded corner pooling module, the target prediction
location can be accurately obtained.

In the process of target detection, the original YOLO layer
is replaced by the CenterNet structure on all three detection
scales. Among them, CenterNet is large number of incorrect
bounding boxes that often appear in anchor-based methods,
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FIGURE 4. Detection part structure.

resulting from the lack of additional supervision of relevant
clipping regions. Therefore, the original YOLOV3 requires
large number of anchor points in the detection layer to target
detection. CenterNet is a single-stage key-point detection
model. Each target is detected as 3 key-points (center point,
upper and lower diagonal point), avoiding generating large
number of anchor points, reducing the amount of calculation,
improving real-time performance and improving detection
accuracy and recall ratio [31].

B. REAL-TIME IMAGE SEMANTIC SEGMENTATION
USING DEEP LEARNING
The semantic segmentation model used in the proposed
method is shown in Figure 5, where the coding structure
uses a lightweight convolutional neural network MobileNet
v2 and the decoding structure is built on a conventional
jump connection structure. A BAFF feature fusion algorithm
(BAFF -SkipNet) is introduced to improve the accuracy of the
semantic segmentation model.

Because different feature layers reflect different overall
and detailed features of the object, different features are
weighted to highlight and retain image features under differ-
ent receptive fields in the feature fusion process [32]. Firstly,
to describe the different characteristics, under a fixed recep-
tive field, a deep learning network is used to scale the same
object to test images with different size and the average prob-
ability value of the target area is output. Then, considering
the characteristic difference of different convolutional layers,
Gaussian curves with different shapes and peak centers are
used to describe the characteristics of the convolutional lay-
ers. The 8th and 20th layers in the network are weighted and
fused. This process can be regarded as the complementary
superposition of two types of Gaussian curves, expressed as:

Pr=λa1 exp
(
b1 (S−c1)2

)
+(1−λ) a2 exp

(
b2 (S − c2)2

)
(1)

where S is the area of the object, a1, b1, c1 are the parameters
of the output curve fitting of the 8th layer, a2, b2, c2 are the
parameters of the 20th layer output curve fitting and λis the
weighted value.

Finally, considering the perspective of the scene in the
actual image, the area occupied by the same object in the
image may vary greatly. The receptive field size of a given
convolutional layer in a deep learning network is fixed.
To adjust the size of the receptive field in a local area to
match the area of the object in the area, the proposed method
proposes a block adaptive feature fusion (BAFF)method. The
feature map is divided into blocks and weighted fusion is
performed separately [33].

Assume that there are two convolutional layers in BAFF,
each convolutional layer has l feature map. Assuming that
the dimension of each feature map is w × h and the first
convolutional layer is recorded as za, then the j feature map
of the convolutional layer is expressed as zja. The second
convolutional layer is recorded as zb, then the j feature map
of the convolutional layer is represented as zjb. σ

j represents
the j feature map in the output layer. The calculation process
of BAFF is expressed as:

hj1 = zja ∗ w
j
1 + b

j
1

hj2 = zja ∗ w
j
2 + b

j
2

hj3 = µ
(
hj1 + h

j
2

)
hj4 = µ

(
hj3 ∗ w

j
4 + b

j
4

)
hj5 = up

(
hj4
)

σ j = hj5 ◦ z
j
a +

(
1K×L − h

j
5

)
◦ zjb, 1 ≤ j ≤ l

(2)

where up (x)is the up-sampling function of bilinear interpo-
lation, ◦ is the Hadamard product, bj1,w

j
1 are the weight and

offset of the j feature map in the first hidden layer. bj2, w
j
2,

bj4, w
j
4 respectively represent the convolution kernel and bias
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FIGURE 5. Real time semantic segmentation model.

FIGURE 6. Process of pose estimation based on depth image and thermal infrared image.

of the j feature map in each layer. σ j is the j feature map in

output layer. The hj4 is weight matrix. Up-sampling can obtain
the expanded weight matrix hj5. Weighting hj5 and input can
get the fused output σ j.

C. POSE ESTIMATION BASED ON DEPTH IMAGE
AND THERMAL INFRARED IMAGE
The pose estimation process based on the depth image and
thermal infrared image is shown in Figure 6.

Firstly, an improved Scale-invariant feature transform
(SIFT) algorithm is used to extract the feature points of the

image. The feature points are matched under the condition
that the feature point threshold is met. Combined with the
matched feature points, PnP is used to solve the pose between
the thermal infrared images to obtain the 3D position of the
image. Due to the phenomenon of overlap and misalignment,
a random fern model is used to optimize the pose to obtain an
accurate 3D image position.

The thermal imaging system is susceptible to environmen-
tal interference, and its own detection capability is low. As a
result, the acquired thermal infrared image has low resolution,
the image is blurred and there is more noise. Therefore,
the SIFT algorithm is used to accurately extract the features
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of the thermal infrared image to estimate the robot’s motion
in a low-light environment.

The SIFT algorithm is a robust algorithm for detecting
image feature points in computer vision. To extract SIFT
features, it needs to convert the input image into a grayscale
image. And then, the image gaussian pyramid is obtained
through down-sampling and Gaussian convolution, as shown
in Figure 7, that is, to obtain images of different scales
and different degrees of blur. Then, a difference operation
is performed on the images at the same scale to obtain a
Gaussian difference pyramid. The detected extreme points are
used as feature points. Because the image is transformed at
different scales and different blur levels during the extraction
of key points, the extracted feature points are minimally
affected by factors such as light and rotation.

FIGURE 7. SIFT feature point extraction algorithm.

Due to the low resolution of the thermal infrared image,
the fuzzy image texture and the fewer feature points, the SIFT
extraction algorithm is improved. That is, after obtaining
the initial candidate feature points, the SIFT algorithm per-
forms a preliminary screening of the feature points. If the
candidate points have a low contrast or are located at the
edges, the algorithmwill consider them as unstable points and
remove them. However, if the contrast of the image is low and
the imaging is blurred, a fixed threshold will remove more
points, making it difficult to extract sufficient feature points.
Therefore, parameters need to be adjusted according to the
specific conditions of the image. Experiments show that the
curvature threshold has little effect on the number of feature
points, but the contrast threshold has a great effect.

The contrast of the image can be represented by tex-
ture information and image information entropy. But it has
been found through experiments that these feature parameters
do not have a particularly obvious functional relationship
with the number of feature points. Therefore, the proposed
method sets the minimum number of SIFT feature points
(800) extracted by each frame of the image. If the number of
extracted feature points is less than the threshold, the contrast
threshold is decreased by 0.005 until the number of feature
points is higher than the set value.

According to the assumption of smooth lateral motion,
the images to be detected are introduced into a grid and
divided into groups. Firstly, each grid is treated as an
independent region. Adaptive feature point detection is per-
formed on each independent region. Then, detected feature

points are sorted by their response values. Finally, according
to the pre-set value, the best feature points are selected from
the feature point set, thus the detection of all areas of the
whole image is completed. The algorithm flow is shown
in Figure 8.

FIGURE 8. Algorithm flow of feature point matching.

Specific steps are as follows:
Step 1: Step 1: Set the maximum number of feature points

for extraction to Q and the number of row and column of
the grid to Gcol , Grow respectively. Then, the number of
pre-detected points of each grid is:

N = Q/ (GcolGrow) (3)

Step 2: According to the area divided by the grid, the coor-
dinate position of the grid border of the i(i = 1, 2, · · · ,
GrowGcol) area is:
Rrow=

(
(i/Grow)w
Grow

,
((i/Grow)+1)w

Grow

)
Rcol=

(
(i−(i/Grow)Gcol) h

Gcol
,
((i−(i/Grow)Gcol)+1) h

Gcol

)
(4)

In the formula, the width and length of the image are w,
h respectively.
The region is detected by a corner detection algorithm

and the difference between the gray values of each candidate
corner point and the surrounding 16 neighboring points is
calculated by using the oFAST algorithm. If the number of
pixel points M > 12 is satisfied, the candidate point is
considered as corner point.

M =
∑
x∈c(p)

∣∣Ix − Ip∣∣ > α

{
1
n

n∑
i=1

[I (xi)− I (x)]2
}

(5)

where c (p) is the area composed of 16 pixels adjacent to the
candidate corner point p. Ip is the gray value of the candidate
corner pint p to be measured. Ix is the image gray value of
the 16 adjacent pixels of the candidate corner point p. n is the
number of pixels in the area. α is the scale factor and I (xi),
I (x) are the gray value of each pixel in the area to be detected
and the average gray value of the area.
Step 3: If the number of detected corner points is less than

the set number of pre-detection points N, save and execute
the detection of the next area, otherwise go to step 4.
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Step 4: If the number of detected feature points is greater
than or equal to N, the response values of all detected fea-
ture points are calculated by Harris corner response and
then sorted in descending order according to the size of the
response value. The top N best points are filtered out and
saved from the feature point set.

PnP (Perspective-n-Point) is an important method to solve
the pose of 3D-2D matching points because it requires fewer
matching point pairs and has higher accuracy. Since the
obtained thermal infrared image and the depth image have
a one-to-one correspondence, the 3D positions of the feature
points can be obtained from the depth image. Therefore, PnP
can be used to solve the pose between the thermal infrared
images. There are many methods to solve PnP problem.
Because EPnP is fast and has high accuracy, EPnP is used
to solve PnP problem.

The EPnP algorithm represents the 3D points in the world
coordinate system as a weighted sum of a set of virtual control
points. For general cases, the EPnP algorithm requires the
number of control points to be 4 and these 4 control points
cannot be coplanar. Assume that the feature point x tm in the
image It is 3D coordinate X tq, p = 1, 2, 3, · · · ,Q of the
camera coordinate system and the feature point matching in
the image It+1 is 2D coordinate X t+1q , q = 1, 2, 3, · · · ,Q,
and the coordinates of the four control points of the cor-
responding camera coordinates in It are C t

i , i = 1, 2, 3, 4
and are expressed in the camera coordinate system as C t+1

i ,
i = 1, 2, 3, 4.
3D feature point X tq is represented by 4 control points:

X tp =
4∑
i=1

αtiC t
i ,

4∑
i=1

αti = 1 (6)

Assuming the relative pose of two frames is [R |T ], the rela-
tionship between the control points is:

C t+1
i = [R |T ]C t

i (7)

As can be seen from the above formula, solving the pose
between cameras requires determining the control points in
the two-frame camera coordinate system, that is, calculat-
ing the coordinates of the control point C t+1

i in camera
coordinate It+1.
The coordinate relationship between the 2D feature point

x t+1q and the control point C t+1
j is obtained according to the

projection model of the camera:

∀p, wp

 upvp
1

 =
 fu 0 uc

0 fv vc
0 0 1

 4∑
i=1

αti

X t+1i
Y t+1i
Z t+1i


4∑
i=1

αtifuX
t+1
i + αti

(
uc − up

)
Z t+1i = 0

4∑
i=1

αtifvY
t+1
i + αti

(
vc − vp

)
Z t+1i = 0 (8)

By connecting q feature points in series, we get:

Mx = 0, x =
[
C t+1
1 , C t+1

2 , C t+1
3 , C t+1

4

]T
(9)

Solving the above formula can get the control point coordi-
nates and using the obtained control point coordinate, the 2D
coordinate point x t+1q can be represented as X t+1q in 3D.
In the process of map creation, only the map optimization

pose optimizationmethod is used, and it has not been possible
to identify areas that have been reached and complete the
global closed loop of system. The effect of back-end opti-
mization on the closed loop will gradually diminish over time
and during the creation of large scene map.When returning to
the area have reached or repeating the local mapping, overlap
and dislocation will occur.

To solve the above problem, a random fern model is used
in the optimized camera pose model. It uses image coding to
determine the similarity between the two frames. The encod-
ings of mblock constitute the encoding of each image C , and
each block consists of nferns. Each ferns is determined by
comparing the pixel value θ at each channel x with a thresh-
old. The calculation of encoded key frames is as follows:

C = {blockk}mk=1→ block = {ferns}ni=1 (10)

Encode the obtained key frames. The key frame and its corre-
sponding depth image have a total of four channels. The pixel
value of each channel is compared with the selected threshold
value to calculate the value of the ferns list in each block .

TABLE 1. Similarity matrix construction algorithms.

The pixel values of the 4 channels of the obtained image
are compared with the selected threshold, and the code value
of block is {1100}. The relationship between the image code
value and the key frame ID is shown in Table 1. The left
column of Table 1 is the calculated image code and the right
column is the key frame number corresponding to the image
code. If the same image encoding exists between key frames,
the similarity between the two is high. By comparing neigh-
boring keyframes with historical keyframes, the similarity
between this image and all images can be calculated. Deter-
mine the similarity between key frames and decide whether
the current key frame is added to the loopback. If there is a
loopback, then register with the keyframe with the similarity
and perform relocation.

f (I , θ, τ ) =

{
1, I (θ) ≥ τ
0, I (θ) < τ

θ = {c, x} (11)
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D. 3D SEMANTIC MAP FUSION UPDATED BY BAYESIAN
The three-dimensional indoor semantic map construction
method combines pixel-level image semantic segmentation
and three-dimensional simultaneous positioning based on
deep learning with mapping. The three-dimensional scene
reconstruction and image semantic segmentation discussed
above are organically integrated into a whole through a fusion
algorithm updated by Bayesia. The result of neural network
recognition and 3D point cloud map are integrated into a uni-
fied semantic map to realize the construction of 3D semantic
map for mobile robots [34].

When collecting data through sensors, semantic segmen-
tation usually lacks consistency in consecutive adjacent key
frames in an unknown environment due to its instability.
Therefore, progressive semantic label fusion is used to asso-
ciate semantic labels of multiple key frames and image
semantic labels are updated in time with the association of
scenes. If the current key frame is Kt , the distribution of
semantic labels on 3D voxel Vd ofKt is lk [35]. It needs to get
the independent probability distribution of each 3D voxel on
its semantic label set P

(
vd → lk

∣∣k t0 ). The current key frame
set is K t

0 = {K0,K1, · · · ,Kt } and the recursive Bayesian is:

P
(
vd → lk

∣∣k t0 ) = P
(
Kt
∣∣∣K t−1

0 , lk
)
P
(
lk
∣∣∣K t−1

0

)
×

1

P
(
Kt
∣∣∣K t−1

0

) (12)

Using Markovian assumptions on P
(
Kt
∣∣∣K t−1

0 , lk
)
can get:

P
(
vd → lk

∣∣k t0 ) = P (Kt)P (lk |Kt )
P (lk)

P
(
lk
∣∣∣K t−1

0

)
×

1

P
(
Kt
∣∣∣K t−1

0

) (13)

Assuming that P (lk) is not related to the time variable, when
acquiring the next key frame image, the semantic label cate-
gory of the 3D voxel can be updated by the following formula:

P
(
vd → lk

∣∣k t0 ) ∼ P
(
lk
∣∣K t

0

)
P
(
lk
∣∣∣K t−1

0

)
(14)

V. EXPERIMENTAL RESULTS AND ANALYSIS
To measure the effectiveness and feasibility of the pro-
posed method, target detection experiment, image seman-
tic segmentation experiment, feature matching experiment
and semantic map construction experiment were performed
respectively.

A. TARGET DETECTION EXPERIMENT
To verify the performance of the target detection method
based on the improved YOLOv3, the proposed method is
compared with the methods in [24], [25], and [27] in terms
of detection accuracy and detection speed. Among them,
the accuracy ratio, recall rate, harmonic mean and processing
speed (frame/s) of evaluation index selection of detection

accuracy are calculated as follows:

P =
TP

TP + FP
× 100%

R =
TP

TP + FN
× 100%

F =
2PR
P+ R

× 100% (15)

TP is the number of targets that detected correctly and FP is
the number of mistakenly detected non-target as targets. FN
is the number of mistakenly detected targets as background.

The statistics of each index in the target detection experi-
ment are shown in Table 2.

TABLE 2. Analysis of evaluation indexes of different methods.

It can be seen from the above table that the proposed
method has improved the accuracy and recall of target detec-
tion by 5.6 and 3.4 percentage points, respectively, compared
with the target detection model in [27] and the average of
the reconciliation has increased by 4.5 percentage points.
The average speed improves 4 frames/s. The other two target
detection methods have a high number of falsely detected
non-targets as targets in the test sample set, which affects
the overall accuracy. The average processing speed is much
lower than the proposed method. Therefore, compared with
other methods, the proposed method has better performance
in target detection.

B. IMAGE SEMANTIC SEGMENTATION EXPERIMENT
To evaluate the accuracy of the image semantic segmentation
model, the Mean Intersection Over Union (MIoU) is used to
evaluate the accuracy of the segmented object. The higher the
value, the better the segmentation effect. The formula is as
follows:

MIoU =
1

l + 1

l∑
j=0

TTj
FTj + TFj − TTj

(16)

In the formula, l is the number of categories and 0 ≤ j ≤
l − 1. TTj is the number of correct prediction samples in the
j category. TFj and FTj are the number of true false and false
true samples in the j category, that is, the samples of incorrect
prediction.

In real-time semantic segmentation, one of the important
indicators is the prediction speed of the network. If the time
complexity is too high, it will cause a lot of time for model
training and prediction, and fast real-time prediction can-
not be achieved. Therefore, time complexity determines the
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model training and prediction time. Its time complexity is
calculated as follows:

T =
∑Co

i=0
M1,i · N1,i ·

(
K1,i

)2
· C i

1,i · C
0
1,i

+

∑De

j=0
M2,j · N2,j · C i

2,j ·

((
K2,j

)2
+ C0

2,j

)
(17)

where Co is the number of regular convolution in the model
and in the i regular convolution layer, M1,i and N1,i are
the length and width of the output feature map. K1,i is the
dimensions of the convolution kernel. C i

1,i is the number of
channels input by the convolution layer. C0

1,i is the number
of channels output by the layer. De is the number of model
depth-separated convolutions. In the j depth-separated con-
volution layer, M2,j and N2,j are the length and width of the
output feature map. K2,j is the dimension of the convolution
kernel. C i

2,j is the number of channel input by the convolution
layer. C0

2,j represents the number of output channels of the
convolution layer.

To verify the effectiveness of the proposedmethod, the pro-
posed model and the comparison model SkipNet were trained
24000 times on the CityScapes dataset. The accuracy com-
parison of each category of semantic segmentation is shown
in Figure 9. The CityScapes dataset contains 19 image cate-
gories (roads, buildings, signs, sky, cars, etc.).

FIGURE 9. Accuracy comparison of semantic segmentation categories.

As can be seen from the figure above, compared with
other methods, the proposed method improves the accuracy
of object segmentation greatly, which is mainly reflected
in the types with complex features, such as: rider, mbike
(motorcycle), train (train), wall (wall), fence (fence), etc. The
reason is that the proposed BAFF method can adaptively fuse
shallow and deep features.

Further, the time complexity of the model is analyzed. The
experimental results obtained are shown in Table 3.

From the experimental comparison results, it can be found
that the proposed model has high segmentation accuracy with
a small number of parameters, and the computing time of
the model is relatively small. Therefore, the proposed model
achieves a good balance between the fastness and accuracy of
image segmentation. It is a real-time semantic segmentation
algorithm with excellent performance.

TABLE 3. Accuracy comparison of real-time semantic segmentation
model.

C. FEATURE MATCHING EXPERIMENT
To verify that the proposed feature matching method can
improve the matching quality and effectively eliminate false
matching, it is compared with the methods in [12] and [19] in
terms of matching accuracy and running time. Six groups of
images in different environments were randomly selected for
the experiment, and the results are shown in Table 4.

TABLE 4. Comparison of matching number and running time of different
methods.

It can be seen from the above table that when there are
fewer image feature points, the algorithms in [12] and [19]
will have mismatches, and the proposed algorithm can elim-
inate the mismatch points completely. Although the overall
number of matches is slightly less than the algorithms in the
other two references, it guarantees enough accuracy. In addi-
tion, the proposed algorithm runs faster than the other two
matching algorithms, mainly because the corner detection
algorithm used in the proposed method is faster. compared
with the methods of [12] and [19], the running time of overall
algorithm increases by 21.6% and 23.2% respectively, which
has a greater advantage in real-time performance.

D. SEMANTIC MAP CONSTRUCTION EXPERIMENT
The platform of this experiment is equipped with a thermal
imaging sensor, a Kinect2 sensor and an industrial computer
and wheeled mobile system. According to the resolution and
field view of the two vision sensors, two sensors are selected
to be installed side by side. Among them, TX2 is selected
as the computing platform. Its AI embedded processor with
super-computing capabilities is particularly suitable for the
calculation of intelligent devices such as robots. The GPU
has 256 CUDA cores to support parallel processing and has
8G of memory. The CPU consists of 64-bit CPU cluster with
two ARM architectures. Kobuki is selected as the mobile
platform. It is the most widely used mobile chassis in mobile
robot research. Its load weight is 5kg and the accuracy of
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FIGURE 10. Generating 3D point cloud map with color annotation of
object instance by experiment.

the encoder is 11.7ticks/mm. The accuracy of the single-axis
heading gyroscope is 110deg/s and the maximum moving
speed is 70cm/s. The maximum angular velocity is 180deg/s
and the mobile power source is a nickel-metal hydride battery
with 2200mA. The built-in controller of the chassis is written
using the ROS system. Its source code is open and can be
freely obtained on the Internet. The chassis can communicate
with TX2 through the data cable. The specifications of the
camera are shown in Table 5.

TABLE 5. Camera specifications.

In addition, SLAM2 algorithm is mainly implemented
by C++ programming. Compared with the socket TCP/IP
communication method, time delay is avoided to the greatest
extent and time delay processing is not required for data.

3D semantic map construction experiments of indoor
scenes were performed for the ICL-NUIM dataset. The data
subset is Living Room ’lr kt3’, a total of 1242 RGB-D images.
The camera circled the room for 42 s. There are 7 types
of items in the dataset scene: sofa, pillow, door, TV, mural,
table lamp and potted plant. Figure. 10 is a three-dimensional
point cloud map containing object color labels. For display
convenience, the point cloud in the ceiling area of the point
cloud map is removed.

The proposed algorithm is used to solve the pose between
adjacent frames, and the result is represented by the rotation
matrix R and translation matrix T . The rotation matrix R
can be converted into a quaternion q. Let R =

{
mij
}
, i,

j ∈ [1, 2, 3], then:

q0 =

√
tr (R)+ 1

2
, q1 =

m23 − m32

4q0

q2 =
m31 − m13

4q0
, q3 =

m12 − m21

4q0
(18)

Let the real rotation matrix of camera is Rtrue and its quater-
nion is expressed as qtrue. The real translation matrix is Ttrue.
Then, the rotation error between the two frames is:

Erot = ‖qtrue − q‖2
Etrans = ‖Ttrue − T‖2 (19)

In the experiment, three scenes were selected for evaluation.
In scene one, the difference of temperature is smaller. The
contrast of the image is low. The temperature difference
in scene two is increased and the sharpness of the image
is high. The temperature difference in scene three is more
obvious. Feature points were extracted and matched for the
three scenes respectively. After feature point matching and
pose estimation optimization, the experimental results were
finally obtained.

The proposed algorithm and the ICP algorithm using only
depth information are used to calculate the motion estimation
between the images and the experimental results obtained by
the two algorithms are analyzed using the error formula. The
robot can record the camera movement through the wheeled
motion system during the movement. The error is shown
in Figure 11. Meanwhile, the time consumption of the two
algorithms is compared. The result is shown in Figure 12.
It can be seen from the result that the compute time of the
pose estimation algorithm based on the feature point method
is shorter than the ICP algorithm and it is more conducive to
real-time operation.

FIGURE 11. Error comparison chart of pose estimation.

To more fully verify the pose estimation algorithm based
on the thermal infrared image, 150 frames of continuous
images were collected. The continuous RGB, depth and ther-
mal infrared images were recorded when the images were
collected. And the registered RGB and depth images were
input to ORB-SLAM2 algorithm to calculate the pose of each
frame as the true value of this experiment. Then, the pro-
posed algorithm was used to estimate the pose of each frame
of the image. Compare the obtained result with the ‘‘true
value’’ obtained by the ORB-SLAM2 algorithm and calculate
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FIGURE 12. Algorithm time comparison.

FIGURE 13. Rotation angle error.

FIGURE 14. Translation error of motion.

rotation and translation errors. To indicate the magnitude of
the error, Euler angle is selected to represent the rotational
movement. The yaw angle, pitch angle and roll angle are

calculated and the differences are calculated. The calculation
result is shown in Figure 13. Then calculate the translation
errors in the X, Y, and Z directions respectively, and the error
result is shown in Figure 14.

It can be seen from the rotation and translation error graphs
that the angle error is within 1 ◦. The specified error index
is within 1.5 ◦ and it meets the requirement. The overall
translation error is about 0.04m and it meets the requirement
that the specified error is within 0.05m. However, there is still
a tendency for error to gradually increase due to cumulative
errors. Therefore, based on local pose optimization, back-end
optimization is needed to reduce cumulative error.

VI. CONCLUSION
To ensure that mobile robots have a certain ability to sense
target in indoor environment and improve the degree of
intelligence of robots, based on edge computing environ-
ment, a 3D semantic map construction method of mobile
robots using improved ORB-SLAM2 is proposed. Combin-
ing RGB-D camera with thermal imaging sensor, it performs
object detection, image semantic segmentation, feature point
matching, pose estimation and optimization based on the
acquired image to build 3D semantic map of mobile robot.
Finally, the accuracy of the proposed method in pose esti-
mation and robot motion and the efficiency of the algorithm
are demonstrated through experiments, which improves the
positioning stability of the robot in low light and other envi-
ronments. It can be applied to actual indoor environments.

However, the pose estimation based on the thermal infrared
image and the depth image is currently limited to a small area
and a region with obvious features. And the positioning effect
for a large range of scene needs to be improved. In addition,
the accuracy and generalization ability of semantic segmenta-
tion of indoor object need to be improved. The segmentation
result can add other attribute associations, so that the robots
understand and use the environment can more fully. In future
work, we will explore and improve the proposed 3D semantic
map construction method for mobile robots.
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