
Received February 28, 2020, accepted March 20, 2020, date of publication March 26, 2020, date of current version April 13, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2983421

An Adaptive Fuzzy-PI Clock Servo Based on
IEEE 1588 for Improving Time Synchronization
Over Ethernet Networks
VINH QUANG NGUYEN , TON HOANG NGUYEN , AND
JAE WOOK JEON , (Senior Member, IEEE)
Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 440-746, South Korea

Corresponding author: Jae Wook Jeon (jwjeon@yurim.skku.ac.kr)

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT)
(2002R1A2C3011286).

ABSTRACT A network-based control system includes many connected devices, and time synchronization
plays an important role in the unified operation of those systems. A clock servo needs a guarantee time offset
and a clock rate tominimize the time difference between devices. This paper proposes an adaptive clock servo
to improve time synchronization. This proposed algorithm uses a fuzzy-based proportional-integral clock
servo (fuzzy-PI) based on IEEE 1588 to reduce the frequency of clock compensation. This method adapts
the bandwidth and enhances noise reduction, improving both the time offset and rate difference between the
slave and master. The node time can synchronize with the master time after just one cycle of synchronization.
Experiments validated the effectiveness of the algorithm and demonstrated that the slave can track the master
with the mean and standard deviation of the time offset are 0.432ns and 4.402ns. A cycle time of one second
is used to ensure a low-bandwidth network. With these results, the number of nodes over a real-time network
can be increased.

INDEX TERMS Time synchronization, IEEE 1588, clock servo, fuzzy logic, real-time network.

I. INTRODUCTION
Real-time processing is a big challenge for existing net-
working systems [1]. The current trend is to replace central
systems with distributed systems. In other words, systems
with a main/core board that control and process all data are
being replaced by systems that include many independent
nodes that share information and data over a network [2].
The advantages of distributed systems are a reduction in
wire weight and an enhancement in efficiency, flexibility,
and reliability. For example, even when industrial settings
change, heterogeneous devices can still cooperate through the
network.

To work together, all the devices in a system need to war-
rant a common or global time. Normally, time in an embedded
system is determined using a crystal oscillator and a counter.
The peripheral and network modules are also created by com-
bining a crystal frequency and a phase locked loop. However,
crystals are heterogeneous and their frequencies are unstable
because they are affected by temperature, humidity, and usage

The associate editor coordinating the review of this manuscript and

approving it for publication was Yang Tang .

time; therefore all the devices in a system keep different
times [3], [4]. It is difficult to keep time exactly in sys-
tems such as robots, integrated circuit assembly systems, and
computer numerical control systems. Furthermore, because
distributed systems share information across the network,
noise from magnetic fields or the operating environment can
cause a packet to be lost, so a common time notion is needed
for the security of data exchange at each node. Because it has
a high rate, large bandwidth, and short cycle time, Ethernet
is expected to all the layers in many industrial architectures.
When using Ethernet, data are transferred smoothly from
high layers to low layers and vice versa [3] with minimal
packet loss. However, the period information and schedule
information need to be guaranteed. In other words, the time
in the network system needs to have the same values in every
networked device. Thus, time synchronization is important in
real-time systems.

In time synchronization, two problems need to be consid-
ered, time offset and time skew [5]. The time offset (or offset)
is the relative difference in time value between two devices
in a specific moment. Time skew (or rate offset) is the clock
drift between time systems with the same normal frequency

61370 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-6078-8894
https://orcid.org/0000-0002-2775-2937
https://orcid.org/0000-0003-0037-112X
https://orcid.org/0000-0002-2750-8029

V. Q. Nguyen et al.: Adaptive Fuzzy-PI Clock Servo Based on IEEE 1588 for Improving Time Synchronization Over Ethernet Networks

and can be called ‘the first derivation’ of time offset. Phase
synchronization compensates for time offset, and frequency
synchronization gets clocks running at the same rate. Thus,
time synchronization needs to include both phase synchro-
nization and frequency synchronization. Many time synchro-
nization methods have been developed [6]. Time-division
multiple access (TDMA) is based on a schedule table and
time slots and is commonly used in vehicles [7]. It requires
enough memory to save the time table and has an absolute
time offset of several microseconds. The network time proto-
col (NTP) is popular in wide area networks and the Internet.
It offers application-level synchronization and uses Coordi-
nated Universal Time as the primary time standard. NTP
is used in many device networks to connect many devices
over a widespread area, but its time offset can reach up to
numerous microseconds because of latency and delays [6].
The IEEE 1588 standard is an attractive new way to synchro-
nize many nodes in one or two steps [8]. The Precision Time
Protocol (PTP) is an IEEE 1588 profile used for precision
synchronization. It can be implemented using only software
or with a combination of assistant hardware and software.
When using timestamped hardware, the PTP is precise to the
order of nanoseconds. The PTP also has applications in many
area such as wireless sensor networks and is attractive for
real-time systems that need highly consistent clocks [9], [10].

The PTP is a good solution for phase synchronization when
four timestamps are available. However, frequency compen-
sation needs to accommodate small differences in the clock
rates. Recent frequency synchronization research has focused
on situations in which the time error reaches a bound. Beck-
hoff tried to modify IEEE 1588 and develop it in an EtherCAT
system called a distributed clock that simply used constant
maximum and minimum values of 10ns to compensate for
the frequencies of the slave nodes [11], [12]. The time offset
in that case cannot reach the nanosecond level. ProfiNet also
used IEEE 1588 for that purpose [12]. It can compensate for
the time offset, but it cannot reduce the rate of the frequency
error. Previous research has used proportional integral (PI)
compensation to reduce both time offset and frequency differ-
ences. PI can be implemented using both software and times-
tamped hardware [13], [24]. However, the latency and noise
that occur during frame exchanges and quantization errors
prevent the system time from reaching perfect synchroniza-
tion. Therefore, filters have been attached to PI compensa-
tion, but they cause a time-constant delay before a component
reaches the time error boundary [25]–[29]. That slows the
initial processing phase of the system and causes lost packets.
In a previous method, the compensation parameters were
simply defined off-line before the system was implemented,
but that is not a good solution for networked systems that
contain unstable crystals and which can be affected by envi-
ronmental factors. Yildirim et al. [30] presented an adaptive
PI, but that method just adapted the integral parameter by
adding or subtracting a constant value in a fixed condition,
which provides inadequate compensation parameter tuning.
All the parameters of a clock servo affect the stability of

the clock system and need on-line determination when the
system is running. In the tradeoff between the convergence
time and the time offset, fuzzy logic can be used to adapt
the clock servo parameters on-line. Fuzzy logic can provide a
short convergence time because the training phase is ignored.
In this paper, we propose an adaptive method to enhance
noise reduction and achieve a small and stable time offset.
Our fuzzy-PI clock servo uses fuzzy logic and a PI clock
compensation algorithm to tune the PI clock servo parameter
on-line and offers full phase compensation and frequency
compensation. The fuzzy-PI clock servo is flexible and easy
to apply to many devices that need high time synchronization.
We implemented it in a real system and compared it with a PI
clock servo, the optimal PI clock servo, and the Kalman-PI
clock servo. Our results for the time offset, time skew, and
convergence time were better than those of the other methods.
Using our fuzzy-PI clock servo, the slave could track the
master clocks with just 1 cycle of synchronization, and the
peak-to-peak time reached 28ns with a low-cost oscillator.
To use a small Ethernet bandwidth and fit into a designmotion
system that has many duties, we chose a cycle time synchro-
nization of one second. Our experimental results show that
the fuzzy-PI clock servo can increase the number of nodes
that a network can accommodate. Furthermore, our method
can easily be extended to other areas, such as wireless sensor
networks and the internet of things, in which Ethernet plays
a key role. An overall schematic describing the motive of this
paper is presented in Fig. 1.

According to our observations, our proposed method has
some advantages over previous research.

1) Use of timestamped hardware: The method uses a
timestamp in the MAC layer to support high-resolution
time capture and ensure low jitter and noise without
needing a special physical layer chip.

2) Short time convergence: The time between amaster and
slave can reach a small time offset within just 1 cycle
of time synchronization.

3) Small relative time error: The absolute peak-to-peak
time offset can reach a value as small as 14ns when a
low-cost crystal oscillator (25MHz) and the best master
clock algorithm (BMC) are used.

4) Adaptive, on-line clock servo parameters: All parame-
ters, including the proportional and integral parameters,
are tuned on-line to enhance noise rejection and min-
imize the effects of temperature and crystal age when
the system is running. The bandwidth of the clock servo
is also adapted to improve the time synchronization
performance.

The remainder of this paper is organized as follows.
In Section II, we present recent research related to PTP
synchronization and discuss algorithms that have been imple-
mented in the past. Section III describes the problems with
previous methods and our solutions. In Section IV, we pro-
pose an adaptive clock servo to improve time synchronization
using a fuzzy-PI controller over Ethernet networks. Several
experiments that we performed to validate the proposed

VOLUME 8, 2020 61371

V. Q. Nguyen et al.: Adaptive Fuzzy-PI Clock Servo Based on IEEE 1588 for Improving Time Synchronization Over Ethernet Networks

FIGURE 1. Overall time synchronization motivation.

method are described in Section V. The conclusions of this
paper are presented in the last section.

II. RELATED WORKS
In this section, we present algorithms used to improve the
performance of IEEE 1588. The IEEE 1588 standard has
been researched and implemented using both software and
hardware [13]–[17]. Because the PTP uses timestamps to
correct the time between slave nodes and themaster, the accu-
racy of the synchronization method depends on the times-
tamped position. Using the software method, the trigger time
is near the operating system, the jitter time is relatively large,
and the time offset is within 100 microseconds [13]–[15].
With hardware-based timestamps, the trigger time is executed
in or near a physical layer, the jitter time is less than in
the software method, and the accuracy is on the order of
nanoseconds [16], [17].

IEEE 1588 proposes clock offset compensation, but it does
not consider frequency compensation, so it cannot provide
full time synchronization. Improving its performance is thus
an attractive research area. Consider the following clock
model, which combines a sample holder and an integral
module [9] as follows (1)-(2):

Gp(s) =
TS (s)
U (s)

=
1− e−sT

esT
∗
Kc
s

(1)

Gp(z) =
TS (z)
U (z)

=
KcT
z− 1

(2)

Here, Kc is the clock model constant, TS (s) is the slave time
clock output value, U (s) is the input value of clock module
and T is the time synchronization interval.
With this model, a PI is used to correct both the off-

set and the clock rates. A method to use only software to
implement this compensation (the PI clock servo) is pre-
sented in [13]. It is a simple and linear compensation offering

precision inadequate for exact systems. Many factors can
affect its precision, including delay time in the operating
system, latency, and queue delays. The KP and KI param-
eters belong to the system in an off-line way. Using the
integral square error method [18], a deadbeat PI controller
(the optimal PI servo) is designed to minimize the integral
square time offset [19]–[23]. The KP and KI parameters are
fixed and belong to the time synchronized interval and clock
model parameters, respectively. Using this method, the slave
can track the master in 1 cycle of time synchronization,
but with a tradeoff between the coverage time and the time
offset. The time offset is large, and the clock cannot reduce
noise from quantization errors. Chen et al. [24] presented a
frequency compensation based on a fraction k of the master
time and slave time (3). Their method look likes propor-
tional compensation and offers both offset and rate offset
corrections. The algorithms are good, but some noise cannot
be reduced. A filter is needed to reject random noise and
quantization errors [13], [25]–[28]. One simple and effective
way to improve synchronization performance is a low-pass
filter [13]. However, it attaches a time constant λ to the
responding clock servo (4). A Kalman filter (KF) can also
be used to reduce quantization errors [25]–[28]. When using
a KF, process noise (Q) and measurement noise (R) need to
be determined clearly because the filter performance depends
on the ability to correctly determine R and Q. A KF improves
the time synchronization performance, but the clock servo
still needs many cycles to reach the offset boundary, mak-
ing it inappropriate for real-time systems containing many
devices that need to be synchronized in a short time for
initial processing. Moreover, a KF needs to determine the
clock servo parameters off-line, which is not good for a
noisy network system. PTP implementation has also been
considered in a wireless network. Tavares Bruscato et al. [29]
presented a method using an auto-correction approach,

61372 VOLUME 8, 2020

V. Q. Nguyen et al.: Adaptive Fuzzy-PI Clock Servo Based on IEEE 1588 for Improving Time Synchronization Over Ethernet Networks

a prediction mechanism, and an analytical correction mech-
anism to enhance time synchronization support in wireless
sensor networks. Yildirim et al. [30], presented an adaptive
PI clock servo for a wireless sensor network. That proposal is
good, but the adaptive parameter considers only the integral
KI parameter, and KP is fixed to 1. Moreover, that algorithm
simply adds or subtracts a fixed constant with the integral
parameter at the design level of the system, making it inad-
equate for the fluctuations common in networked systems.
Offset and frequency drift always exist in networked systems.
A method with a short coverage time and full adaptive clock
servo parameters is thus necessary. Therefore, using fuzzy
logic to adapt the clock servo bandwidth and change the clock
servo parameter is the best solution. This algorithm can track
the master time in a short cycle interval because it does not
use a training process. It is suitable for a real-time system
affected by many noise sources.

k =
Tmn − T

m
n−1

T sn − T
s
n−1

(3)

Gf (s) =
Fo(s)
Fi(s)

=
1

(λs+ 1)n
(4)

Here, Tmn ,T
m
n−1 are the present and previous master time

counters, respectively,Fo(s) andFi(s) are the output and input
values of the filter and T sn ,T

s
n−1 are the present and previous

slave time counters.

III. CURRENT PROBLEMS AND SOLUTIONS
In industrial architectures, information is transferred through
many layers. Higher layers need more information but have
lower real-time requirements than lower layers. In the bot-
tom layers, which contain many devices, actuators, sensors,
drives, motors, etc., the payload is small but the frequency
is high [2], [3]. Clock synchronization plays an important
role in ensuring accurate signals and data transfer [6]. The
IEEE 1588 protocol ensures high performance, which is
especially important when using mechanics that require very
small errors in operation [8]. When the time is synchronized,
the sampling timemotion controller is also synchronized, and
the message scheduling tasks are managed strictly.

Synchronization can be optimized by using temperature-
compensated oscillators or oven-controlled oscillators to sup-
ply the local clock [5]. In addition, some applications use a
grand master with a high-resolution timestamp in the phys-
ical layer. Such systems can improve synchronization in a
network, but they also increase the cost [28]. A system that
supports the BMC and uses low-cost oscillators can reduce
costs when implementing a large number of nodes over a
network. For this solution, the clock servo plays a vital role.

The clock servo can be implemented using a proportional-
integral compensation, a proportional-integral compensation
with a low pass filter, or a proportional-integral compensation
with a Kalman filter [13]–[28]. It can also be implemented
using frequency compensation (e.g., with a proportional
controller) [24]. In any case, the core idea of the clock servo
algorithm is that the PI controller provides both rate offset

and offset compensation. Moreover, the noise is reduced by
the low pass filter or KF, but noise is still present during the
PI compensation. In addition, using a low pass filter requires
that the time constant error approach the boundary. Using
the KF, the time offset can reach a small value for exact
processing of the noise covariance (σ 2

e) and measurement
noise covariance (σ 2

m) [25]–[28]. A ‘semi-adaptive’ clock
servo based on an additive/subtractive constant value is pre-
sented in [30], but it is inadequate for time synchronization
when offset and skew still exist at all times. Our motivation
in this study is to design a fully adaptive clock servo (i.e.,
the bandwidth of the clock servo can be changed according to
the skew and time offset) to improve the time synchronization
in real-time networks. Therefore, the clock servo parameters
must be adaptable on-line while the system is running. The
slave can ensure that its time system has only a small time
difference from the master. Noise reduction is also enhanced.
The proposed method, the fuzzy-PI clock servo, is presented
in the next section.

IV. PROPOSED ADAPTIVE CLOCK SYNCHRONIZATION
METHOD
A. PTP SYNCHRONIZATION

Towd =
t4 − t3 + t2 − t1

2
(5)

Toffset =
t1 − t2 + t4 − t3

2
(6)

Tms = Tm + Towd (7)

e = Tms − Ts (8)

The IEEE 1588 protocol uses timestamps for time synchro-
nization, as shown in Fig. 2. In this model, the master sends
a synchronized message after the Tsync interval. In the first
timestamp, t1 is captured when a ‘‘sync frame’’ is sent from
the master to slaves over the network. A one-step or two-step
method is configured, and a ‘‘follow-up frame’’ is sent right
after the sync frame is transmitted. The t1 timestamp is
included in the follow-up frame.Moreover, based on the peer-
to-peer transparent clock of IEEE 1588, the follow-up frame
is updated according to a delay time based on the port-to-
port delay measurement. Using a follow-up frame, the time
of synchronization onset will be correct, which is important
when frequency synchronization needs to be on the order of
nanoseconds. The slave will capture t2 when it receives the

FIGURE 2. PTP synchronization.

VOLUME 8, 2020 61373

V. Q. Nguyen et al.: Adaptive Fuzzy-PI Clock Servo Based on IEEE 1588 for Improving Time Synchronization Over Ethernet Networks

sync frame from the master. After a random time, a request
frame, which includes t3, is sent from the slave to the master.
When this frame is received, the t4 time is captured in the
master and sent back to the slave to calculate the one-way
delay Towd and the time offset Toffset . The formulas for the
one-way delay and time offset calculations are presented
in (5) and (6).

In the slave time, the time correction is divided into two
parts: a large offset and a small offset. A time boundary
is designed in this configuration. Normally, Toffset will be
used for cycle synchronization when the offset is larger than
the time boundary. When the time boundary is reached,
frequency compensation is used. The master time Tm will
be presented in the slave time Tms . Then, the time offset e
between Tms and Ts will differ, as shown in (7) and (8). The
value of this error is the input for the clock servo in the slaves.

The clock mode of the IEEE 1588 module inside a
micro-controller is illustrated in Fig. 3. This module includes
a 32-bit clock second counter, a 32-bit clock nanosecond
counter, a 32-bit accumulator, and a 32-bit addend register.
The value of the addend register controls the normal clock f0,
ensuring that it follows the master clock. The higher the value
of the addend register, the higher the frequency of the local
clock and vice versa. The IEEE 1588 module has two modes
of operation. If a large time offset occurs, a coarse update
is run. Alternatively, a fine update is performed when a small
time offset is reached. The details of this module can be found
in [19].

FIGURE 3. Synchronization using addend register.

B. FUZZY-PI CLOCK SERVO DESIGN
A synchronization system that needs accuracy on the order
of nanoseconds, such as a motion control system, can be
created based on the IEEE 1588 protocol and a clock servo
algorithm. Various factors can influence time synchronization
over a network, such as the crystal rate, the jitter of the
operating system, the delay time in the queue, the noise of
wire transmission, an incorrect clock model, quantization of
the digital system, and the accumulator circuit. When using

the IEEE 1588 protocol, the slave clock can compensate
for a large time offset. However, the stability of time syn-
chronization and high synchronization accuracy are based on
the clock servo algorithm. In this section, we present a new
synchronization method. The block state of this method is
shown in Fig. 4, and the clock model is explained in detail.
We also propose an adaptive PI based on a fuzzy controller to
enhance noise rejection and improve the offset quality.

1) CLOCK MODEL
In this paper, we use the local clock model presented in (1).
The details of this model are shown in Fig. 3. Using an
approximation method, formula (1) can be presented as
shown in (9). By updating the addend register value, the nor-
malized frequency f0 will change to match the output of the
clock servo algorithm, which will be corrected according to
the time counter of the master clock. To increase the resolu-
tion of the clock model, a sub-second register is implemented
instead of a nanosecond register. The formula to convert
from a nanosecond value to a sub-second value is presented
in (10):

Gp(s) =
TS (s)
U (s)

=
KcT
s

(9)

subsecond =
nano ∗ 231

109
(10)

2) FUZZY-BASED PI COMPENSATION
The IEEE 1588 protocol can compensate for large time
offsets. However, it is not sufficiently stable for use in
a micro-system or a synchronization motion system, such
as those used by robots or exact mechanics. Our clock
servo is implemented following the IEEE 1588 protocol
for high offset performance on the order of nanoseconds.
PI compensation is used for offset and rate offset com-
pensation. Afterward, a filter to reduce noise with the PI
controller is introduced. Although the filter can reduce noise,
the KP and KI parameters are fixed during design, so they
cannot be made adequate if the time synchronization requires
a high frequency. In [30], Yildirim presented an adaptive PI
clock servo that algorithm simply adds or subtracts an integral
parameter with a fixed constant at the level of system design.
It cannot accommodate constant fluctuations such as those
found in networked systems, which always contain offset and
frequency drift. A method with short coverage time and fully
adaptive clock servo parameters is needed. Using the fuzzy
logic, the clock servo can reach a short setting time and guar-
anteed high time synchronization without training time for
updating weights [31]. Ourmain idea in this paper is to design
an adaptive PI controller based on fuzzy logic [32], [33].

Normally, a PI clock servo uses a compensation method
that can be described as follows:

Gc(s) = Kp +
Ki
s

(11)

61374 VOLUME 8, 2020

V. Q. Nguyen et al.: Adaptive Fuzzy-PI Clock Servo Based on IEEE 1588 for Improving Time Synchronization Over Ethernet Networks

FIGURE 4. Fuzzy-PI clock servo.

By combining (9) and (11), the transfer function of the
closed loop clock servo can be described as:

H (s) =
TS (s)
TmS (s)

=
KpKcTs+ KiKcT

s2 + KpKcTs+ KiKcT
(12)

If we set kp = KPKcT , ki = KIKcT , (12) can be rewritten
as (13). Here, T is the Tsync cycle of the IEEE 1588 proto-
col. The clock servo in (13) can be presented as a two-order
system with a natural frequency ωn and a damping coeffi-
cient ζ , as shown in (14).

H (s) =
kps+ ki

s2 + kps+ ki
(13)

H (s) =
2ζωns+ ω2

n

s2 + 2ζωns+ ω2
n

(14)

where ω2
n = ki and 2ζωn = kp.

In this transfer function, response time, noise reduction,
and overshoot time belong to ωn and ζ . Two poles of this
transfer function are p1,2 = −ζωn ± ωn

√
ζ 2 − 1, which

influence the stability of the clock servo. The response time
is 1

ζωn
. Accordingly, when the damping coefficient is con-

stant, the natural frequency will determine clock servo qual-
ity. Ifωn is small, the response time is large; the reverse is also
true. However, whenωn is small, noise reduction is enhanced.

If s = jω, the bandwidth BW of the clock servo can be
presented by (15) [32].

BW 2
= ω2

n[1+ 2ζ 2 +
√
(1+ 2ζ 2)+ 1] (15)

If we consider (15) when the damping coefficient is fixed,
the bandwidth of the clock servo is proportional to the nat-
ural frequency. Changing the natural frequency value will
thus change the bandwidth of the clock servo, and a larger
bandwidth will equal a larger cut-off frequency (and vice
versa). Additionally, a larger bandwidth equals a shorter
acquisition time. In the initial phase, a system that needs a
large bandwidth to reach the bound error in a short time, and
the offset includes more random noise. When the system is
stable, a suitable bandwidth is required for noise rejection.
Therefore, we propose a fuzzy-PI clock servo to adapt the
clock servo bandwidth. In this paper, the absolute time off-
set |e| and offset derivation de are two inputs of the fuzzy
block controller. The membership of these inputs is shown
in Fig. 5 and Fig. 6. To smooth the bandwidth BW of the
clock servo, a delta bandwidth 1BW is added to the last

FIGURE 5. Time offset fuzzy.

FIGURE 6. Skew fuzzy.

bandwidth BWt−1 to replace the system bandwidth (16). The
membership of the output is shown in Fig. 7. A fuzzy surface
that presents the relationships among |e|, de, and 1BW is
shown in Fig. 8.

BWt = BWt−1 +1BW (16)

The fuzzy logic block changes the bandwidth of the clock
servo based on a human understanding of time clock synchro-
nization. In this paper, the minimum and maximum values of
the two fuzzy inputs are set as 0ns and 80ns, respectively,
in the absolute time offset and -80ns and 80ns, respectively,
in the skew. The output for the fuzzy block is between -
1 and 0.2 rad. Based on [32] and [33], seven fuzzy sets of
absolute offset and skew were designed as super small (SS),
small (S), below medium (BM), medium (M), over medium
(OM), large (L), and super large (SL). The delta bandwidth
is included in six fuzzy sets: SS, S, BM, M, OM, and L.

VOLUME 8, 2020 61375

V. Q. Nguyen et al.: Adaptive Fuzzy-PI Clock Servo Based on IEEE 1588 for Improving Time Synchronization Over Ethernet Networks

FIGURE 7. Delta bandwidth fuzzy.

FIGURE 8. Fuzzy surface.

The input and output values are chosen based on algebraic
values of those sets. The principle of the fuzzy rules is imple-
mented as follows:
• In the initial phase, |e| and de have large values, and the
bandwidth of the clock servo will be large to reduce the
response time and allow the error to reach the boundary
value quickly. The dominant errors in this scenario are
random noise and quantization error.

• If |e| and de have a moderate value, the bandwidth of the
clock servowill have amoderate value, and the noise can
be reduced.

• If |e| and de have a small value, a suitable bandwidth
of the clock servo is maintained, and noise reduction is
enhanced.

The fuzzy rules table for the clock servo is presented
in Table 1. In practice, if the damping coefficient is held to
a constant value, ζ = 0.5, the bandwidth value is BW 2

=

w2
n ∗3.08. Based on (15), the values of kp, ki can be expressed

TABLE 1. Fuzzy rules.

by (17) and (18), respectively:

kp = 2ζωn = BW ∗ 0.57 (17)

ki = ω2
n = BW/3.08 (18)

A normal oscillator has a high frequency variation, and the
value after fuzzy-PI compensation is multiplied by UA

1000000000
to adjust the part per billion units of the oscillator fre-
quency [13].

V. EXPERIMENTS AND RESULTS
This section explains how we designed and implemented
our method, including the hardware and software. We con-
ducted some experiments to confirm the reliability of our
method, evaluated it under various conditions and compared
the results of the experiments with those of previous methods.

A. HARDWARE AND SOFTWARE DESIGN
1) HARDWARE
An STM3220G evaluation board based on the ARM-Cortex 3
iwas used for all implementations described in this paper.
An inexpensive 25 MHz crystal was mounted on the board.
Inside the microcontroller, an IEEE 1588 block module was
implemented. The hardware used for timestamping was trig-
gered by the MAC layer. An addend register and sub-second
register were programmed to change the normal frequency
resolution. The setup for these experiments is shown in Fig. 9.
Each node has an IP address that was allocated during the
configuration phase. In this study, a BMC was implemented
according to the IEEE 1588 standard. The IP address with the
lowest value was the master over the network.

FIGURE 9. Experiment setup.

2) SOFTWARE
To implement the IEEE 1588 standard, we used the following
third-party software:

1) FreeRTOS: A networked motion control system uses
many commands other than time synchronization,

61376 VOLUME 8, 2020

V. Q. Nguyen et al.: Adaptive Fuzzy-PI Clock Servo Based on IEEE 1588 for Improving Time Synchronization Over Ethernet Networks

such as those related tomotion profile and feedback sta-
tus. A real-time operating system, such as FreeRTOS,
is required to manage resources, tasks, and threads
smoothly and exactly. For this paper, we made a
thread for PTP communication that included all PTP
states, such as the initial clock, BMC algorithms, and
PTP algorithm. A system interrupt from the operat-
ing system of 1000??s was made as a time base for
the synchronization interval cycle in both master and
slave nodes. We reserved another thread for networked
motion control duty. Moreover, a web server for com-
munication between the system and the outside internet
was created as a premise for an industrial internet of
things application.

2) Light weight IP (LwIP): According to the IEEE 1588
standard, the protocol can be implemented in an Ether-
net or TCP/IP layer. In this study, we used a lightweight
IP stack and implemented PTP protocol version 2 in
the TCP/IP layer. When the system is connected by
switches, the system examination will be easier over
a LAN network. In this paper, we set three boards with
Internet protocol addresses (IPs) of ‘‘192.168.100.21’’,
‘‘192.168.100.22’’ and ‘‘192.168.100.23’’. Because
the frequency and drift from the crystal is the same
(25MHz and +/100ppm, respectively) in every node,
the board with the lowest IP will become the master.

3) PTP daemo (PTPd): This is a popular open source code
for the IEEE 1588 standard. It includes two versions.
Version 1 was developed for the IEEE 1588 (2002)
standard, and version 2 was developed for the IEEE
1588 (2008) standard, which considers the boundary
clock and transparent clock. Normally, open source
software is implemented in the Linux operating system.
In this paper, we use this stack with version 2 for the
ARM-Cortex 3. The two-step with follow-up frame is
used to correct the timestamping and reduce the effects
of FreeRTOS. Given the settings of the board we used,
we chose ‘‘End to End’’ communication between the
master and slave instead of ‘‘Peer to Peer’’ communi-
cation to calculate the one-way delay time.

B. RESULTS
In the IEEE 1588 protocol, an increasing frequency syn-
chronization frame (reducing TSync) or increasing normal
frequency f0 can affect the time synchronization perfor-
mance [9], [28]. However, when TSync is reduced, the band-
width of the network increases. This is not good for a motion
control system that is transferring many motion frames over
a network. Therefore, the synchronization interval was kept
at one second for all our experiments. The normal frequency
was considered for the time synchronization method.

Consider the Kc parameter in the clock model. The details
for the calculation of this value are presented in (19) to (21).
In formula (21), Kc belongs only to the phase lock loop
frequency fPLL . In [28], fPLL is changed to increase the supply
frequency and measure the results. However, changing fPLL

will change theKc parameter and the clock model. The values
of KP and KI for PI compensation will change similarly.
To preserve the clock model parameters, a pair of numbers,
i.e., f0 and the addend register values UA, will be changed at
the same time. Increasing the normal frequency f0 can reduce
the quantization error. Because the IEEE 1588 module is a
digital system, the normal cycle T0 = 1/f0 is set as T0 = 14ns
or T0 = 7ns to ensure that the constant value added to the
sub-second register is an integer.

Kc =
f0
UA

(19)

UA = 232 ∗
f0
fPLL

(20)

Kc =
fPLL
232

(21)

In this study, when the absolute time offset and rate offset
between the local clock and master clock are within 80ns,
we consider the node to be synchronized with the master
clock. The values of the time offset and rate offset are used to
adapt the bandwidth of the clock servo based on the fuzzy-PI
controller. Those values are transferred to a PC through an
RS232 interface and drawn with Matlab.

Fig. 10 plots the bandwidth, setting time, time offset, and
rate offset when using the adaptive fuzzy-PI method with
T0 = 14ns. Themeasurement time is 20minutes to ensure the
accuracy of the time synchronization performance. Fig. 10(b)
shows that, when using the proposed method, the node needs
one synchronization interval to track with the reference clock.
As calculated using the statistical measures method, the offset
mean value is 0.314ns, and the standard deviation is 11.129ns.
In the rate offset case, those values are -0.0109ns/s and
15.940ns/s for the mean and standard deviation, respectively.
Moreover, the peak-to-peak time offset value (which is the
maximum time offset value minus the minimum time off-
set value) is 57ns, and the peak-to-peak time rate value is
86ns/s, as shown in Fig. 10(c) and Fig. 10(d). Additionally,
the time offset and rate offset are almost inside the values
[−14ns, 14ns] and [−29ns, 29ns], which demonstrates the
stability of the proposed method under the influence of noise.

FIGURE 10. Fuzzy-PI clock servo performance in T0 = 14ns.

VOLUME 8, 2020 61377

V. Q. Nguyen et al.: Adaptive Fuzzy-PI Clock Servo Based on IEEE 1588 for Improving Time Synchronization Over Ethernet Networks

FIGURE 11. Fuzzy-PI clock servo performance in T0 = 7ns.

FIGURE 12. Offset and skew histogram in T0 = 14ns.

A histogram of the time offset and rate offset in this case is
shown in Fig. 12.

Likewise, Fig. 11 plots the bandwidth, setting time, time
offset, and rate offset when using the adaptive fuzzy-PI
method with T0 = 7ns. The measurement time was also
20 minutes to ensure the accuracy of the time synchroniza-
tion performance. In this case, the node also needs one syn-
chronization interval to track with the reference clock when
using the proposed method, as shown in Fig. 11(b). With the
statistical measures method, the mean offset value is 0.432ns,
and the standard deviation is 4.402ns. In the rate offset case,
those values are −0.012ns/s and 6.596ns/s for the mean and
standard deviation, respectively. The peak-to-peak time offset
value is 28ns, and the peak-to-peak rate offset value is 42ns/s,
as shown in Fig. 11(c) and Fig. 11(d). Moreover, the time
offset and rate offset are almost inside the values [−7ns, 7ns]
and [−14ns, 14ns]. Thus, the fuzzy-PI clock servo is also
stable with T0 = 7ns. The time offset in this case is smaller
than when T0 = 14ns. A histogram of the time offset and rate
offset in this case is shown in Fig. 13.

The bandwidth adaption is presented in Fig. 10(a) and
Fig. 11(a). With a fast and high resolution such as in a time
synchronization system, the bandwidth is limit from 0.9 rad
to 1.8 rad. Considering the offset and rate time, a suitable

FIGURE 13. Offset and skew histogram in T0 = 7ns.

bandwidth value is calculated based on the fuzzy logic. In the
initial phase, the bandwidth value reaches a maximum value
for a fast response time and decreases later when a bound-
ary error encountered. When a big time offset or big rate
value is considered, a large bandwidth is used. Based on the
bandwidth adaption value, a suitable kp and ki are calculated
following Eq. 17 and Eq. 18. In both case, T0 = 14ns
and T0 = 7ns, the bandwidth is sensitive to fluctuations in
the system, thus guaranteeing a high performance for time
synchronized systems.

In a two-case study, the offset and rate values are quantized
because the trigger time is made from the addend register and
a constant value (Fig. 3). Thus, when the addend register runs
over, a tick occurs, and a constant value will be added to the
sub-second register. For example, when the normal frequency
is 1

14ns , the constant value added to the sub-register value is
14ns. This mechanism means that the tick from the addend
register can deviate by some value when two clocks cannot
be synchronized perfectly. Those results have the same form
of time offset and rate offset, as shown in [28].

One pulse per second (PPS) measurements are used to
externally determine the time offset values in the two cases,
and timer 2 is used to measure the PPS. This timer is triggered
from the IEEE 1588 module after synchronization. A high-
performance oscilloscope with a resolution of 1 ns was used
to measure these values. The timer in master was selected
as the trigger source. In normally, the timer 2 has also a
counter. Additionally, small amounts of noise and delay time
can be added to the measuring system out-side of the Ethernet
module. Jitter exists in each timer, and a small bias can occur
between the PPS from the master and the PPS from the slave.
Fig. 14 and Fig. 15 show that the peak-to-peak offset value is
about 60ns when T0 = 14ns and 30ns when T0 = 7ns.

C. EVALUATION OF THE PROPOSED METHOD UNDER
VARIOUS CONDITIONS
To evaluate the proposed method based on the PTP proto-
col (IEEE 1588 standard), some experiments are conducted
under various conditions. The time synchronization interval is
changed to evaluate the fuzzy-PI when the controlled environ-
mental parameters are changed. Then, a star topology is setup

61378 VOLUME 8, 2020

V. Q. Nguyen et al.: Adaptive Fuzzy-PI Clock Servo Based on IEEE 1588 for Improving Time Synchronization Over Ethernet Networks

FIGURE 14. Captured oscilloscope images of the synchronized clock
signals in T0 = 14ns.

FIGURE 15. Captured oscilloscope images of the synchronized clock
signals in T0 = 7ns.

between the three evaluated boards to confirm the protocol
extension with the proposed clock servo algorithm. In each
case, the experiments were conducted for both T0 = 14ns
and T0 = 7ns, separately.

1) DIFFERENT TIME SYNCHRONIZATION INTERVALS Tsync

The time synchronization interval between the master and
slave is changed to different values to evaluate the proposed
method. According the IEEE 1588 standard, Tsync is the
squared of 2. In this case, the values of 1s, 2s and 4s are cho-
sen for low bandwidth networks, which conform with indus-
trial applications of 1s as the time base setting. In Fig. 16,
the time offset of different time synchronization intervals
in a normal cycle of T0 = 14ns is shown. Following this,
the mean and standard deviate are 0.0225ns and 11.9201ns in
Tsync = 1s, 3.4935ns and 19.4833ns in Tsync = 2s, 2.6104ns
and 52.9142ns in Tsync = 4s. The minimum and maximum
time offset value are -29ns and 28ns, -56ns and 56ns,−112ns
and 140ns for Tsync = 1s, Tsync = 2s and Tsync = 4s,
separately.

Likewise, in Fig. 17, the experiments are also is proceeded
in T0 = 7ns. In this case, the mean and standard deviate
are 0.2746ns and 4.2838ns in Tsync = 1s, 0.2625ns and
4.8932ns in Tsync = 2s, 0.9161ns and 8.8159ns in Tsync = 4s,
respectively. The minimum and maximum time offset value
are −15ns and 13ns, −15ns and 14ns, -22ns and 27ns for

FIGURE 16. Evaluation under different time synchronization intervals in
T0 = 14ns.

FIGURE 17. Evaluation under different time synchronization intervals in
T0 = 7ns.

TABLE 2. Summarized performance with different time synchronization
intervals in T0 = 14ns.

TABLE 3. Summarized performance with different time synchronization
intervals in T0 = 7ns.

Tsync = 1s, Tsync = 2s and Tsync = 4s, separately. Table 2 and
Table 3 show the result details. Here, the time offset in
Tsync = 4s is larger than the other cases in both normal cycles.
The time offset for Tsync = 2s is bigger than the time offset for
Tsync = 1s. These results agree with the IEEE 1588 standard.
The longer the synchronization interval, the bigger the time
offset value. The results in T0 = 7ns are better than T0 =
14ns because the accumulated error of the timer quantization
is reduced when a high-resolution timer is applied. The abso-
lute time offset is below 140ns, which is enough for systems
that need high accuracy motion and can also be applied to
industrial Internet of things (IIoT) applications.

VOLUME 8, 2020 61379

V. Q. Nguyen et al.: Adaptive Fuzzy-PI Clock Servo Based on IEEE 1588 for Improving Time Synchronization Over Ethernet Networks

2) EXTENDED NETWORK WITH A CONVENTIONAL SWITCH
To evaluate the method performance and test the extension
ability of protocol, a star topology is formed between the three
boards and a conventional switch HP J9794A. The lowest
IP address ‘‘192.168.100.21’’ are master and two remain IP
‘‘192.168.100.22’’ (Slave 1) and ‘‘192.168.100.23’’ (Slave 2)
are slaves following the best master clock algorithm. The
normal cycle T0 = 14ns and T0 = 7ns is setup to demonstrate
the system performance under time synchronization interval
Tsync = 1s.

Figure 18 presents the offset when three boards are con-
nected through the switch in T0 = 14ns. The maximum and
minimum offset value are 558ns and −546ns for Slave 1 and
544ns and −546ns for Slave 2. The mean and standard devi-
ation are 0.1387ns and 234.4872ns for Slave 1 and 0.1352ns
and 221.7675ns for Slave 2, respectively. Although the switch
has a time delay and jitter when stored and forwarded to the
Ethernet frame, the results are still better when comparedwith
previous research [24], [30].

FIGURE 18. Two slaves connect with a master through a conventional
switch in T0 = 14ns.

Likewise, the performance of when three boards are
connected through the switch in T0 = 7ns is presented
in Fig. 19.The maximum and minimum offset value are 90ns
and −85ns for Slave 1 and 84ns and −84ns for Slave 2,
respectively. The mean and standard deviation are 0.0205ns
and 38.4818ns for Slave 1 and 0.0912ns and 35.2566ns
for Slave 2, respectively. In this case, the absolute offset
value below 100ns confirms the effectiveness of the proposed
method based on IEEE 1588. The offset value also has the
best performance even though it is connected using a con-
ventional switch. Moreover, the performance in T0 = 7ns is

FIGURE 19. Two slaves connect with a master through a conventional
switch in T0 = 7ns.

better than T0 = 14ns because when reducing the normal
cycle time combined with the highest resolution, the quan-
tization error and accumulated error are reduced signif-
icantly. In both cases, the proposed method reaches a
best performance and the amount of networks that support
time synchronization mechanisms can extended. With these
results, the fuzzy-PI method can support motion control
systems. Details about the testbed performances are shown
in Table 4 and Table 5.

TABLE 4. Summary performance when extension with a conventional
switch in T0 = 14ns.

TABLE 5. Summary performance when extension with a conventional
switch in T0 = 7ns.

Following these results, the fuzzy-PI clock servo based
on IEEE 1588 guarantees a high time synchronization and
networking extension ability. It is flexible and reaches high
performance for distributed networking systems.

D. COMPARISON WITH OTHER METHODS
Many methods have been proposed to reduce the time offset.
PI clock servo uses a random couple kp and ki belonging to
the system when implementing the different phases.Optimal
PI clock servo uses the minimal integral squared error method
to define the kp and ki parameters. With this method, kp = 1
and ki = 1 are fixed when Tsync = 1s. A Kalman filter
based on the PI clock servo uses the same parameters as
the Optimal PI clock servo while also integrating a Kalman
filter into it. To demonstrate the high performance of the
proposed method, we compared our fuzzy-PI clock servo
with the conventional PI clock servo, optimal PI clock servo,
and KF-based PI (KF-PI) clock servo using the same test
bench. In the conventional PI clock servo, kp = 1 and
ki = 0.5. For the final two methods, kp = 1 and ki = 1 in
accordance with the optimization integral square error perfor-
mance rules [18]. In KF-PI, the processing noise covariance
as σ 2

e = 20ns, the measurement noise covariance as σ 2
m =

80nswhen T0 = 14ns and as σ 2
e = 10ns and σ 2

m = 40nswhen
T0 = 7ns are determined. In these comparisons, we used the
mean and standard deviation σ , the setting time (or converge
time, when the node is synchronized with the reference clock)

61380 VOLUME 8, 2020

V. Q. Nguyen et al.: Adaptive Fuzzy-PI Clock Servo Based on IEEE 1588 for Improving Time Synchronization Over Ethernet Networks

and the peak-to-peak time offset as the performance indices
to evaluate the time synchronization accuracy.

There is a tradeoff between performance and setting time.
A longer setting time produces a better performance (i.e.,
a smaller time offset). As shown in Fig. 20(a) and Fig. 21(a),
the fuzzy-PI and optimal PI clock servo had the shortest
setting time of one cycle. The longest setting time of seven
cycles was observed with the conventional PI clock servo
and KF-PI clock servo. A comparison of the coverage time is
shown in Fig. 20(a) and Fig. 21(a).When using the time offset

FIGURE 20. Comparison of the fuzzy-PI clock servo with other methods in
T0 = 14ns.

FIGURE 21. Comparison of the fuzzy-PI clock servo with other methods in
T0 = 7ns.

index, the fuzzy-PI clock servo became much better than the
other methods. With T0 = 14ns, the mean and standard devi-
ation of the time offset were 0.314ns and 11.129ns, whereas
the mean and standard deviation values were −0.196ns and
13.242, −0.052ns and 17.357, −0.012ns and 16.521 for the
other methods, as shown in Fig. 22. Additionally, the pro-
posed method has a peak-to-peak offset of 57ns. For the
conventional PI clock servo, optimal PI clock servo, and
KF-PI, the peak-to-peak offsets were 83ns, 99ns, and 86ns,
respectively. Moreover, the time offset of the fuzzy-PI is
almost inside [−14ns, 14ns], which demonstrates the stability
of the proposed method.

FIGURE 22. Offset histogram comparison in T0 = 14ns.

Likewise, the fuzzy-PI clock servo also has the best per-
formance when T0 = 7ns. Fig. 21 shows the comparison
results. The mean and standard deviation of the time offset
are 0.432ns and 4.402ns, respectively, whereas the mean
and standard deviation values were −0.005ns and 5.536ns,
−0.017ns and 7.122ns, 0.084ns and 6.742ns with the other
methods, respectively, as shown in Fig. 23. Additionally,
the peak-to-peak time error value for this case was 28ns,
whereas the peak-to-peak time offset values were 29ns, 43ns,
and 36ns for the conventional PI clock servo, optimal PI clock
servo, and KF-PI, respectively. Moreover, the time offset of
the fuzzy-PI clock servo is almost between −7ns and 7ns.
Thus, the performance of the proposed method is better
than those of the previous methods. In Fig. 20 and Fig. 21,

FIGURE 23. Offset histogram comparison in T0 = 7ns.

VOLUME 8, 2020 61381

V. Q. Nguyen et al.: Adaptive Fuzzy-PI Clock Servo Based on IEEE 1588 for Improving Time Synchronization Over Ethernet Networks

TABLE 6. Comparison with other methods in T0 = 14ns.

TABLE 7. Comparison with other methods in T0 = 7ns.

the fuzzy-PI clock servo shows outstanding performance,
with the shortest setting time and a stable time offset. Details
of the comparisons are shown in Table 6 and Table 7. The
histograms of the time offset and rate are shown in Fig. 22 and
Fig. 23. In this paper, the confided time offset value when
using the mean and standard deviation is given by ‘‘time
offset value = mean ± standard deviation’’. Although the
mean time offset values presented in Tables 6 and 7 is larger
than the others, the confided time offset is better than when
calculating according to this way. Moreover, we also used
the peak-to-peak time offset value, which is the maximum
time offset value minus the minimum time offset value,
as one performance index to confirm the proposed algorithm.
By using two performance indices, the proposed method has
a performance better than the other methods.

E. DISCUSSION
Time synchronization can be influenced by several factors,
such as an unstable oscillator, temperature, wire noise, and
an incorrect clock model. Normally, a PI controller and
filter-based PI are designed to achieve nanosecond-scale syn-
chronization in the IEEE 1588 standard. Although many
algorithms have been presented, the core component of the
clock servo is the PI controller. In this study, we designed
an adaptive bandwidth clock servo, the fuzzy-PI clock
servo, to improve the time synchronization performance by
using fuzzy logic and an inexpensive 25 MHz crystal and
ARM-Cortex 3. The experimental results shown in from
Table 2 to Table 7 demonstrate that the proposed method can
synchronize the slave clock with the master within one cycle.
Moreover, based on the calculated results from Table 6 and
Table 7, the peak-to-peak time offset was 57ns, the mean
was 0.314ns and the standard deviation was 11.129ns when
T0 = 14ns and these values were 28ns, 0.432ns and 4.402ns
when T0 = 7ns, respectively. In both cases, most offset values
were within [−T0, +T0]. Thus, the fuzzy-PI clock servo has

enhanced noise reduction compared with previous methods.
Additionally, with a high normal frequency f0, a high per-
formance can be achieved. However, due to the limits of
the micro-controller power, the frequency cannot increase
to an infinite value, but the presented fuzzy-PI clock servo
can improve the time synchronization performance. More-
over, when the rate offset is small and cycle synchronization
for a low bandwidth is ensured, the maximum number of
nodes connected in a networked motion control system can
be increased. Our method is flexible and can be applied to
many areas, such as vehicles andwireless communication [6].
In vehicles with a completed Ethernet backbone, our method
is necessary for time synchronization of the gateway sys-
tem [7]. In wireless sensors, our method ensures that the
nodes keep uniform time. This method can also contribute
to the Industrial Internet of Things (IIoT) [1], [6]. Follow-
ing the results, the time offset value considering the IEEE
1588 module resolution T0 and system parameter Kc can not
be exactly defined because the clock always changes with the
disturbances. Following these, an observer needs to consider
reducing the time offset value and adjusting the fuzzy-PI
clock servo.

VI. CONCLUSION
In this paper, we have presented a new method for increasing
time synchronization performance. This algorithm is based
on the IEEE 1588 protocol and uses a fuzzy-PI controller
to adapt the bandwidth of the clock servo. A test bench
was built using an inexpensive crystal and ARM-Cortex 3
to demonstrate the proposed algorithm. Our results show
that the mean and standard deviation of the time offset are
0.432ns and 4.402ns with a low-cost oscillator. Moreover,
the algorithm has outstanding performance in terms of setting
time and stability of the time offset, compared with previous
methods. The high resolution normal cycle and one-second
time synchronization interval ensure that a maximum number
of node connections can be maintained in a network using
the fuzzy-PI clock servo. In the future, we will apply the
method to a system that does not support the addend register,
such as an EtherCAT embedded master, or to a system with
different normal frequencies in different devices.Wewill also
implement the fuzzy-PI clock servo in a system with many
hops to analyze the time performance.

REFERENCES
[1] M. Wollschlaeger, T. Sauter, and J. Jasperneite, ‘‘The future of industrial

communication: Automation networks in the era of the Internet of Things
and industry 4.0,’’ IEEE Ind. Electron. Mag., vol. 11, no. 1, pp. 17–27,
Mar. 2017.

[2] R. A. Gupta and M.-Y. Chow, ‘‘Networked control system: Overview and
research trends,’’ IEEE Trans. Ind. Electron., vol. 57, no. 7, pp. 2527–2535,
Jul. 2010.

[3] B. Galloway and G. P. Hancke, ‘‘Introduction to industrial control net-
works,’’ IEEE Commun. Surveys Tuts., vol. 15, no. 2, pp. 860–880,
2nd Quart., 2013.

[4] N. M. Freris, S. R. Graham, and P. R. Kumar, ‘‘Fundamental limits on
synchronizing clocks over networks,’’ IEEETrans. Autom. Control, vol. 56,
no. 6, pp. 1352–1364, Jun. 2011.

61382 VOLUME 8, 2020

V. Q. Nguyen et al.: Adaptive Fuzzy-PI Clock Servo Based on IEEE 1588 for Improving Time Synchronization Over Ethernet Networks

[5] J. Laird, ‘‘Clock synchronization terminology,’’ Interoperability Lab., Uni-
versity of New Hampshire, Durham, NH, USA, Tech. Rep., Jun. 2012.

[6] A. Mahmood and R. Exel, ‘‘Clock synchronization over IEEE 802.11—
A survey of methodologies and protocols,’’ IEEE Trans. Ind. Informat.,
vol. 13, no. 2, pp. 907–922, Apr. 2017.

[7] Y. S. Lee, J. H. Kim, and J. W. Jeon, ‘‘FlexRay and Ethernet AVB synchro-
nization for high QoS automotive gateway,’’ IEEE Trans. Veh. Technol.,
vol. 66, no. 7, pp. 5737–5751, Jul. 2017.

[8] J. Eidson,Measurement, Control, Communication Using IEEE 1588. New
York, NY, USA: Springer-Verlag, 2006.

[9] Z. Li and B. Qin, ‘‘Research on Synchronization Technology Based on
IEEE 1588 Protocol,’’ Appl. Mech. Mater. J., vol. 310, pp. 634–639, 2013.

[10] S. Dietrich and G. May, ‘‘Latency in cascaded wired/wireless communica-
tion networks for factory automation,’’ in Proc. Int. Conf. Ind. Netw. Intell.
Syst. (NISCOM). Leicester, U.K.: Springer, Nov. 2016, pp. 50–61.

[11] S.-M. Park, H. Kim, H.-W. Kim, C. N. Cho, and J.-Y. Choi, ‘‘Synchro-
nization improvement of distributed clocks in EtherCAT networks,’’ IEEE
Commun. Lett., vol. 21, no. 6, pp. 1277–1280, Jun. 2017.

[12] X. Wu, L. Xie, and F. Lim, ‘‘Network delay analysis of EtherCAT and
PROFINET IRT protocols,’’ in Proc. 40th Annu. Conf. IEEE Ind. Electron.
Soc. (IECON), Oct. 2014, pp. 2597–2603.

[13] K. Correll, N. Barendt, and M. Branicky, ‘‘Design considerations for
software only implementations of the IEEE 1588 precision time protocol,’’
in IEEE Conf. IEEE 1588 Stand. Preci. Clock Synch. Prot. Net. Mea. Cont.
Syst., 2006, pp. 1–6.

[14] P. Tosato, D. Macii, and D. Laverty, ‘A software-based low-jitter servo
clock for inexpensive phasor measurement units,’’ in Proc. IEEE Int.
Symp. Precis. Clock Synchronization Meas., Control, Commun. (ISPCS),
Sep./Oct. 2018, pp. 1–6.

[15] A. Mahmood, R. Exel, and T. Sauter, ‘‘Delay and jitter characterization
for software-based clock synchronization over WLAN using PTP,’’ IEEE
Trans. Ind. Informat., vol. 10, no. 2, pp. 1198–1206, May 2014.

[16] E. Kyriakakis, J. Sparsø, and M. Schoeberl, ‘‘Hardware assisted clock
synchronization with the IEEE 1588-2008 precision time protocol,’’ in
Proc. 26th Int. Conf. Real-Time Netw. Syst. (RTNS), 2018, pp. 51–60.

[17] H. Yin, P. Fu, J. Qiao, and Y. Li, ‘‘The implementation of IEEE 1588 clock
synchronization protocol based on FPGA,’’ in Proc. IEEE Int. Instrum.
Meas. Technol. Conf. (IMTC), May 2018, pp. 1–6.

[18] J. Leea and T. F. Edgarb, ‘‘Technical Communique: ISE tuning rule revis-
ited,’’ Automatica, vol. 40, no. 8, pp. 1455–1458, 2004.

[19] J. Liu, X. Li, M. Liu, X. Cui, and D. Xu, ‘‘A new design of clock
synchronization algorithm,’’ Adv. Mech. Eng., vol. 2014, Feb. 2014,
Art. no. 958686.

[20] R. Exel and F. Ring, ‘‘Improved clock synchronization accuracy through
optimized servo parametrization,’’ in Proc. IEEE Int. Symp. Precis. Clock
Synchronization Meas., Control Commun. (ISPCS), Sep. 2013, pp. 65–70.

[21] D. Fontanelli and D. Macii, ‘‘Accurate time synchronization in PTP-
based industrial networks with long linear paths,’’ in Proc. IEEE Int.
Symp. Precis. Clock Synchronization Meas., Control Commun., Sep. 2010,
pp. 97–102.

[22] X. Xu, Z. Xiong, J. Wu, and X. Zhu, ‘‘High-precision time synchronization
in real-time Ethernet-based CNC systems,’’ Int. J. Adv. Manuf. Technol.,
vol. 65, nos. 5–8, pp. 1157–1170, Mar. 2013.

[23] J. Hun Cho, H. Kim, S.Wang, J. Lee, H. Lee, S. Hwang, S. Cho, Y. Oh, and
T.-J. Lee, ‘‘A novel method for providing precise time synchronization in
a distributed control system using boundary clock,’’ IEEE Trans. Instrum.
Meas., vol. 58, no. 8, pp. 2824–2829, Aug. 2009.

[24] X. Chen, D. Li, S. Wang, H. Tang, and C. Liu, ‘‘Frequency-tracking clock
servo for time synchronization in networked motion control systems,’’
IEEE Access, vol. 5, pp. 11606–11614, 2017.

[25] Z. Chaloupka, N. Alsindi, and J. Aweya, ‘‘Clock skew estimation using
Kalman filter and IEEE 1588v2 PTP for telecom networks,’’ IEEE Com-
mun. Lett., vol. 19, no. 7, pp. 1181–1184, Jul. 2015.

[26] G. Giorgi and C. Narduzzi, ‘‘Performance analysis of Kalman-Filter-Based
clock synchronization in IEEE 1588 networks,’’ IEEE Trans. Instrum.
Meas., vol. 60, no. 8, pp. 2902–2909, Aug. 2011.

[27] G. Giorgi, ‘‘An event-based Kalman filter for clock synchronization,’’
IEEE Trans. Instrum. Meas., vol. 64, no. 2, pp. 449–457, Feb. 2015.

[28] X. Xu, Z. Xiong, X. Sheng, J. Wu, and X. Zhu, ‘‘A new time synchroniza-
tion method for reducing quantization error accumulation over real-time
networks: Theory and experiments,’’ IEEE Trans. Ind. Informat., vol. 9,
no. 3, pp. 1659–1669, Aug. 2013.

[29] L. Tavares Bruscato, T. Heimfarth, and E. Pignaton de Freitas, ‘‘Enhanc-
ing time synchronization support in wireless sensor networks,’’ Sensors,
vol. 17, no. 12, p. 2956, 2017.

[30] K. S. Yildirim, R. Carli, and L. Schenato, ‘‘Adaptive Proportional–Integral
clock synchronization in wireless sensor networks,’’ IEEE Trans. Control
Syst. Technol., vol. 26, no. 2, pp. 610–623, Mar. 2018.

[31] T. T. Xie and H. Yu, ‘‘Comparison of fuzzy and neural systems for
implementation of nonlinear control surfaces,’’ in Human-Computer Sys-
tems Interaction: Backgrounds and Applications, vol. 2. Berlin, Germany:
Springer-Verlag, 2012, pp. 313–324.

[32] C. Shan, Z. Chen, Y. Li, and H. Yuan, ‘‘All DPLLs based on fuzzy PI
control algorithm,’’ in Proc. 2nd Int. Conf. Mechanic Autom. Control Eng.,
Jul. 2011, pp. 7150–7153.

[33] L. Y. Zhang and H. Y. Liu, ‘‘Adaptive bandwidth PLL design based on
fuzzy logic control,’’ Appl. Mech. Mater., vols. 543–547, pp. 1393–1396,
Mar. 2014.

VINH QUANG NGUYEN received the B.S. degree
in physics and engineering physics from the Uni-
versity of Science, Ho Chi Minh City, Vietnam,
in 2012, and theM.S. degree in electrical and com-
puter engineering fromSungkyunkwanUniversity,
Suwon, South Korea, in 2015, where he is cur-
rently pursuing the Ph.D. degree with the School
of Information and Communication Engineering.

His research interests include real-time net-
works, motion control, and embedded systems.

TON HOANG NGUYEN received the B.S.
degree in mechatronics engineering from the
Ho Chi Minh City University of Technology,
Ho Chi Minh City, Vietnam, in 2016. He is cur-
rently pursuing the Ph.D. degree with the School
of Information and Communication Engineering,
Sungkyunkwan University, Suwon, South Korea.

His research interests include signal processing,
motion control, robotics, and embedded systems.

JAE WOOK JEON (Senior Member, IEEE)
received the B.S. and M.S. degrees in electron-
ics engineering from Seoul National University,
Seoul, South Korea, in 1984 and 1986, respec-
tively, and the Ph.D. degree in electrical engineer-
ing from Purdue University, West Lafayette, IN,
USA, in 1990.

From 1990 to 1994, he was a Senior Researcher
with Samsung Electronics, Suwon, South Korea.
Since 1994, he has been with Sungkyunkwan Uni-

versity, Suwon, where he was first an Assistant Professor with the School
of Electrical and Computer Engineering. He is currently a Professor with
the School of Information and Communication Engineering, Sungkyunkwan
University. His research interests include robotics, embedded systems, and
factory automation.

VOLUME 8, 2020 61383

