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ABSTRACT Supply chain configuration (SCC) plays an important role in supply chain management. This
paper focuses on a multi-objective SCC (MOSCC) problem for minimizing both the cost of goods sold and
the lead time simultaneously. Some existing population-based methods use the evolution of a population
to obtain the optimal Pareto set, but they are time-consuming. In this paper, an Efficient Local Search-
based algorithm with rank (ELSrank) is designed to solve the MOSCC problem. Firstly, instead of use of
population, two solutions (xA and xB) are generated by the greedy strategy, which have the minimal cost and
the minimal time, respectively. They approximately locate in two sides of the Pareto front (PF). Secondly,
with the consideration of the problem characteristics, a local search (LS) is proposed to find competitive
solutions among the common neighborhood of two given solutions. If xA and xB are chosen to execute the
proposed LS, solutions along the link path (the approximate PF) of xA and xB can be found. This way,
the solutions along the whole PF can be found. The comparative experiments are conducted on six instances
from the real-life MOSCC problems, and the results show that ELSrank performs better than other start-of-
the-art algorithms, especially on the large scale problem instances.

INDEX TERMS Supply chain configuration, multi-objective optimization, Pareto front, local search.

I. INTRODUCTION
Supply chain configuration (SCC) is a problem to config-
ure the supply chain network and to make choices (e.g.,
choosing the locations or production lines) for each supply
chain member (SCM) [1]–[5]. In the problem, each SCM
has several configurations, and these configurations are corre-
sponding to different costs and times, such as the production
cost/time, the assembly cost/time, and the delivery cost/time.
As both the cost and time are significant for the SCC,
a multi-objective SCC (MOSCC) problem is modeled and
solved in this paper to optimize the total cost of goods sold
(totalCost) and the total lead time (totalTime) simultaneously.
The aim of the MOSCC problem is to obtain the optimal
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choices of SCMs and to minimize totalCost and totalTime
[6], [7]. Therefore, this problem is a discrete combinatorial
optimization problem (COP).

Due to the good performance of heuristic methods on the
COPs, some of them have been applied to solve the MOSCC
problem, especially the swarm intelligence algorithms (SIAs)
[8]–[13]. For example, an ant colony optimization algorithm
with Pareto optimality (P-ACO) was proposed to solve the
MOSCC problem, which designed the new heuristic strategy
and pheromone update rule with considering the character-
istics of the problem [8]. The intelligent water drop algo-
rithm combined with Pareto optimality (P-IWD), inspired by
the flowing water drop, was also used for this problem [9].
P-ACO and P-IWD maintain a large population (i.e., the
population size is 10000) to obtain a new Pareto set (PS)
in every iteration. However, the population is much larger
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than the size of PS. The evolution of some solutions may be
not helpful to the improvement of the population. Therefore,
the above two SIAs are time-consuming to maintain a large
population for this problem.

In this paper, a non-population based algorithm – a novel
local search is proposed to solve the MOSCC problem.
This algorithm aims to find the final Pareto front (PF)
directly and efficiently. At the beginning, two greedy solu-
tions (xA and xB) are generated with the minimal total-
Cost and totalTime, respectively, whose fitness values can be
regarded as the two ends of the PF. The next step is to obtain
the solutions along the path (i.e., the PF) between xA and xB,
and these solutions are also the common neighbors of the two
solutions. From this aspect, the Efficient Local Search-based
algorithm with rank (ELSrank) is proposed. Firstly, a new
metric is designed to rank the configurations of SCMs. Then,
the proposed local search (LS) is used to find the neighbors
of two solutions by choosing the configurations whose ranks
are between the ranks of the two solutions. LS is used twice
in every iteration. For the first time, the two solutions used
in LS include a randomly generated solution and a randomly
selected solution from PS, which can increase the diversity
of solutions. In the second time, the two solutions are both
randomly chosen from PS for generating more promising
solutions to enhance exploitation.

To evaluate the performance of ELSrank on the MOSCC
problem, six instances with different problem scales are used.
The experimental results show that ELSrank can outperform
P-ACO, P-IWD, and two famous multi-objective algorithms
NSGA-II andMOEA/D, and the results of our proposed algo-
rithm are much closer to those obtained by the enumeration
method.

The rest of this paper is organized as follows. Section 2
introduces the problemmodel of MOSCC. Section 3 presents
the details of the proposed method ELSrank. Section 4
presents and discusses the experimental results. Finally,
Section 5 draws a conclusion.

II. PROBLEM MODEL OF MOSCC
The supply chain of theMOSCC problem solved in this paper
is to produce and assemble products. There are three kinds
of SCMs in this problem, including suppliers, assemblers,
and deliverers. Some assemblers are to assemble the final
products, and they are denoted as ‘‘products’’ to distinguish
among different assemblers. The supply relationship of all
SCMs is shown in Figure 1. From up to down, suppliers
supply assemblers, and assemblers supply other assemblers
and products, and products supply deliverers. It should be
noted that an assembler cannot supply itself to avoid the loop,
but it can supply other assemblers. Each SCM has several
configurations (choices) with different costs and times, and
it can choose only one. More precisely, different configura-
tions of suppliers have different production costs and times;
different configurations of assemblers and products have dif-
ferent assembly costs and times; different configurations of
deliverers have different transportation costs and times.

FIGURE 1. Supply relationship of SCMs.

The aim of this problem is to choose the optimal configura-
tions of SCMs to minimize the totalCost and totalTime of the
system. The decision vector x is a set of nNode integers which
represent the choices of the corresponding SCMs, as shown
in Figure 2. For example, node 1 selects the third choice,
and node 2 selects the first choice. nNode is the number of
SCMs. All up nodes of node i who supply node i are denoted
as upNodei, and all down nodes of node iwho node i supplies
are denoted as downNodei.

FIGURE 2. Decision vector x of the MOSCC problem.

The mathematical model of the problem is formulated as
follows:

Min totalCost = nPeriod ×
nNode∑
i=1

demandi × Costi,xi (1)

Min totalTime = max
i=1,2,...nNode

{LTi} (2)

demandi =
∑

j∈downNodei

demandj,

i = 1, 2, . . . , nNode (3)

LTi = Timei,xi + max
j∈upNodei

{LTj},

i = 1, 2, . . . , nNode (4)

xi ∈ {1, 2, . . . ,Choicei},

i = 1, 2, . . . , nNode (5)

Equation (1) is the first objective function of this problem
to calculate the minimal cost (totalCost) of the supply chain
system. nPeriod is the number of the production period.
demandi is the demand quantity of node i, which is calculated
in (3), and the demand quantities of all nodes at the lowest
level (deliverers) are known. Costi,xi is the production cost of
the member node i on choice xi. xi is the decision variable,
and its domain is shown in (5) where Choicei is the number
of choices of node i. Equation (2) is the second objective
function to calculate the minimal time (totalTime), where the
lead time of node i (LTi) is calculated in (4). Timei,xi is the
production time of node i on choice xi.
In total, the two objectives of the MOSCC problem are

totalCost and totalTime, and the decision variables are the
chosen choice xi of node i (i = 1, 2, . . . ,Choicei).

III. THE PROPOSED METHOD ELSrank
In this section, the motivation of ELSrank to solve the
MOSCC problem is firstly described, which is inspired by
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overcoming the disadvantages of the SIAs for the problem.
Then, two components of the proposed method are presented,
including the generation of two greedy solutions and the
proposed LS. Lastly, the complete ELSrank is described.

A. MOTIVATION OF ELSRANK FOR THE MOSCC PROBLEM
To obtain the optimal solution set of a multi-objective prob-
lem (i.e., the PS), SIAs are widely used due to their good
diversity of solutions [14]–[20]. In SIAs, PS is updated by the
evolution of the whole population. However, not all individ-
uals in the population can promote the evolution, and it may
cost much time to reach the real PF (PF∗). Figure 3 shows
how SIAs get the final PF. Firstly, they get the initial PF
(i.e., the PF′) which is obtained from the initial population.
Then, PF′ will approach to the PF∗ continuously iteration
by iteration via the improvement of the whole population
in SIAs.

FIGURE 3. Illustration of SIAs for the MOSCC problem.

In this paper, ELSrank is proposed to obtain thePF directly
by the search of the initial PF (i.e., the PF′′). The illustration
of ELSrank is shown in Figure 4. The two ends of PF′′

(A and B) are obtained by the greedy strategies firstly, and
they are close to the two ends of the PF∗ (A∗ and B∗). Then,
the proposed LS is used to find the solutions along the PF′′,
and to push PF′′ towards PF∗. The detailed descriptions of
Figure 4 and ELSrank are shown in the following sections.

FIGURE 4. Illustration of ELSrank for the MOSCC problem.

B. GENERATION OF TWO GREEDY SOLUTIONS
Before describing the greedy solution generation, the sym-
bols in Figure 4 are introduced. Points A∗ and B∗ are the two
ends of PF∗, and the corresponding solutions xA∗ and xB∗
have the minimal totalTime (totalTimemin) and totalCost
(totalCostmin), respectively. The two greedy solutions are
denoted as xA and xB, and their locations in the figure
(points A and B, respectively) can be considered as the two
ends of PF′′.

In xA, all nodes select the choice with the minimal time,
and it can be inferred from (2) and (4) that the totalTime
of xA is minimal and equal to that of xA∗ (totalTimemin).
Similarly, in xB, all nodes select the choice with the minimal
cost, and the totalCost of xB is minimal and equal to that of
xB∗ (totalCostmin), concluded from (1). It should be noted that
the totalCost of xA is not smaller than that of xA∗ , and the
totalTime of xB is not smaller than that of xB∗ .

C. THE PROPOSED LS
The classical LS is usually performed on one solution
to find better solutions among its neighborhood. Besides,
the neighborhood is commonly obtained by random changes
of the solution, without consideration of the problem char-
acteristics [21]–[26]. In this paper, an efficient LS is pro-
posed to obtain the common neighborhood of two solutions
(xs and xt). Moreover, the LS is designed with the con-
sideration of the problem characteristics. Herein, given two
solutions xs and xt, their neighborhood can also be regarded
as the search space along the link path of xs and xt.
To find the solutions between xs and xt (along the link

path), all choices of a node are ranked. For one node
(i.e., a dimension of a solution), it is assumed that the
corresponding choices of xs and xt are cs and ct, respec-
tively, and the ranks of cs and ct are rs and rt, respectively.
If rs < rt or rs > rt, the solutions generated by LS will
randomly choose the configurations ranking between rs and rt
(i.e., [rs, rt) or [rt, rs)); otherwise, the solutions will choose
the same one as xs and xt. This process will repeat until a
solution can be added into PS or the number of the loop
exceeds the predefined parameter nLS.

Algorithm 1 shows the procedure of the proposed LS.
Firstly, it is judged whether xs is the same as xt in
lines 1 and 2. If the two solutions are the same, the pro-
cedure will terminate. Then, a loop is executed to generate

Algorithm 1 LS(xs, xt)
Begin

1 If xs is same as xt
2 return;

3 num = 0;
4 While num < nLS
5 For i = 1 : nNode // generate a new solution x
6 rs← rank of the choice xsi of node i;
7 rt← rank of the choice xti of node i;
8 xi← a random choice ranking between rs and

rt;
//i.e., a random value in [rs, rt) or [rt, rs)

9 Evaluate x and update PS and PF;
10 If x is added into PS
11 Break;

12 num++;

End
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new solutions which are the neighbors of the xs and xt. The
ranks of each node of the new solutions are all between the
corresponding nodes of xs and xt. After evaluating the new
solution x and updating PS and PF, if x is a Pareto solution
(i.e., it has been added into PS), the loop ends; otherwise,
the loop will continue and will be executed at most nLS times.

Figure 5 shows an example of the proposed LS. In the
figure, node 1 has 4 choices, and from the first rank to
the fourth rank, they are choice 4, choice 1, choice 2, and
choice 3, respectively. For node 1, the choices of xs and xt are
2 and 4, whose ranks are third and first, respectively. Then,
the generated solutions will select the configurations whose
rank is between [1, 3). Therefore, the rank of the option can be
first or second, and the corresponding choice is 4 or 1. In the
example, the choices of x1 and x2 on node 1 are 1 (ranking
second) and 4 (ranking first), respectively.

FIGURE 5. Example of the proposed LS.

Because the proposed LS is based on the rank of configu-
rations, the design of the ranking is crucial for the algorithm.
In this problem, different configurations have different costs
and times. The main idea of designing the rank is to select a
choice as the base, and to transform other configurations and
sort them under this same base.

Firstly, for a node, the base choice is randomly chosen from
the choices whose cost and time are both larger than zero.
The cost and time of the base choice are denoted as costb
and timeb, respectively. The base choice spends timeb/costb
with the unit cost. Then, for the comparison with each other,
the cost of other choices is transformed to be the spent time
under the base choice. The transformationmethod is designed
as shown in (6), where i and j are the indices of node and
choice, respectively, and 1timei,j represents the difference of
the transformed time and the original time.

1timei,j= [timeb−(Costi,j−costb)×
timeb
costb

]−Timei,j (6)

FIGURE 6. Illustration of the transformation of the cost.

In (6), Cost i,j is divided into two parts costb and
(Cost i,j–costb), as shown in Figure 6. costb is corresponding
to timeb, and only the difference (Cost i,j–costb) is trans-
formed proportionately ((Cost i,j–costb)×(timeb/costb)),
denoted as timef. As the higher cost is corresponding to
the less time, the transformed time is timeb minus timef.
If 1timei,j > 0, it represents that with the same cost,
the choice r spends less time than the base choice, and is more
cost-effective. Therefore, the choice with larger 1timei,j
ranks higher.

Table 1 shows an example of a node which has four
choices, and the choice 2 in bold is selected as the base
choice. In the example, the choice 1 is a little cheaper
(3.25 units) than the base choice 2, but it spends twice as long
as the base choice (40 units of the choice 1 compared with
20 units of the base choice). The choice 1 is less cost-effective
than the base choice, and therefore, the 1time of the choice 1
is much smaller than zero, as shown in Table 1. For the
choice 4, it costs only 3.34 units more than the base choice,
and it does not spend any time (having products in stock).
The choice 4 is more cost-effective than the base choice, and
therefore, the 1time of the choice 4 is much bigger than zero.
After sorting all choices by 1time in descending order, their
ranks are obtained and shown in the last column of Table 1.

TABLE 1. Example of the choice of a node.

D. THE COMPLETE ELSRANK
The complete flow chart of ELSrank is shown in Figure 7.
Firstly, configurations of all nodes are ranked, which will be
used in the proposed LS. Two greedy solutions (xA and xB)
are generated to define two ends of PF. Then, a loop is
executed until the terminal condition is satisfied. During the
loop, the proposed LS (LS(xs, xt)) is used twice. In the first
time, xs is randomly generated (x), and xt is randomly chosen
from PS (PSr where r is randomly chosen from [1, |PS|], and
|PS| is the size of PS). It can help the algorithm to explore the
wider space and enhance the diversity. In the second time,
xs and xt are both chosen from PS randomly (PSri and PSrj
where ri and rj are randomly chosen from [1, |PS|]). It is
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FIGURE 7. Flowchart of ELSrank.

aimed to find more promising solutions along the link path
of xs and xt.

IV. RESULTS AND DISCUSSIONS
This section firstly describes the experiment settings
including the test instances, the evaluation criteria, and
the parameter settings of comparative algorithms. Then,
the experimental results of ELSrank and other algorithms
are shown and discussed. Lastly, the parameter nLS is
investigated.

A. EXPERIMENTAL SETTINGS
To evaluate the performance of our proposed algorithm, six
test instances in [9] are used, as shown in Table 2. The number
of solutions is equal to

∏
Choicei (i = 1, 2, . . . , nNode),

and the maximum execution time is the terminal condition
of algorithms. Two metrics are used in this paper, includ-
ing hypervolume (HV) and C(A, B) (A and B represent
two algorithms) [27]–[31]. Besides, four competitive algo-
rithms are compared with ELSrank, including P-ACO [8],
P-IWD [9], NSGA-II [32], and MOEA/D [33], and the
exhaustive enumeration is also used. Since the enumeration is
time-consuming on instances 5 and 6, it is not compared on
the two instances. Each algorithm is run 30 times indepen-
dently on each instance.

B. EXPERIMENTAL RESULTS
Four competitive algorithms are used for the comparisons.
P-ACO and P-IWDwere proposed to solve the sameMOSCC
problem [8], [9]. NSGA-II and MOEA/D are classical and

TABLE 2. Descriptions of six test instances.

excellent to solve the multi-objective problem [32], [33]. The
parameters are the same as the literature.

Table 3 shows the comparisons of algorithms on HVwhich
is transformed into a ratio value. HV is calculated on each
run, and the mean value of all runs are recorded. If the ratio
value is bigger than zero, it represents that ELSrank performs
better than the corresponding algorithm. As shown in Table 3,
the ratio values of P-ACO, P-IWD, NSGA-II, and MOEA/D
are all bigger than zero, and it shows that ELSrank can get
better results than them.

TABLE 3. Comparisons of ELSrank with compared algorithms on HV
(HV(ELSrank)/HV(other algorithm) - 1).

Table 4 shows the comparative results on C(A, B). For an
algorithm, all Pareto solutions of 30 run times are recorded
as a whole to calculate the C(A, B). If C(A, B) is higher than
C(B, A), it represents that the solutions of the algorithm B
are dominated by or equal to those of the algorithm A more.
It can be seen from Table 4 that C(ELSrank, -) is bigger
than C(-, ELSrank) on all compared algorithms. It concludes
that the number of dominations of solutions of ELSrank
over solutions of other algorithms is more than that of other
algorithms over ELSrank. Moreover, most of C(ELSrank, -)
is equal to 1.00, which represents that all solutions in the
compared algorithms are dominated by those in ELSrank.

Figure 8 shows thePF of all algorithms. In Figure 8 (a), (b),
and (c), the PF of MOEA/D is close to that of ELSrank,
and both of them are close the true PF generated by the
enumeration method. With the problem scale increasing,
in Figure 8 (d) which represents the results on instance 4,
the PF of ELSrank is still close to the true PF. However,
the performance of MOEA/D begins to deteriorate.
In Figure 8 (e) and (f), ELSrank gets the PF which is nearest
to the coordinate axes.
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TABLE 4. Comparisons of ELSrank with compared algorithms on C(A, B).

FIGURE 8. PF of all algorithms. (a) instance 1 (b) instance 2 (c) instance 3 (d) instance 4 (e) instance 5 (f) instance 6.

TABLE 5. Comparisons of ELSrank (nLS = 5) with different nLS on C(A, B).

In conclusion, ELSrank is outperformed than other algo-
rithms, followed by MOEA/D. The reason may be that

ELSrank does not rely on a population and gets the PF
directly, which helps to save more time to improve the PF.
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C. PARAMETER STUDY
There is only a parameter nLS needed to be studied. nLS is
the maximum execution number of the proposed LS. Since
the terminal condition of the algorithm is the given execution
time, if nLS is large, it will cost a lot of time to execute the LS;
otherwise, if nLS is small, the chance to improve solutions
will decrease. Therefore, the setting of nLS is significant to
the proposed algorithm.

Five different values of nLS are tested, including 5, 10, 15,
20, and 25. The C(A, B) of them is shown in Table 5, and the
default value of nLS in ELSrank is 5. From the observation of
Table 5, it can be seen that C(ELSrank, -) and C(-, ELSrank)
are both equal to 1.00 on instances 1 to 4. It represents that the
results of them are all the same on small scale problems. For
instances 5 and 6 with the larger problem scales, ELSrank
with nLS = 5 performs better than other settings of nLS.
Therefore, nLS is set to 5 in the ELSrank algorithm.

V. CONCLUSION
In this paper, the ELSrank algorithm is proposed to solve the
MOSCCproblem forminimizing the totalCost and totalTime.
Instead of using the evolution of a population to find promis-
ing solutions, ELSrank firstly obtains two greedy solutions
as two ends of the PF. Then, the rank of configurations is
designed for the proposed LS to explore the solution space
along the link path of two solutions. The proposed LS is also
aimed to depict and improve the whole PF of the algorithm.
The experiments show that our proposed algorithm has a
better performance than the compared algorithms.
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