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ABSTRACT Logistic activities widely exist in the agricultural production process. With the gradual
application of unmanned technology in agricultural production, the technology related to intelligent logistics
has become a research hotspot. Because of the complicated driving road conditions of agricultural logistics
vehicles, vehicle stability control has become a key problem for realizing intelligent driving. In this paper,
the control of unmanned agricultural logistics vehicles in complex farmland environment is studied to
provide data support for the intelligent driving of agricultural vehicles. In the current paper, based on
the characteristics of the four-wheel drive independent control moment response of distributed electric
agricultural vehicle, a coordinated stability control method based on the improved adaptive model predictive
control (MPC) is proposed. In the paper, an unmanned agricultural logistics vehicle platform is developed.
The front and rear radars mounted on the platform is used to scan the targets and obstacles in the operation
site, and a relevant target and position coordinate database is established to provide data support for the
intelligent driving of agricultural logistics vehicles. In the paper, the information base established by the front
and rear radar scanning can control the driving attitude and path of the agricultural logistics transportation
platform and realize the intelligent agricultural logistics.

INDEX TERMS Logistic activities, unmanned driving technology, agricultural big data structure, model
predictive control.

I. INTRODUCTION
The distributed electrically driven vehicle has multiple power
units, each of which is independent and controllable, so that
it can coordinate and control the driving force based on
the current road condition to ensure the stability of vehicle
handling. The idea of coordinated control is especially impor-
tant when the vehicle exhibits drive failure, drive slip, etc.
[1]–[4]. Conventional electric agricultural vehicles have only
a single power source.When the agricultural vehicle has drive
failure, drive slip, etc., it is unable to perform multi-drive
unit coordination control. The general treatment is to reduce
the torque of the drive motor or shut down the motor, which
makes it quickly stop. In the event of drive failure and drive
slip, the distributed electrically driven vehicle can satisfy the
driver’s needs through the coordinated control of redundant
power sources to ensure effective, safe and smooth driving of
the vehicle.

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhiwu Li .

The basic principle of front- and rear-wheel drive regu-
lation based on economy is given by Kondo et al. [5]. This
method holds that under different working conditions, differ-
ent driving modes (front/rear) should be adopted to improve
the economy. The front wheel should be used in the normal
driving process, the four-wheel drive mode should be used
in case of wheel sliding and steering before starting, and
the four-wheel braking mode should be used in the deceler-
ation and braking conditions to recover as much energy as
possible.

In case of motor drive failure, one solution for handling
motor failure would shut down both the failed driving wheel
and the contralateral driving wheel [6]–[8]. Although this
method can guarantee a part of the driving capacity in the case
of single-wheel failure or coaxial dual-wheel failure, it can
not perform real-time torque distribution control according to
the current vehicle state. In addition, both partial motor failure
and lack of motor response speed were not considered by the
method, which weakens the longitudinal driving performance
of the vehicle and fails to completely solve the problem of
reasonable driving under the failure condition.
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The rule-based control allocation method was applied to
address the excessive slip condition [9]. In the case of single-
wheel or multiple-wheel sliding, the method transferres the
driving torque of the sliding wheel to the non-sliding wheel,
which satisfies the longitudinal driving performance and
transverse stability of the vehicle. However, the method is
only suitable for the over-slip condition, and it does not
provide a comprehensive solution, which is used to solve
the problem of the drive failure driven slip and direct yaw
moment control.

From the current research situation, in the distributed
electric vehicle driving force coordination control system,
the lateral control target cannot well reflect the driver’s
demand [10]. At present, most studies have focused on
how to follow multiple motion control targets, yaw angular
velocity and lateral deflection of the centre of mass of the
vehicles [11]–[15], but the nonlinear characteristics of the
vehicles have not been fully considered, and the adaptive
adjustment of control targets is lacking. In the paper, a control
method is designed to adjust the control target according to
the current vehicle and environment after the vehicle enters
the strong nonlinear region, and the vehicle can follow the
adjusted control target in real time to ensure stability.

The operation environment of agricultural logistics vehi-
cles is complicated, and the road surface is changeable,
which makes the vehicle driving control especially impor-
tant. At present, the driving control of agricultural transport
vehicles mainly focuses on the estimation of road adhesion
coefficient, and there is no systematic research on the con-
trol mode. In addition, the research on intelligent driving
and attitude control is even less. Currently, the research on
agricultural vehicles remains in the traditional driving mode,
and the research on attitude control and the intelligent driving
of agricultural vehicles is limited [16]–[18]. In the current
paper, aiming at the development of distributed drive electric
agricultural logistics vehicles, an unmanned test and control
equipment is built. Using the real-time target and obstacle
coordinate information database, the distributed electrically
driven agricultural vehicle drive coordination control method
with improved adaptive MPC is adopted to realize the intel-
ligent operation of agricultural vehicle.

II. THE ESTABLISHMENT OF MODEL
A. THE BASIC MODEL OF THE VEHICLE SYSTEM
Since the stability of the vehicle is closely related to its lateral
and yaw motion, the vehicle with the front-wheel steering
was simplified into a two-degree-of-freedom model without
considering the difference in steering angle of the front wheel
[19], [20], as shown in Fig. 1.

The vehicle dynamic characteristics can be derived from
vehicle dynamics theory, as follows:

β̇ =
Fyf + Fyr

mV
− γ (1)

ṙ =
Lf Fyf − LrFyr +Mz

Iz
(2)

FIGURE 1. Two-degree-of-freedom model of vehicles.

The yaw moment Mz generated by the longitudinal force
of the wheel can be calculated by the following formula:

Mz =
d
2
· (−Fxfl + Fxfr − Fxrl + Fxfl) (3)

The differential equations of the linear two-degree-of-
freedom vehicle model are as follows:

(k1 + k2)β +
1
vx

(ak1 − bk2)r − k1δf = m(v̇y + vxγ )

(ak1 − bk2)β +
1
vx

(a2k − b2k2)r − ak1δf = IZ ṙ
(4)

where k1 and k2 are the lateral stiffness of the front and rear
shafts of the linear two-degree-of-freedom model.

When information such as the steering wheel angle input
and speed is known, according to the two-degree-of-freedom
model, the steady-state values of the lateral deflection angle
of the centre of mass and the yaw angular velocity can be
obtained as follows:

rd =
vx
/
L

1+ Kv2x
δf (5)

βd =
b+ amv2x

/
k2L(

1+ Kv2x
)/
L
δf (6)

where

K =
m
L2

(
a
k2
−

b
k1

)
(7)

rd_bound = 0.85
ug
vx

(8)∣∣βd_bound ∣∣ ≤ tan−1(0.02µg) (9)

The reference model of predictive control of the vehicle
system is as follows:

ẋ = Ax + Bu (10)

y(t) = Cx (11)
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where

A =


k1 + k2
mvx

−1+
−bk2 + ak1

mv2x
−bk2 + ak1

Iz

−b2k2 + a2k1
Izvx

 (12)

B =

−
k1
mvx

0

−
ak1
Iz

1
Iz

 (13)

C =
[
1 0
0 1

]
(14)

x =
[
β

γ

]
(15)

u =
[
δ

T

]
(16)

The predictive control model includes two processes:
rolling optimization and feedback correction [21], [22]. The
prediction model is continuously optimized by rolling; simul-
taneously, the optimization process uses the measured infor-
mation for continuous feedback correction, and the predicted
output value is given to make the predicted value as close
as possible to the expected value. In the vehicle movement
process, the model predictive control is beneficial for enhanc-
ing the robustness of the control system in the predicted time
domain because the driving environment greatly changes, and
there are many uncertainties [23]–[25]. The predicted output
value is obtained by optimizing the expected value as the
optimization objective. At each sampling moment, the opti-
mization is repeated, which is the rolling optimization.

B. PREDICTIVE CONTROL ALGORITHM BASED
ON THE ADAPTIVE MODEL
First, equation (10) is discretized as follows:

x(k + 1) = A1x(k)+ B1u(k) (17)

where A1 and B1 are the coefficient matrices of the discrete
system, and their expansion is expressed as follows:

A1 =
∞∑
I=0

Ai1t
i
s

i!
(18)

B1 =
∞∑
i=0

Bi1t
i
s

i!
(19)

The control inputs u, system state x, and system output y
are defined as follows:

u =


δf
Tcfl
Tcfr
Tcrl
Tcrr

 (20)

x =


β

γ

kfl
kfr
krl
krr

 (21)

y =
[
β

γ

]
(22)

where fl, fr , rl and rr are four different wheels: left front, left
rear, right front and right rear, respectively.

The state equation of the control stability of the distributed
drive agricultural vehicles is as follows:

ẋ1 =
Fyf (x1, x2, u1)+ F(x1, x2)

mV
− x2 (23)

ẋ2 =
Lf · Fyf (x1, x2, u1)− LrFyr (x1, x2)+Mz

mV
(24)

ẋi = (−
R2e
JV
−
xi + 1
1
4mVx

)Ckixi +
Re
JV

ui−1,

i = 3, 4, 5, 6 (25)

Mz =
d
2
(−Ckflx3 + Ckfrx4 − Ckrlx5 + Ckrrx6) (26)

min J (U ) =
n∑
j=1

p∑
i=1

[
yrj(k + i)− ypj(k + i)2

]
+

m∑
l=1

M∑
r=1

λ1 [1u1(k + r − 1)]2

s.t. Umin ≤ U ≤ Umax

(27)

min J1 =
N∑
j=1

[
yj|k − yj|k (θ )

]2
+ γ

nθ∑
i=1

(1θi|k )2

s.t. {Umin ≤ U ≤ Umax

(28)

C. OPTIMAL CONTROLLER DESIGN BASED ON MPC
The control input u is as follows: U (k) = {u1(k), u2(k) ,
· · · um(k)}.
The system output y is as follows: Y (k) = {y1(k), y2(k) ,
· · · yn(k)}
At moment k , E(k) is defined as the output reference

sequence including βr and γr .
The key to maintaining the lateral stability of the vehicle

is to generate the yaw moment acting on the vehicle by
coordinating the driving torque [26]–[28]; thus, the horizontal
tracking deviation is minimized.

Thus:

min J (U ) =
P∑
i=1

[
(β (k + i)− βr (k))2 · H1 + (γ (k + i)

− γr (k)2) · H2

]
(29)

J (U ) =
n∑
j=1

P∑
i=1

[β (k + i)− βr (k)]2 · H1

+

m∑
l=1

M∑
r=1

(γ (k + i)− γr (k)2) · H2 (30)
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where n and m are dimensions of the controlled quantity
and controlled quantity, P is the predictive horizon, M is
the control horizon, and P ≥ M . β (k + i) − βr (k) is the
tracing deviation of the sideslip angle; γ (k + i)− γr (k) is the
tracing deviation of the yaw velocity; H1 and H2 are the pos-
itive weighted coefficient of adjusting tracking performance;
H=diag(H1,H2) is the weighting matrix.

D. ONLINE ROLLING OPTIMIZATION OF THE DRIVE
COORDINATION SYSTEM UNDER
CONSTRAINT CONDITIONS
Agricultural vehicles in a complex environment may appear
to have large swing due to the external interference. The
stability of the system is affected by excessive yaw angle
[29], [30]. Thus, the yaw angle constraint must be considered.

‖φ(k + i)‖22 ≤ φ
2
max, i ≥ 1 (31)

According to the predictive control theory of the model,
to enable the vehicle to stably run, performance indicators
as shown in equations (29) and (30) must be optimized.
The optimal control increment that satisfies discrete
state equations and system constraints 1U is obtained.
Finally, an optimal control sequence {U∗(k),U∗(k + 1), · · ·
U∗(k +M − 1} is obtained. The optimal control input vector
includes an active steering angle and four motor driving
torques. Only the first control U∗(k) of the optimal control
sequence can be applied to the system.

min J (U ) =
n∑
j=1

P∑
i=1

[β (k + i)− βr (k)]2 · H1

+

m∑
l=1

M∑
r=1

(γ (k + i)− γr (k)2) · H2

s.t. Umin ≤ U ≤ Umax (32)

E. MODEL PREDICTIVE FEEDBACK CORRECTION
In practice, the performance of the control system is easily
affected by external interference, model mismatch, etc. Feed-
back correction can predict the error and timely correct it
through output compensation. In other words:

E(k) = Y (k)− Yn(k) (33)

Y (k + i) = Yn(k + i)+ λE(k) (34)

where λ is the compensation coefficient. Feedback infor-
mation plays an important role in the process of predictive
control and forms a closed loop optimization.

F. SOLUTION OF THE NONLINEAR PREDICTIVE CONTROL
LAW BASED ON THE SEQUENTIAL QUADRATIC
PROGRAMMING (SQP) OPTIMIZATION
The core of the NMPC is the nonlinear constrained optimiza-
tion problem. Different controller structures can be obtained
using different optimization strategies. In addition, the opti-
mization strategy has important influence on the control

effect, adaptability and robustness of the predictive con-
trol. Because the established prediction model is relatively
complex, the solution speed is very slow if the traditional
intelligent optimization algorithm is adopted, whereas the
sequential quadratic programming (SQP) algorithm is one
of the most effective methods to solve nonlinear constrained
optimization problems with global convergence and superlin-
ear convergence speed. SQP is faster than GA and PSO in
solving the predictive control law.

The basic idea of the SQP algorithm is as follows: at
a certain approximate solution, the original nonlinear pro-
gramming problem is simplified to a simple quadratic pro-
gramming problem, and an optimal solution is obtained.
If the solution is so, the optimal solution of the quadratic
programming problem is considered the optimal solution
of the original nonlinear programming problem [31], [32].
Otherwise, a new quadratic programming problem is con-
structed by the approximate solution, and the iteration
continues.

The optimal control law in equations (29) and (30)
is expressed as a nonlinear constraint optimization as
follows:

min J (U ) =
n∑
j=1

P∑
i=1

[β (k + i)− βr (k)]2 · H1

+

m∑
l=1

M∑
r=1

(γ (k + i)− γr (k)2) · H2

s.t. fi(U ) ≤ 0

(35)

fi(U ) is a vector team of function with inequality con-
straints in equations (29) and (30).

The specific steps to solve equation (35) using the SQP
algorithm are as follows:
First Step: The Lagrangian multiplier λi is introduced;

then, the Lagrangian function of equation (35) is as
follows:

L(U , λ) = J (U )+
m∑
i=1

λifi(U ) (36)

Second Step: At iteration point U k , equation (35) is
transformed into the following quadratic programming
subproblem:min

1
2
dTHkd +∇JT (U k )d

s.t. ∇f Ti (U k )d + f (U k ) ≤ 0
(37)

where Hk is Hessian matrix of equation (36) at U = U k .
Third Step: By solving the quadratic programming prob-

lem of equation (37), the next search direction dk can be
obtained, and the next iteration point can be updated.

U k+1
= U k

+ εkdk (38)
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Fourth Step: The BFGS algorithm is used to update the
Hessian matrix of Lagrangian function.

Hk+1 = Hk +
qkqTk
qTk q
−
HT
k sks

T
k Hk

sTk Hksk
sk = Uk+1 − Uk

qk = ∇J (Uk+1)+
m∑
i=1

λi∇fi(Uk+1)

−

[
∇J (Uk )+

m∑
i=1

λi∇fi(Uk )

] (39)

Fifth Step: When the solution satisfies the termination
condition,

∣∣U k+1
− U k

∣∣ ≤ δ. In the paper, when the given
accuracy δ is 10−6, U k+1 can be considered the optimal
control law U∗.

G. ADAPTIVE PREDICTIVE CONTROL
PARAMETER UPDATING
The accuracy of the nonlinear prediction model is affected by
the external interference and various uncertainties [33]–[36].
To reduce the error between the output of the actual system
and the output of the prediction model and obtain good
predictive control performance, themodel parameter adaptive
estimator is introduced to realize the online adjustment of the
parameter set of the prediction model [37]–[41].

s.t.



yj|k = fj(U (k − 1), · · · ,U (k − l),
Y (k − 1), · · · Y (k − s))

ŷj|k (µ) =
l∑
i=1

ri,jKj(X ,Xi)+ bj

1µi|k = µi(k)− µi(k − 1)

min
µ
J1 =

n∑
j=1

[
yj|k − ŷj|k (µ)

]2
+ ω

nµ∑
i=1

(
1µi|k

)2
(40)

where µ is parameters ri,j and bj in the prediction model;
ω > 0 is the weight; n is the output dimension; i is the number
of model parameters; yj|k is the j-dimensional output at k .
In equation (40), the unknown parameter vector µ is

obtained by the gradient descent method to minimize the
objective function. The initial value of the parameter vector
is provided, and the parameter vector is updated using the
following formula:

µ(k + 1) = u(k)− ζ
∂J1
∂u

(41)

where ζ (0 < ζ < 1) is the positive learning rate; ∂J1
∂u is

calculated as follows:

∂J1
∂u
= −2

n∑
j=1

[fj(X )−
l∑
i=1

ri,jK (X ,Xi)− bj]K (X ,Xi)

+ 2γ
[
ϒi,j − ϒi,j(k − 1)

]
(42)

When the iteration satisfies the termination condition,
the parameter values of the prediction model after adaptive
adjustment at the current time can be obtained.

III. SIMULATION TEST AND ANALYSIS
To verify the effect of the driving coordination control based
on MPC and adaptive MPC on the driving stability of dis-
tributed electric agricultural logistics vehicles, simulation
tests of continuous steering, double-shift line condition, and
step steering were performed under the experimental condi-
tions of low-adhesion road surfaces [42]–[46].

A. CONTINUOUS STEERING SIMULATION CONDITION
The simulation analysis is performed on electrically driven
agricultural vehicles driving on low-adhesion roads with an
operating speed of 15 km/h. When electric agricultural vehi-
cles run at the operating speed on low-adhesion roads, they
are prone to instability under continuous steering conditions.
To verify the effectiveness of the designed driver coordination
control strategy based on MPC and adaptive MPC, in the
paper, the simulation conditions were set as shown in Table 1.
The steering wheel angle input is shown in Fig. 2, and the
simulation results are shown in Fig. 3 and Fig. 4.

TABLE 1. Continuous steering condition.

FIGURE 2. Continuous steering wheel angle input.

In the continuous steering simulation experiment,
the T1 condition simulated the operating condition of agri-
cultural vehicles on low-adhesion roads (muddy roads). The
initial speed of the vehicle was 15 km/h, and the road adhe-
sion coefficient was 0.27.

Fig. 3 and Fig. 4 show the variation process of the yaw
angular velocity and lateral deviation angle of centre of mass
under three control strategies based on MPC, adaptive MPC
and no control strategy. As shown in Fig. 3 and Fig. 4,
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FIGURE 3. Curve of the yaw angular velocity under the continuous
steering condition.

FIGURE 4. Curve of the lateral deviation angle of the centre of mass
under the continuous steering condition.

in the case of continuous steering, the change range of the
vehicle yaw angular velocity and lateral deviation angle of
the centre of mass is minimized based on the adaptive MPC
control, which keeps the driving attitude of agricultural logis-
tics vehicles in a good state. The adaptive MPC control has
an obviously better effect than the traditional MPC control.
When there is no control strategy, agricultural logistics vehi-
cles have obvious hysteresis when they continuously turn,
such that they can not follow the steering command to adjust
their position in time, which caused instability. As shown
in Fig. 3, at 2-3 s, with no control strategy, the yaw angular
velocity obviously changes from low to high step, which
causes the vehicle to have an instantaneous yaw instability
phenomenon and results in a greatly increased probability of
vehicle instability and deviation from the established route.
As shown in Fig. 4, at 3.5-4.5 s, when no control strategy is
adopted, the variation of lateral deviation angle of the centre
of mass obviously increases and is accompanied by a step
change, which leads to the increase in probability of vehicle
rolling and the increase in vehicle instability. In the course of
the variation of the yaw angular velocity and lateral deviation
angle of the centre of mass, there is always a steering problem
and following hysteresis.

The change curves of the driving torque of each driving
wheel under the continuous steering condition are shown
in Figs. 5-8. Simultaneously, the vehicle operating condi-
tions without failure, without coordinated control and with
coordinated control are compared. During the simulation,
the vehicle makes continuous steering according to the given

FIGURE 5. Change curve of the driving torque of the left front wheel
under the continuous steering condition.

FIGURE 6. Change curve of the driving torque of the right front wheel
under the continuous steering condition.

FIGURE 7. Change curve of the driving torque of the left rear wheel under
the continuous steering condition.

FIGURE 8. Change curve of the driving torque of the right rear wheel
under the continuous steering condition.

steering instruction, and the required direct yaw moment is 0.
When there is no control, the torque of each driving wheel
is basically unchanged, and the vehicle continues to turn fol-
lowing the turn command in the entire process. However, the
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excessive sliding of the driving wheels on the low-adhesion
road surface makes the vehicle path deviate. The steering
manoeuvrability can be improved by changing the driving
torque of the left and right wheels at each steering time point
using the traditional MPC control. The improved adaptive
MPC control is adopted to adjust the torque changes of the
left and right driving wheels at any time, which makes the
continuous steering more coordinated and stable.

B. DOUBLE SHIFT LINE SIMULATION CONDITION
The simulation analysis on the double-shift line steering
of electrically driven agricultural vehicles at the operating
speed of 15 km/h on the low-adhesion road surface is per-
formed. To verify the effectiveness of the designed driver
coordination control strategy based on MPC and adaptive
MPC in the current study, the simulation conditions are
shown in Table 2 [47]–[50]. The steering wheel angle input
is shown in Fig. 9.

TABLE 2. Double shift line steering condition.

FIGURE 9. Double shift line steering wheel angle input.

In the double-shift line simulation experiment, the T2 con-
dition simulated the operating condition of agricultural vehi-
cles on low-adhesion roads and muddy roads. The initial
speed of the vehicle is 15 km/h, and the road adhesion coeffi-
cient is 0.27, suggesting advantages in computer applications
that are suitable for parallel computing.

The change curves of the driving torque of each driving
wheel under the condition of double-shift line are shown
in Figs. 10-13. Similar to the continuous steering control

FIGURE 10. Change curve of the driving torque of the left front wheel
under the double-shift line steering condition.

FIGURE 11. Change curve of the driving torque of the right front wheel
under the double-shift line steering condition.

FIGURE 12. The change curve of the driving torque of the left rear wheel
under double-shift line steering condition.

process, the improved adaptive MPC control can adjust the
torque changes of the left and right driving wheels at any
time to make the continuous steering more coordinated and
stable, which is obviously better than the traditional MPC
control. At each steering time point of the double-shift line,
the accurate tracking of driving instructions was improved by
controlling the changes in driving torques of the left and right
wheels.

C. ANGULAR STEP STEERING SIMULATION CONDITION
When agricultural logistics vehicles are working in the field,
they often need to perform sharp steering operation to com-
plete the turn or change the operating area, and angular step
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FIGURE 13. The change curve of the driving torque of the right rear wheel
under double-shift line steering condition.

TABLE 3. Step steering condition.

FIGURE 14. Angular step steering wheel corner input.

steering input is selected to simulate this working condition.
A step steering simulation analysis of electrically driven agri-
cultural vehicles on low-adhesion road surface with operating
speed of 15 km/h is performed. In the paper, the simulation
conditions are set as shown in Table 3. The steering wheel
angle input is shown in Fig. 14. The simulation results are
shown in Fig. 15 and Fig. 16.

In the simulation experiment of angular step steering,
the T3 condition simulated the operating condition of agri-
cultural vehicles on low-adhesion road and muddy road. The
initial speed of the vehicle is 15 km/h, and the road adhesion
coefficient is 0.27.

FIGURE 15. Curve of the yaw angular velocity under the step steering
condition.

FIGURE 16. Curve of the lateral deviation angle of the centre of mass
under the step steering condition.

The variation process of the yaw angular velocity and lat-
eral declination of the centre of mass based onMPC, adaptive
MPC and no control strategy is shown in Figs. 15 and 16.
At the step turn, both conventional MPC control and adaptive
MPC control can reduce the variation range and overshoot
of the yaw rate and side-slip angle of the mass centre. Com-
pared to not using any control strategy, to a large extent,
the stability of the lateral swing and roll during step steering
and the smaller steering radius are guaranteed by using the
conventional MPC control and adaptive MPC control. The
manoeuvrability of step steering is improved.

The change curves of the driving torque of each driv-
ing wheel under the condition of step steering are shown
in Figs. 17-20. As shown in Figs. 17 and 19, during step
steering, the torque of the left-side drive, inside wheel, and
wheels of agricultural vehicles gradually decrease from 3 s
and subsequently gradually increase as the steering proceeds.
When there is no control, the reduction in speed and ampli-
tude of the drive torque of the inside drive wheel is smaller,
and the driving torque of the outer wheel increases with less
speed and amplitude. Thus, step steering is not complete,
which results in path deviation. When using traditional MPC
and improved adaptive MPC control, the driving force of
the inner drive wheel can be largely reduced in time with

VOLUME 8, 2020 65537



X. Zhou, J. Zhou: Data-Driven Driving State Control for Unmanned Agricultural Logistics Vehicle

FIGURE 17. Change curve of the driving torque of the left front wheel
under the step steering condition.

FIGURE 18. Change curve of the driving torque of the right front wheel
under the step steering condition.

FIGURE 19. Change curve of the driving torque of the left rear wheel
under the step steering condition.

the steering, and the driving torque of the outer drive wheel
instantly increases and is sufficient to ensure complete steer-
ing. Compared to the traditional MPC control, the improved
adaptiveMPC control response to the driving force is timelier,
and the effect is better.

FIGURE 20. Change curve of the driving torque of the right rear wheel
under the step steering condition.

FIGURE 21. Experiment platform for the distributed electrically driven
agricultural logistics.

IV. EXPERIMENTAL PLATFORM CONSTRUCTION AND
ROAD EXPERIMENTAL VERIFICATION OF AGRICULTURAL
LOGISTICS OPERATION
The experiment platform of distributed electrically driven
agriculture in the paper iss developed by our research group.
This is a vehicle architecture developed based on the chang-
ing agricultural environment. The experimental platform
adopts the four-wheel independent electric drive design, has
the certain extension function and openness, and mainly
includes the control system execution system data storage
system. To satisfy the complicated and changeable require-
ments of agricultural operation, the platform can adjust the
ground gap and wheelbase and realize the automation and
visualization of the chassis. The experiment platform of
distributed electrically driven agricultural logistics is shown
in Fig. 21. Specific parameters of the experiment platform are
shown in Table 4.

In the study, the agricultural vehicle logistics experimental
platform for research is four-wheel independent drive, and
each wheel is individually driven by a servo motor through a
deceleration mechanism. The functional composition princi-
ple of each system of the experimental test platform is shown
in Fig. 22.
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TABLE 4. Parameters of the 4-WID drive high-clearance vehicle.

FIGURE 22. Functional composition principle of each system of the
experimental test platform.

FIGURE 23. GPS data transmission flow chart.

A. MAIN BODY OF THE EXPERIMENTAL PLATFORM
The drive motor is a Panasonic A52 series flat servo
motor. A GPS receiving system is used for the real-time
speed measurement. The model of the remote controller is
LAMP-1000A, and an external antenna is applied to receive
the signal. The functional composition principle of each sys-
tem of the experimental test platform is shown in Fig. 22.

In the paper, GPS is used to measure the speed. The
selected GPS is mainly divided into lithium battery, receiver,
butterfly antenna and digital station.

The data collection and analysis software is MCGS
(Beijing Kunlun Tongtai Co., LTD). The main function of
MCGS is to collect field data, and it can process front-end
data and control.

B. EXTERNAL TEST SYSTEM
To verify the control effect of the proposed control strategy in
the vehicle driving state, the vehicle running state observation
equipment is installed on the agricultural vehicle platform for
data collection and analysis.

The UEEP 12 data acquisition and analysis system is
used for the vehicle longitudinal and transverse dynamic
performance test, and it can connect to a tablet or laptop to
provide a new platform for online vehicle testing. In addition,
UEEP 12 has the advantages of simultaneously collecting
various signal data, compact size and operating temperature
expandable range.

A Correvit S-motion biaxial sensor is used for the longitu-
dinal and transverse dynamic testing of contactless vehicles.

C. EXPERIMENTAL SITE AND WORKING CONDITIONS
In the study, the experimental site is the open site of Jiangsu
agricultural machinery testing and appraisal station. The
experimental site is a grassy hard earth pavement, as shown
in Fig. 24. Continuous steering experiments and step steering
experiments are performed.

FIGURE 24. Test site.

The hard soil pavement is generally covered with weeds
and mostly grassland pavement. The optimum slip rate of
hard grassland pavement is 5.6-7.7%. First, the data collec-
tion is performed bymaking the agricultural logistics vehicles
walk freely; then, adhesion coefficientµ is obtained using the
adhesion coefficient estimation model, and its value is 0.76.

1) CONTINUOUS STEERING EXPERIMENT
The target vehicle performs continuous steering experiments
at the test site. The vehicle speed is 20 km/h; we maintain
and complet the test at this speed. As shown in Figs. 25-28,
both traditional MPC control and improved adaptive MPC
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FIGURE 25. Change curve of the driving torque of the left front wheel
obtained by the road experiment under the continuous steering condition.

FIGURE 26. Change curve of the driving torque of the right front wheel
obtained by the road experiment under the continuous steering condition.

FIGURE 27. Change curve of the driving torque of the left rear wheel
obtained by the road experiment under the continuous steering condition.

control can adjust the driving torque of the left and right
driving wheels according to the driving conditions. They
can change the driving torque of the left and right driving
wheels so that the target vehicle can keep the steering path
in a timely and stable manner to avoid path deviation. More-
over, the improved adaptive MPC can more smoothly adjust
the driving torque of the driving wheel to more fully steer
it. Thus, the control effect is better. Figs. 29-31 show the
vehicle trajectory of three different control strategies under
the continuous steering condition: without control, under
traditional MPC control, and under improved adaptive MPC

FIGURE 28. Change curve of the driving torque of the right rear wheel
obtained by the road experiment under the continuous steering condition.

FIGURE 29. Vehicle trajectory without control in the continuous steering
condition.

FIGURE 30. Vehicle trajectory under traditional MPC control in the
continuous steering condition.

FIGURE 31. Vehicle trajectory under improved adaptive MPC control in
the continuous steering condition.

control, respectively. As shown in Figs. 29-31, when there is
no control, the driving trajectory deviates from the predeter-
mined trajectory in the second half of the operation, and the
continuous steering condition is not completed. Although the
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FIGURE 32. Change curve of the driving torque of the left front wheel
obtained by the road experiment under the step steering condition.

FIGURE 33. Change curve of the driving torque of the right front wheel
obtained by the road experiment under the step steering condition.

FIGURE 34. Change curve of the driving torque of the left rear wheel
obtained by road experiment under the step steering condition.

conventional MPC control can complete the steering condi-
tion according to the predetermined trajectory, the trajectory
appears astringent and not sufficiently continuous during the
steering process. With the improved adaptive MPC control,
the steering is smooth and continuous. Thus, the improved
adaptive MPC control has the best control effect.

2) STEP STEERING EXPERIMENT
The target vehicle performs the step steering experiment at
the test site with a vehicle speed of 20 km/h and maintains
and completes the test at this speed. As shown in Figs. 32-35,

FIGURE 35. Change curve of the driving torque of the left rear wheel
obtained by the road experiment under the step steering condition.

FIGURE 36. Vehicle trajectory without control in the step steering
condition.

FIGURE 37. Vehicle trajectory under traditional MPC control in the step
steering condition.

the traditionalMPC control and improved adaptiveMPC con-
trol can adjust the torque of the left and right drivingwheels in
time, so that the agricultural vehicles can better complete step
steering, and the improved adaptive MPC control is better.
Figs. 36-38 show the vehicle step steering trajectory under
three different control strategies in the step steering condi-
tion: without control, under the control of traditional MPC,
and under the control of improved adaptive MPC, respec-
tively. As shown in Figs. 36-38, when there is no control,
the vehicle can not complete the step steering as required,
and the driving trajectory deviates from the preset trajec-
tory. Although the conventional MPC control can complete
step steering, the steering radius is too large to fully satisfy
the mobility requirements of agricultural vehicles. With the
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FIGURE 38. Vehicle trajectory under improved adaptive MPC control in
the step steering condition.

improved adaptive MPC control, the steering radius is small,
and the steering manoeuvrability is good. Thus, the improved
adaptive MPC control has the best control effect.

V. CONCLUSION
To improve the driving performance of distributed electri-
cally driven unmanned agricultural logistics vehicles, a driver
coordination control strategy based on MPC and improved
adaptiveMPC is proposed in the current paper. Simulations of
the control system and real vehicle experiment are completed.
The obtained results are as follows. With the characteristics
of independent four-wheel drive control and rapid torque
response, the distributed electric vehicle can achieve faster
yaw response and expand the stability range of the vehicle.
The high accuracy and robustness of the model make it suit-
able for the lateral stability control of the distributed electri-
cally driven agricultural logistics vehicles. Based on the effect
of external interference and various uncertainties on the accu-
racy of the nonlinear prediction model, the model parameter
adaptive estimator is designed. Themodel parameter adaptive
estimator realizes the online adjustment of the parameter set
of the prediction model, which can improve the robustness of
the control system and ensure the asymptotic stability of the
system. The agricultural logistics vehicle experimental plat-
form built in the paper can realize the tracking and scanning of
the actual scene target and site obstacle. Thus, it can provide
technical support for the operation of intelligent agricultural
logistics, and provide a foundation for the subsequent path
optimization and analysis of the logistics platform.
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