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ABSTRACT Today, increasing attention is being paid to Data Center (DC) traffic classification since these
infrastructures have become the heart of a variety of time-sensitive and data-intensive service platforms.
Classification provides the required tools for better understanding traffic patterns in order to ensure high
Quality of Service (QoS) performances and solve scalability problems. Unfortunately, existing classification
algorithms cannot deal efficiently with two critical challenges in DC traffic: inter-class imbalance and critical
time constraints. In this paper, we propose a novel correlation-based algorithm following a cost-sensitive
approach combined with a Bagged Random Forest (BRF) ensemble algorithm, to address the inter-class
imbalance problem while meeting time requirements in a data center environment. In this strategy, a new
method based on Reverse k-Nearest Neighbors (RkNN) is proposed to capture the rebalancing weights
expressing inter-flow correlations, in order to perform an online classification approach. We demonstrate
the efficiency of the algorithm by comparing its performance to several existing methods from data level,
algorithm level, and cost-sensitive strategies on four real-world datasets. The results reveal that the proposed
algorithm outperforms most approaches in the different datasets in terms of precision, recall, F1 measure,
AUC and Kappa, as opposed to other algorithms that result in either high precision with low recall and low
precision and high recall causing congestion or resource over provisioning.

INDEX TERMS Data center, network traffic classification, interflow correlation, ensemble algorithms,

random forest, data imbalance.

I. INTRODUCTION
D ata centers (DC) are infrastructures holding large clusters of
interconnected servers. Because of their rapid spread and the
variety of services they can offer, from video on-demand, web
searching, and gaming to storage and even computing, DCs
have become the heart of the current digital world. DC traffic
can be classified following two approaches into different
classes: the first, a multi class classification, is application-
based and identifies flows according to communication pro-
tocols; the second, the subject of this research, is binary and
considers mainly flow sizes, it identifies traffic as elephant
or mice [1].

Long-lived elephant flows account for a notable percentage
of all the packets transmitted (80% of DC’s total traffic), as
opposed to mice flows, which contribute with a less important
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percentage but occur more frequently [2]. Elephant flows can
cause buffer and link congestion, delaying latency-sensitive
mice flows and thereby resulting in network performance
degradation. Mice flows, on the other hand, are bursty and
generate more control plane requests; this can cause jit-
ter, which similarly degrades network Quality of Service
(QoS) [3]. Optimal performance can then only be guaranteed
by solving the trade-off equation between high throughput
and low latency of both classes. Thus, a deeper understanding
of traffic patterns can significantly improve the performance
of the control mechanism, which results in adaptive/dynamic
network QoS and also builds more efficient DCs in terms
of resource consumption (energy, bandwidth, etc.) [4] and
security (detect malicious traffic) [5].

When dealing with DC traffic, another problem arises.
It is described as data imbalance [6] and appears between
the small number of elephant flows (thus, representing the
minority class) and the massive amount of mice flows (as the
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majority class); Traffic classification becomes more chal-
lenging since machine learning algorithms will focus mainly
on majority classes, decreasing classification performances
and hence causing QoS degradation. Efficient rebalancing
based classification strategies must be deployed in order to
avoid congestion caused by false positives (elephant flows
predicted as mice flows) or over provisioning caused by
false negatives (mice flows predicted as elephant flows).
Also, cloud providers need to quickly distinguish the classes
transported by the massive amount of traffic flowing in
their network in order to support their various Service Level
Agreements (SLA). Indeed, when considering real-time net-
work traffic scheduling, online classification is required as
opposed to offline training, also known as late classification.
Unlike offline flow classification, which extracts features
upon the reception of all packets of a flow, online classifica-
tion trains the algorithm from the first few packets only and
provides early flow prediction while the flow is in progress.
We also distinguish real-time identification from non-real-
time, expressing fast or slow flow labeling during the testing
phase of the algorithm.

Authors in [7] emphasize the impact of data imbalance in
network traffic classification and on the fact that the previous
works that resolve this problem are scarce. Indeed, most
of the prior work on mice and elephant flow identification
[3], [8] either assume the uniformity of traffic classes and thus
do not consider the data imbalance problem but rather focus
on enhancing traffic classification performances in ideal sce-
narios; or they classify only majority classes, because there
approaches lack of rebalancing strategies and consequently
fail to classify minority classes. Other algorithms [9], can not
provide early classification and instead build offline methods
since their algorithms do not guarantee efficient classification
with only a few samples. Therefore, the most critical problem
in DC traffic classification is to perform online flow clas-
sification when traffic is highly imbalanced because packet
loss or disorder resulting from using few packets in the online
classification process (also called packet reduction) can affect
the performances of the classifiers in real-time networks [8]
and imbalanced datasets may result in inefficient resource
provisioning (congestion or over provisioning).

Several works emphasize the power of ensemble algo-
rithms against data imbalance [10], and there again, two pos-
sible approaches can be deployed to enhance classification
performances: combining ensemble algorithms with cost-
sensitive learning or starting by rebalancing the classes dis-
tributions through sampling (oversampling, undersampling).
While the former exclusively relies on the efficiency of the
misclassification matrix and may suffer from weak accuracy
for minority classes, the later may result in significant over-
head and may not be adequate for online training.

To address this problem, we develop a novel Correlation-
based Cost-Sensitive (CCS) algorithm. Instead of consid-
ering flows individually, we exploit the correlation among
them; this increases the performances of the classification
model, especially when there are not enough samples in the
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training set. More specifically, we propose to use inter-flow
correlations as classification weights instead of penalty costs
in the misclassification matrix, which brings the challenge
of efficiently characterizing inter-flow correlations, since the
flow is already defined as correlated packets (packets sharing
five tuples: source and destination IP addresses and port
number along with the protocol). Thus, it is crucial to find
the correct correlation metrics. We propose to model inter-
flow correlations as the distances between entering flows and
the training set, following a radius based Reverse k Nearest
Neighbor strategy, where we address the high dimension
limitation of the algorithm using feature selection.

In this paper, we target online mice and elephant flow
identification that are characterized by imbalanced distribu-
tions and propose a novel inter-flow correlation-based cost
sensitive approach. The key contributions of this paper are:

« We model rebalancing weights as correlations between
flows instead of misclassifications, building along with
ensemble Bagged Random Forest (BRF), a novel cost
sensitive oriented classification approach that addresses
data imbalance differently.

« We propose a correlation-based cost-sensitive classifica-
tion approach that alleviates the data imbalance problem
while ensuring online traffic classification, using only
eight first packets in each flow. This is based on the
fact that the application synchronization phase at the
beginning of each communication contains the required
information to distinguish applications correctly.

« We propose an RkNN-based correlation classification
strategy to measure the distance between new flows and
bag of flows training the ensemble algorithm.

o We evaluate the efficiency of the proposed classifica-
tion approach again several state-of-the-art algorithms
using different real-world datasets and for several perfor-
mance metrics: precision, recall, F1-measure, running
time, Area Under the Curve (AUC) and Cohen Kappa’s
metric.

The rest of this paper is organized as follows. In Section 2,
we review some of the most important works found in the
literature concerning the resolution of online imbalanced
DC traffic classification. Next, we present the mathematical
concepts explored in this work and the methodology we
employed in Section3. In Section 4, we give a comprehen-
sive analysis of the results obtained for the validation of the
proposed approach. Finally, we present our conclusion and
anticipate future works.

Il. RELATED WORK

Mice and elephant flows share resources in datacenters in a
competitive way. Between the large bandwidth requirements
of elephant flows and the short delays imposed by mice flows,
existing traffic management strategies have to face severe
resource (link and buffer) congestion and network perfor-
mance degradation. In order to address this problem, existing
traffic control strategies are encouraging the integration of
traffic classification schemes. In this context, some of the
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proposed solutions target only elephant flows because they
are much more resource-hungry than mice flows [2], [11],
others both elephant and mice [3], [8]. Either way, the classi-
fication algorithm has to be online and thus represent the right
candidate for real-time networks. This is very challenging,
considering the characteristics of network exchanges. On the
other hand, data imbalance [7] must be seriously considered
given the impact a non-efficient classification approach could
have on traffic control strategies between the high CAPEX
and OPEX costs resulting from over provisioning along with
congestion and resource underutilization.

Among the different elephant flow classification approa-
ches, the most commonly used is sampling. Sampling does
not require statistics for all flows, instead is provides network
measurements by pulling some packets for which classifica-
tion features are measured. A well-known sampling standard
is sFlow, which pulls one packet out of k entering the switch.
In [2] and [11], the authors estimate pulling periods in order
to reduce classification overhead. Results show that high
classification performances require a large number of packets
over the transmitting period, which is not adequate for early
identification.

For both mice and elephant flow classification, several
works have exploited inter flow correlation that took different
definitions. In [8], authors present inter flow correlation as
a new entity named Expanding Vector (EV) composed of
7 relationships between one entering flow and its neigh-
bors. While authors in [3] expressed correlation through
clusters formed using a semi-supervised approach of the
Gaussian Mixture Model (GMM) clustering algorithm. Both
approaches resulted in satisfying classification performances.
However, beyond time constraints in the former and mice
flow classification inaccuracies in the latter, one common
limitation of the previously presented works is their lack of a
mechanism to tackle the data imbalance problem.

Existing solutions to address the problem of imbalanced
traffic classification fall into three categories.

o Atthedatalevel [12], [13], three approaches can be used:
Under-sampling rebalances the ratio between the num-
ber of samples in each class by randomly extracting as
many majority samples as possible (possibly removing
significant samples). Oversampling duplicates existing
minority samples (or creates synthetic samples; e.g., the
Synthetic Minority Oversampling Technique, SMOTE).
The hybrid approach starts by generating a few minor-
ity samples following an oversampling method, after
which under-sampling operates to discard samples
from majority classes or both majority and minority
classes [14].

o Algorithmic solutions [7], [9] are more complex as
they require a complete understanding of the classifier’s
reasoning in order to be able to consider the possi-
ble options of algorithm enhancement [15]. Recently,
ensemble algorithms have become one of the most
deployed algorithm level strategies for data imbalance
problem. Even if reported as the most robust against
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imbalanced datasets, ensemble-based algorithms usu-
ally start by rebalancing traffic classes [10].

« For cost-sensitive strategies, the classification decision
is made based on misclassification weights incorporated
into the process [16]. The difficulty arises in the con-
struction of the cost matrix. Usually, cost-sensitive meth-
ods assume the availability of a cost matrix or estimate
it since this matrix should be provided experts of the
domain of application [17].

It is worth mentioning that researchers have been paying
more attention to this constraint (data imbalance) not only in
the context of data centers but for different network environ-
ments, for example, internet. The developed algorithms for
these networks are still applicable in the context of datacen-
ters for classification problems since the only difference is
usually the dimension of the classification problem.

At the data level, in [12], authors explore TCP flow classi-
fication in optically interconnected DCs, and use undersam-
pling for features concerning the first 30 TCP packets of each
flow, to mitigate the data imbalance problem. This approach
includes a hash-based classifier, representing a classification
memory that reduces classification latency; however, features
are measured on a minimum of 30 packets, which is still
too slow for real-time classification. In [13], authors pro-
pose to handle data imbalance through data augmentation.
This method aims to learn the probability distribution of the
features in order to be able to generate new samples, simi-
larly to SMOTE. Along with flow level features, this work
introduces sequential features representing packet directions
and which are of type time series. Long Short Term Memory
algorithm (LSTM) is used for the generation of sequential
features, where for the numerical features, authors applied
Kernel Density Estimation KDE. However, authors do not
consider the time required for the traffic augmentation and
extract features from 20 packets of each flow.

At the algorithm level, [9] used SMOTE to reduce the
imbalances between minority and majority classes, combined
with a boosting-like strategy with the aim of enhancing Byte
Classification Accuracy (BCA). Along with the misclassifi-
cation rate, this work computes for each sample a penalty
term expressing ensemble diversity (low disagreement degree
between classifiers). While the proposed algorithm exhibits
excellent results for late classification, it fails to maintain its
stability when used for early identification. Authors in [7]
propose an extensive comparative study between several data
level, ensemble algorithms and cost-sensitive approaches
along with two novel ensemble algorithms that are the com-
bination of a boosting algorithm with a strategy to deal
with data imbalance (Tomek Links: TL and ROS: Random
Over Sampling): TL-boost and ROSboost. The experiments
have led to several results. Regarding resampling strategies,
undersampling is more efficient against data imbalance as
opposed to oversampling and hybrid strategies. Some ensem-
ble algorithms were found to be more efficient, especially
when combined with undersampling strategies, particularly
TL-boost. As for the cost-sensitive algorithm, the authors
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noted the importance and difficulty in producing an efficient
cost matrix.

At the cost-sensitive level, authors in [16] propose an
online classification strategy based on stream mining, for
mice and flow identification, in an SDN environment. The
proposed algorithm is deployed in 2 levels: 1. MetaCost, in
the first classification phase at the commodity switches. It is
a decision tree based cost-sensitive classification algorithm.
2. Hoeffding tree-based stream mining algorithm at the sec-
ond phase, at the controller. It performs incremental learn-
ing on the first five packets of each flow, which guarantees
short classification delay; although this work covers both data
imbalance and online classification problems unlike most
of the existing network traffic classification approach, we
can cite a few limitations. Phase two classification depends
completely on the results of phase one that uses only the
destination port number and the protocol as training features,
which may bias classification performances. Also, the paper
does not discuss the impact of phase one classification on the
real-time aspect of the classification.

Moreover, imbalanced data classification has been widely
covered by several existing works in other fields, and the
deployed algorithms can be applicable for traffic classifi-
cation; however, it needs to be adapted to the statistical
characteristics of traffic. LIUBoost in [18], an enhancement
of RUSBoost in [19], focuses on the phenomena that cause
and worsen data imbalance. Along with under-sampling,
the proposed approach incorporates instances’ local char-
acteristics information in the weight calculation instead of
introducing misclassification penalties, as most solutions do.
Authors in [1] propose a method combining ensemble bag-
ging with threshold moving, operating at the output of the
learned model. Compared to methods using misclassification
weights, this approach aims to find, for the posterior probabil-
ity of different classes (obtained at the output of the bagging
ensemble algorithm), the threshold that maximizes classifica-
tion performances such as micro accuracy. Although results
showed classification performance enhancement compared
to several existing imbalanced data identification methods,
these papers do not cover time constraints.

Authors in [20] challenge ensemble algorithms with
another type of data: drifting data. The difficulty comes from
the fact that the statistical characteristics of this type of dataset
constantly change. In the proposed approach, the ensemble is
periodically trained with new samples in order to increase its
generalization ability, and Kappa statistics are used to tune the
final voting strategy. Also, new base learners replace existing
ones in order to enhance classification performances. Authors
tested the efficiency of the proposed algorithm with several
datasets and proved it maintains satisfying performances and
overcomes data imbalance and stream drift with low resource
and time consumption.

In other works, authors focused on another classification
strategy that is gaining ground and is proving its efficiency
in many domains, and it is trajectory clustering [21], [22].
Whether it is for face recognition, behavioral analysis,
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or traffic monitoring, one critical step is the extraction of
the features from trajectories with different characteristics,
especially when data is imbalanced [23]-[25]. We cite [23],
in which authors aim to predict the risk of a driver having
an accident considering his driving behavior. The feature
set includes behavior features extracted from trajectories of
the vehicle in movement and evaluated through XGBoost,
and risk levels obtained by training a clustering algorithm
on risk indicator features and also evaluated along with the
resulting behavior features through Recursive Feature Elimi-
nation (RFE). This strategy is combined with undersampling
and XGBoost to overcome data imbalance. Authors reported
satisfying results and an important contribution regarding
feature extraction for imbalanced trajectory classification
problems.

Several of the presented articles report data imbalance
and the importance of online network traffic classification;
however, very few algorithms only can actually resolve both
problems efficiently. Also, we notice that most works chose
to target data or algorithm level strategies, mainly ensemble
combinations with sampling because of the hardness of build-
ing a correct cost matrix, while this later could provide more
accurate results [7]. Also, we believe that focusing only on
the classification aspect is not sufficient to overcome these
constraints and that building an approach that integrates infor-
mation about traffic correlation could enhance classification
performances by better characterizing data imbalance. Our
approach integrates these important factors in order to deploy
anovel DC traffic classification approach based on inter flow
correlations. More specifically: We propose a new online
traffic classification approach solving the data imbalance
constraint through a cost-sensitive based strategy exploiting
inter flow correlation in order to replace misclassification
costs. The ensemble algorithm constructed following a bag-
ging ensemble approach is trained using correlations obtained
through a reverse k nearest neighbor algorithm on real work
datasets.

Ill. THEORETICAL FOUNDATIONS

A. BAGGING ENSEMBLE

Ensemble algorithms are constructed from base estimators
and aim to efficiently improve the generalization capability
of classification algorithms [5], [15]. Statistically speaking,
generalization can be expressed in terms of bias mea-
suring the classifier’s sensitivity toward training sets or
variance expressing sensitivity to testing sets. Ensemble
algorithms usually aim to reduce variance and thus mini-
mize over-fitting and increase the model’s robustness [15].
The most used ensemble approaches are bagging and
boosting [1], [15].

« Bagging is the acronym for Bootstrapping Aggregation.
Bootstrapping consists of randomly sampling the initial
dataset to construct several other populations that may
or may not be of the same size as the original dataset.
These populations are called bags. Models are trained
on these bags, and the final decision is constructed by
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aggregating, following a specific approach (such as vot-
ing, weighting), the results of the learners.

« Boosting, on the other hand, sequentially trains a new

model according to the results of the previous one.
At each round, the new model focuses on the data
samples that have been misclassified in models created
in previous rounds. While the main motivation behind
this approach is to create stronger learners out of weak
ones, misclassifications can occur at low-level learners
(at the first classification rounds) and cause performance
degradation of the final algorithm.

In this work, we decided to deploy bags of Random
Forests (RF) [26], in other words, to combine RF with bag-
ging ensemble, as they both have been reported to deal
successfully with variance reduction [15]. Moreover, RF
is considered one of the most appropriate algorithms for
online traffic classification [5] and bagging ensemble for
imbalanced traffic identification [1].

B. CONCEPTUAL FOUNDATIONS OF THE

RKNN ALGORITHM

Due to its numerous applications, RKNN has become an
essential spatial database processing operator. It finds all
points in a dataset for which a query point is part of their
k-nearest neighbors set. Mainly RNN finds the points in
the dataset for which the query point is their nearest neigh-
bor [27]. If the query has the same type as the dataset, RkNN
is monochromatic; otherwise, it is bichromatic RKNN [28].
In this work, we focus on monochromatic RKNN [28] since
we seek to find RkNNs for testing flows among bags of
training flows.

In detail, we denote the multidimensional dataset S = {s},
where s is a data object represented by m features; finding the
RKkNNs of a query point g ¢ S retrieves all points s € S for
which this condition holds:

RkNN (q) = {s € S|d(s, q) < d(s, HY, @))]

where s’ is one of the farthest Nearest Neighbor (NN) of s
and d(a, b) is a distance metric (e.g.Euclidean [29]). It is
important to mention that RNN and NN relationship is not
symmetric. In other words, s € {kNN(g)} does not automati-
cally imply s € {RkNN(q)}, where {RkNN (gq)} represents the
k-reverse nearest neighbors of g and {kNN(g)} its k-nearest
neighbors [27], [29].

Solving the RKNN problem can be done by searching
for the points for which the query ¢ is one of their nearest
neighbors [27]. It determines the nearest neighbors of each
point in the dataset and then goes through each one to find
g, which becomes drastically time and resource-consuming
with growing datasets. Another approach maps the points into
a spatial index where branch and bound search is used. Using
the branch and bound search, we compare the query point to
each branch of a tree-like structure and remove branches that
do not fit the search criteria [30].

To explain RKNN clearly, we set a fixed value of k
(e.g.k=1). As mentioned earlier, the first step is to compute
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the NNs for every data point s € S. A circle of a radius cal-
culated as the distance between s and NN(s) is drawn, and its
minimum bounding rectangle (MBR) is represented. MBRs
are indexed by an R-tree according to distances between
samples, but a leaf is a data point while a branch (intermediate
node) is the MBR of its child node. Once we have built the
tree, the RNN of a query can be obtained by measuring the
distance between the MBR of each branch and the query and
browsing through the different branches of the tree [29].

For our algorithm, we use another famous indexing struc-
ture, K-d tree [31], which is similar to R-tree [31] but easier
to deploy and more efficient in terms of building time. The
only difference between R- and K-trees is that while the
former uses MBRs to group data points, the latter recursively
calculates median points and splits the points into two halves
around them, thus reducing the building time.

IV. PROPOSED APPROACH

Our algorithm is a modified version of the reverse kNN;
we choose this ML algorithm because kNN is known to be
efficient against data imbalance [32]. As noted in section two,
earlier algorithms could not succeed in solving the online
imbalanced traffic classification problem, which is very chal-
lenging, considering its impact on online flow scheduling.
In the present section, we present our approach for imbal-
anced data center traffic classification combining the robust-
ness of bagging ensemble algorithms with the power of using
inter-flow correlations. This approach exploits the relation-
ship between testing samples and flows in each training bag to
act as a rebalancing weight for data center traffic mostly occu-
pied by mice flows. The correlation measure is calculated
following a Reverse k-Nearest Neighbor (RKNN) machine
learning algorithm because it is able to measure a flow-to-
group relationship as opposed to other algorithms like kNN
for example, which is a clustering algorithm.

A. SYSTEM DESCRIPTION

Using a cost-sensitive classification approach to solve the
data imbalance problem requires a cost matrix in order to
encode misclassifications and construct the misclassification
weights matrix. In our work, the costs in the cost matrix are
represented by the correlations between testing samples and
the ensemble model (inter-flow correlations). Our framework
includes several modules presented in Fig. 1.

o Preprocessing module: In this work, we mainly focus
on TCP flows. UDP packets that do not have a signif-
icant contribution to the total traffic are filtered out by
this module. This filter can also filter useless packets
(e.g., empty packets).

o Feature extraction: As reported in [33], the best clas-
sification performances were observed with flows of
8 packets. So we start by building flows from packets
with the same source IP and destination IP addresses
as well as port numbers, then we construct the feature
matrix from 26 features (packet level and flow level fea-
tures) including inter-arrival, packet length, inter-length
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. . Feature Feature
Traffic traces » Preprocessing . .
extraction selection
Label allocation |<e Weight VeF:tor RKNN measure - Bagging training
construction for each sample subset
FIGURE 1. System model.
statistics, and other TCP synchronization information, classification weight vector:
such as the number of acknowledgments, push packets, .
W={w}, Viell,2,...,m], (3)

synchronization packets, retransmissions, and selective
acknowledgments, as in [33].

« Feature selection: We construct our final feature matrix
after applying RF for feature selection. Previous
research reported the limitations of the RKNN method
in a highly dimensional space [27], [29], [34]. So, this
step is very critical because it reduces the space dimen-
sionality for RKNN candidates generation. Also, beyond
reducing the training time, discarding useless features
saves on limited memory resources.

o Bagging training samples: In this step, we build our
ensemble algorithm. We start by randomly sampling the
training subset with replacement to construct several
other populations, namely bags (typically, these bags
may or may not be of the same size as the training set).
Later, we will test the performance of our algorithm
using several bag numbers in order to capture the vari-
ability of the dataset and to be able to map imbalanced
data into correlations efficiently. The final classifica-
tion decision is made following a weighted approach to
the results of the learners, where weights are interflow
correlations.

o RKNN measure: During this step, we measure the corre-
lation between each testing sample and the constructed
bags. This correlation helps answer the following ques-
tion: how close is this flow ro the prediction rhata bag
made ? Correlations are, in fact, the number of RkKNN of
a testing sample.

o Construction of weights vector: This represents the
result of the RkNN algorithms or, in other words, the
inter-flow correlations. For each testing sample X, we
measure Rk the correlation with the i bag as follows:

if 1(X)=0
if1(X)=1,

[ Rex, i),

" | Rrkx, i) %R, @

1
where R is the imbalance ratio calculated as the ratio
between the number of majority flows by minority flows
(in case of rare labels, the correlation is augmented by
the imbalance ratio measuring the variability between
the majority and minority classes), and / the classifica-
tion label obtained with the bag i. Finally, we build the
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where m is the number of bags.

o Label allocation: Depending on the predicted label for
each bag and on the distance between the testing sam-
ple and the bag (correlations), we choose the label w;
associated with the maximum summation of RkNNs, as

follows.
0, if Y Wi=o > ) wiu=
i i

1, otherwise,

“

Wi =

where ) ; Wjj1=0 represents the sum of the number of
RkNNs between the testing sample X and all the clas-
sification bags for which the predicted label is equal
to 0and ), Wii=1 is the sum of the number of RKNNs
between the testing sample X and all the bags for which
the predicted label is equal to 1. The final algorithm is
summarized in Fig.2.

B. REVERSE K-NEAREST NEIGHBOR PROPOSED
ALGORITHM FOR CORRELATION COMPUTATION

In this section, we present the approach to compute the
number of RkKNNs of each testing flow. The authors of [27]
claimed that when using Range Query techniques, MBR
based, searching for the specific data points or even their
number in the range can consume many resources and much
time. However, since our approach is based on a radius query
instead, distance calculations are faster and less computa-
tionally costly. Also, the dimensionality of the feature vector
needs to be considered because the higher dimensionality
results in lower pruning efficiency. This is caused mainly
by the high overlap between circles, which can impel the
algorithm not to prune them. Our solution to this constraint
is to use feature selection, as it represents an efficient way to
reduce dataset dimensionality by removing only nonsignifi-
cant features.

Algorithm 1 describes the proposed approach. We mea-
sure the correlation between incoming flows and the training
model on several bags in two sub-functions (representing
both the training and testing strategies of the machine learn-
ing algorithm). In the first part of our algorithm: training
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l Training set |—>| Bootstrap |—>| Decision l—* l
| Tree |
............... : l Label n | :
|
|
! : | 0O0B 0OOB error :
: L — e — = -
H Training
e T e R e
' | BagN°1 | | BagN°2 | ’ Bag N°n Testin
[ S —— g
Label 1 | Label 2 | ‘ Label n
Training subset T T
Dataset 80% ' .4
100% |::> : Label=1?
Testing subset |:>If i \ f \
A !
20% . |Rknn (bag1, Rknn (bag2 Rknn (bag1, Rknn (bagl,| |Rknn (bagl, Rknn (bagl,
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FIGURE 2. Proposed approach.

(steps 3-11), we construct a K-d tree using training samples
of each bag s;;. During this step, we start by computing for
each data point s;; (from bag i), its kKNNs in order to later
concentrate the search of RkNNs into the subset of k data
points closest to s;;. This filtering operation (steps 5-8) is fol-
lowed by the construction of the index structure (steps 9-10).
We draw circles with the radius corresponding to the distance
between the sample and its farthest neighbor in order to
include all the calculated kNNs. After this, we group circles
two by two until we reach the tree root; this depends on the
distance between the centers of the circles. In other words,
we compute the nearest neighbor of a circle’s center, and if
this nearest neighbor’s circle has not already been grouped
to another circle, it is chosen. Otherwise, we choose the next
nearest neighbor.

For testing, considering a set Q = {q} of queries repre-
senting testing samples (flows) in a multidimensional space
(features), following the second sub-function of our algo-
rithm (steps 13 to 27), we browse through the constructed
K-d tree (from root to leaves), in order to construct RKNN,
a vector containing the number of RkNNs of each sample.
The procedure begins by measuring the distance between the
query and the center of each circle (representing a branch or
a leaf in the tree). We compare this distance to the radius
of the circle in order to choose the branches respecting the
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condition in step 15. Once we arrive at the bottom of the tree,
we increment the RKNN number of the concerned sample by
1 (steps 17-18). Otherwise, we continue browsing through the
tree (steps 20 and 21).

V. EXPERIMENTS

A. DATASETS

We conducted our experiments on a cloud data center dataset
(CAIDA [35]), two university datacenters datasets (Wiscon-
sin Madison, UNI1 and UNI2 datasets [36])) and an internet
traffic dataset (UNIBs [37]).

CAIDA contains a series of datasets captured in differ-
ent directions uplink (direction A) or downlink (direction B)
at different periods; We used traffic traces produced
February 17, 2011, and in direction A. We decided to use
traffic traces from CAIDA’s 2011 data set because it has been
recently used in a real-time traffic prediction paper [38]. Also,
we choose direction A instead of direction B since the later
contains a significant amount of packet loss according to [35].
The datasets are highly imbalanced [35], [36], and contain
unknown TCP and UDP packets, making them more suit-
able for mice/elephant classification rather than application
identification. As for UNI1 and UNI2 [39], the traffic traces
were collected from one university site in the western US for
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Algorithm 1 RkNN Based Approach for Correlation
Measure: CCS

1 Input:
k.Q={q}.all ={Si}.Si = {si1. 2. ...}
Output: Ry

> Training : Build K-d Tree for each bag

foreach sample s in S do

Compute Ry {s}

Draw a circle with the radius equal to the
distance with the farthest NN

2
3
4 repeat
5
6
7

8 end

Group circles 2 by 2 in order to construct the
branches of the tree.

10 Repeat until arriving to the root

11 until There is no bag in all,

12 > Testing : Calculate RkNN for each testing sample for

each bag
13 repeat
14 foreach circle (C) composing the K-d tree do
15 if d(g,center(C: a branch or the leaf))<
16 radius C then
17 if C is leaf then
18 | Rk =Ri+1
19 end
20 else
21 Go to children of this branch
22 Goto 15
23 end
24 end
25 end
26 Return Ry,

27 until There is no bag in all and this for each query
qinQ;

12 hours over several days. After filtering out nonsignificant
packets, we combined several traffic traces files in chronolog-
ical order to construct a file with enough instances. UNIBs,
on the other hand, is a traffic dataset composed of 99% TCP
packets exchanged between several machines connected to
the internet through an edge router and a high capacity link.
Caida’s dataset forms a (20000 x 26) feature matrix,
UNI1’s dataset a (21013 x 26) matrix, UNI2’s dataset a
(2586 x 26) matrix and UNIBs dataset a (19349 x 26) matrix,
where the rows represent traffic packets grouped into flows
by 4 parameters: source and destination addresses, and port
numbers. The protocol type is not included since we applied a
filter at the preprocessing step to select only TCP packets) and
the columns represent the feature vector as described in [33].
It is important to mention that since we were unable to find
a ground truth labeled using elephant and mice flow tags, we
constructed our own ground truth by putting this assumption:
If the number of packets in the flow exceeds 100 packets, it is
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an elephant flow; otherwise, it is a mice flow. Our assumption
is based on the fact that if Ethernet frame size is limited to
1500 bytes (jumbo frames excluded), 100 frames generate
1.2 Mbits of data. We assume this size could represent an
elephant flow [39]. However, as mentioned in [39] for UNI2
dataset and as observed from our experiments for UNIBs
dataset, flows are short and thus hold a smaller number of
packets. Thereby, according to observations made from [39]
and from experiments, we fixed the threshold to 15 packets
for UNI2 and 30 packets for UNIBs.

B. PERFORMANCE EVALUATION

In the present section, we test the performances of our clas-
sifier by varying its hyperparameters: the number and size
of bags (3, 5 and 10 of 20, 40, 60 and 80% of the training
set) and the RKNN order (k=2, 5, 10 and 20). We also
compare the best classification performances we obtain with
our correlation-based algorithm, to 16 existing algorithms
for imbalanced traffic classification ranging from undersam-
pling, oversampling, and hybrid approaches, algorithm level
strategies to cost sensitive different algorithms.

1) PERFORMANCE METRICS
While we usually use accuracy to test the performance of
a classifier, with a highly imbalanced dataset, this measure
biases any algorithm’s efficiency, since it focuses mostly on
majority classes. Consequently, in order to efficiently validate
our proposed approach, we used several performance met-
rics: precision, recall, F1-measure, the confusion matrix, and
running time. Although the F1 measure (combining precision
and recall) is the most commonly used metric when dealing
with imbalanced classes, we seek to find a good balance
among the five metrics. This is because, as will be shown in
the different scenarios covered for this performance testing,
in some cases, we may find a higher F1 measure, which is
mainly obtained from higher precision or higher recall, and
not a balance between the two. It is important to mention
that the graphs we present are related to the minority class
(elephant flows) and that the majority class achieves between
98% and 99% precision, recall, and F1 measure in most
scenarios. Since our algorithm is as efficient as the others for
the majority class, we decided to focus on the rare samples
in this analysis. F1 measure is calculated using the following
equation:

Fle2x PreC.lS.IOI’l * Recall . )

Precision 4+ Recall

Precision expresses the relevance of the results, for example,
out of 100 samples, how many were correctly classified as
class 1 or 2 (True Positives, TP) among the total number of
samples predicted as positive (True Positives + False Posi-
tives, TP+FP), which is equivalent to the following equation:

TP
—_—. (6)
TP + FP
Recall, on the other hand, expresses the probability of
detection, in other words, the ratio between the positive

Precision =

VOLUME 8, 2020



M. A. Si Saber et al.: Online DC Traffic Classification Based on Inter-Flow Correlations

IEEE Access

predictions (TP) and the total positive samples (True
Positives + False Negatives, TP 4+ FN),
TP
Recall = ——. @)
TP + FN

High precision and low recall are equivalent to high FN and
low FP (a significant number of mice flows are classified as
elephant flows), while high recall and small precision mean
high FP and low FN (a significant number of elephant flows
are classified as mice). Following our strategy of balancing
between precision and recall, we try to avoid congestion
and overprovisioning at the same time, while maintaining an
efficient training time for time constraints.

When comparing the optimal results obtained following
our approach to other related works, we use two other metrics
along with precision, recall, F1 measure and running time;
it is the Area Under the Receiver Operating Characteris-
tic (ROC) Curve: AUC and Cohen’s Kappa.

AUC metric is obtained from the ROC curve that plots
the True Positive Rate against False Positive Rate in order
to represent the model’s performances. TPR and FPR are
calculated through the evaluation of a logistic regression
model for different thresholds. Because it does not require
any information about the traffic distributions, AUC is highly
used for performance evaluation in presence of data imbal-
ance [40]. AUC calculates the area under the curve between
TPR and FPR values both equal to 0 and 1 (0, 0) and (1, 1)
using integral calculus. The higher is the value of AUC; the
better is the class’s separability of the algorithm [41].

As for Cohen’s Kappa metric, it measures the agreement
between two algorithms also called raters, when applied to
the same dataset. The objective is to measure inter-rater relia-
bility observed with higher values of Kappa. Usually, Kappa
values vary between 0 and 1, where O represents no agree-
ments between the classifiers or an agreement by chance, and
1 is the synonym of an ideal agreement. In order to calculate
kappa (k), we construct a matrix including the probabilities
that both algorithms obtain the same labels (P11, P22) and the
probability that they don’t agree about the label assignation
(P12, P21). [g; 22 ], We then measure py from Pj; and
Py, expressing the level of agreement and Pe from Pj, and
P31 expressing random label allocation from the algorithms.
Finally, Kappa value is obtained from Py and P, following
this equation [42].

= Po=Pe ®)

1-P,

2) EXPERIMENTAL RESULTS AND ANALYSIS
Our algorithm is based on the computation of correlations
between each testing flow and the training samples compos-
ing each bag of the bagging ensemble. Thus, it is important
to tune the classifier to the best bag size and number. On this
basis, we established a comparison between several scenarios
for 3, 5, 10, and 20 bags using respectively 20%, 40%, 60%,
and 80% of the training set in each bag. Among all the
tested scenarios we present in this section, we choose for
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FIGURE 3. Training time evolution according to the number and size of
the bags(CAIDA).

each data set, the one with the best classification performance
in order to compare it with other imbalanced classification
algorithms. For the first data set (CAIDA), we will thoroughly
analyze the results and present the approach that leads to
choosing one scenario, among others. For the rest of the
datasets, because of limited space, we will just highlight the
optimal performances. Because the running time for scenar-
ios deploying 20 bags of any size and for any dataset is
very high and thus not adequate for real-time constraints, we
decided not to include their results in the following experi-
mental result analysis.

o Choosing the number and size of bags:
For CAIDA’s dataset, we notice that except for the
scenario deploying 10 bags of 20% of the training set,
increasing the number of bags and their density enhances
classification performances in terms of precision, recall,
F1 measure and AUC. However, since training and test-
ing times grow exponentially according to the number
of bags(Fig.3 for training time), we need to find the
best compromise considering the confusion matrix in
order to select the optimal scenario. We select each time
the best scenario among the four representing the same
number of bags and various sizes, then we compare
these 4 scenarios (one with the number of bags=3,
another with 5 and then 10) and select the best compro-
mise in terms of classification metrics (precision, recall,
F1-measure, along with the confusion matrix and AUC)
and time consumption (running times). In the first step,
we select (from Fig.5) the scenario deploying 20% of the
training set in each of the 3 bags corresponding to 65%
precision, 61% recall, 63% F1 measure, 80% AUC and
confusion matrix [ 3?27 ‘8‘3 ] for 22 seconds of training, as
the best scenario with 3 training bags. With 5 bags, the
optimal scenario (65% precision, 61% recall, 63% F1
measure, 80% AUC and confusion matrix [ 3898 871 bal-
ancing between FP and FN) is obtained with 20% of the
training set in each bag, for 36 seconds of training. Next,
with 59% precision, 72 % recall, 65% F1 measure, 85%
AUC and confusion matrix [ 378! L], the best tradeoff
is obtained with 40% training set in each of the 10 bags
in 147 seconds of training. Finally, for 22 seconds of
training time, the scenario using three bags of 20% of the
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FIGURE 5. Classification performance of the proposed approach using
different bag numbers and sizes (CAIDA).

original training set represents the optimal compromise
with an RkNN order equal to 10.

For the second dataset (UNI1), when searching for a
scenario with balanced confusion matrix (number of FN
close to FP) in order to avoid over provisioning and
congestion both degrading QoS performances, and while
considering the compromise with precision, recall F1
measure and AUC, we find that the best scenario is
obtained with 5 bags of 40% of the training set. Results
include 55% precision, 58% recall, 57% F1 measure,
almost 80% AUC, a confusion matrix [3180417 }ig] for
99 seconds training time.

As opposed to the other datasets, the best scenario for
UNI2 is obtained within 3.24 seconds with 3 bags of
60% of the training set in each bag. 82% precision, 100%
recall, 90% F1 measure, 99% AUC and a confusion
matrix [488 373 ] result from this dataset. It is worth men-
tioning that this dataset is also shorter than the others.
For UNIBS dataset, we notice from our experiments
that it is also characterized by small flows, we tune the
threshold and fix it to 30 packets per-flow and obtain
the optimal results with 5 bags of 20% of the training
set. Classification performances include 65% precision,
78% recall, 71% F1 measure, almost 80%AUC, a con-
fusion matrix equal to [ 2} 32} ] in 54 seconds. Other
scenarios present better classification performances;
however, their training time is too high.

Varying the RkNN order:

For the next experiments, we focus on enhancing the
performance of our classifier by tuning the order of
the RkNN algorithm. In other words, since the RKNN
computes the number of bag samples that have a testing
sample (query) among their k-nearest neighbor set, we
want to capture how the number of nearest neighbors
“k” we set for each bag, affects the classification perfor-
mance. Before going through the scenarios, it is worth
noticing in Fig.4 that the RkKNN order only slightly
(almost does not) affects the training time, since it is
involved in the generation of the circles (choose the k
farthest NN to determine the radius), which affects the
performance of the classification in terms of precision,
recall, F1 measure, and confusion matrix but not the
training and testing times. As opposed to the number and
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FIGURE 6. Classification performance of the proposed approach with 5
bags for different RKNN order (CAIDA).

0,75
07 > A

0.65 \/\V \///._’\"A e
0.6 //\ A '\A\/ /\\_.\/4"?;”_ —
0,55 AN

s / \V4

e N\

045
0,4

20% 40% 60% 80%|20% 40% 60% 80%|20% 40% 60% 80%|20% 40% 60% 80%
knn=2 ‘ knn=5 knn=10 ‘ knn=20 ‘

—e—Precision —s—Recall ——F1

FIGURE 7. Classification performance of the proposed approach with 3
bags for different RKNN order (CAIDA).

size of the bags, affecting the number of circles involved
in the training process and thus in the training periods,
as shown in Fig.3.

Since scenarios using 3 and 5 bags manage to find good
tradeoffs between precision, recall, F1 measure, and
confusion matrix, as well as training and testing times
compared to scenarios with 10, we decided to limit our
tests for varying the RkKNN to them.

For CAIDA dataset, first, it is worth observing in
Fig. 6 and 7 that increasing the RkNN order increases
the stability of the classification. We follow the same
approach as in the previous section, to select the optimal
scenario. With 5 bags (as shown in Fig.6), the best
compromise is obtained with an RKNN order equal to
10, when using 20% of the training set in each bag.
This scenario provides 65% precision, 61% recall, 63%
F1 measure, a confusion matrix equal to [3228 gg] in
36 seconds of training. With 3 bags (Fig.7), although
a scenario with an RkNN order set to 10 for 40 %
training set in each bag outperforms all the scenarios
with 68% precision, 63% recall, 66% F1 measure and
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FIGURE 8. Performance of the proposed approach using different bag
numbers and sizes (UNI1).

0,7
06 S _—

05 AN \VW
0,4 ://‘//\' v

03

20% 40% 60% 80%|20% 40% 60% 80%|20% 40% 60% 80%|20% 40% 60% 80%
knn=2 ‘ knn=5 ‘ knn=10 knn=20 ‘
—e—Precision —s—Recall ——F1

FIGURE 9. Performance of the proposed approach with 5 bags for
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FIGURE 10. Performance of the proposed approach with 3 bags for
different RkNN order (UNI1).

[ 3812 83 ] confusion matrix, these results are obtained in

42 seconds while the scenario using RKNN order equal
to 20 with bag sizes of 20% of the training data set
provides 62% precision, 64% recall, 63% F1 measure
and [ 3138 371 confusion matrix in 22 seconds of train-
ing time only. Finally, we consider the last scenario as
optimal for the CAIDA dataset.

For the second dataset (UNI1, in Fig.8, 9 and 10), with 5
bags and kNN=10, the best scenario is still 55% preci-
sion, 58% recall, 57% F1 measure, 80% AUC and a well-
balanced confusion matrix, it is obtained with bags of
40% of the training set. This scenario is outperformed by
another one with 3 bags of 40% and kNN=20, resulting
in 61% precision, 53% recall, 57% F1 measure, 76%
AUC and a confusion matrix [ 387 %% ] in 63 seconds.
For UNI2 dataset (in Fig.11, 12 and 13), the optimal
scenario remains the same, in other words, 3 bags of 60%
with kKNN=10, resulting in 82% precision, 100% recall,
90% F1 measure, 99% AUC and a balanced confusion
matrix for 3.24 seconds.

For UNIBs (in Fig.14, 15 and 16), we enhance the opti-
mal scenario found represented by 5 bags of 20% and
kNN=10, by the scenario with KNN=5 obtaining 69%
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FIGURE 14. Performance of the proposed approach using different bag
numbers and sizes (UNIBs).

precision, 71% recall, 70% F1 measure, 78% AUC and a
confusion matrix equal to [ 23! 337 ] for 53.31 seconds.
This scenario can be even more enhanced specially in
terms of confusion matrix using 3 bags of 40% and a
kNN order equal to 5. The optimal scenario for UNIBs
dataset obtains 71% precision, 73% recall, 72% F1
measure, 80% AUC and a confusion matrix equal to

[ %32 358 ] in 68.31 seconds of training.

« Performance comparison:
Existing classification strategies that handle imbal-
anced data fall into three categories: data level
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TABLE 1. Performance metric comparison between our approach and existing ones for CAIDA and UNI1 datasets.

Dataset CAIDA UNI1

Algorithm Precision  Recall Fl1 AUC  Time(s) Kappa | Precision Recall Fl1 AUC Time(s) Kappa
SMOTE 0,51 0,74 0,61 0,85 4,36 0,663 0,48 0,71 0,58 0,83 4,25 0,62
kMeans Smote | 0,75 0,45 0,56 0,72 3 0,63 0,67 0,44 0,53 0,71 4,55 0,65

ROS 0,67 0,58 0,62 0,78 2,19 0,7 0,61 0,58 0,59 0,77 2,57 0,7
ADASYN 0,51 0,73 0,6 0,85 4,75 0,7 0,47 0,69 0,56 0,81 4,56 0,61

RUS 0,24 0,97 0,38 0,92 0,13 0,36 0,23 0,88 0,37 0,85 0,28 0,31
TomekLink 0,68 0,52 0,59 0,75 1,66 0,7 0,65 0,5 0,57 0,74 3,21 0,68
Condenced NN | 0,61 0,57 0,59 0,779 344,77 0,619 0,52 0,62 0,56 0,79 589,88 0,60

Edited NN 0,56 0,74 0,64 0,86 1,73 0,73 0,5 0,67 0,57 0,81 2,82 0,697
Repeaded NN 0,49 0,8 0,61 0,88 5,66 0,7 0,43 0,71 0,53 0,84 9,41 0,627

All kNN 0,52 0,77 0,62 0,87 3 0,73 0,46 0,71 0,56 0,82 5 0,64

Hybrid 0,52 0,75 0,61 0,86 5,56 0,66 0,47 0,72 0,57 0,83 7,08 0,61
Balanced RF 0,27 0,96 0,42 0,929 1,32 0,4 0,3 0,88 0,44 0,87 2,34 0,41

RUS Boost 0,39 0,49 0,43 0,73 0,76 04 0,36 0,6 0,45 0,76 1,18 0,42

CS (J48) 0,7 0,32 0,44 0,66 0,25 0,43 0,63 0,32 0,42 0,65 0,53 0.4

CS (Bagging) 0,78 0,31 0,45 0,66 0,89 0,44 0,91 0,238 0,37 0,61 1,59 0,36

CS (RF) 0,78 0,32 0,45 0,66 3,03 0,45 0,8 0,295 0,43 0,64 5,43 0,41

Our approach 0,62 0,64 0,63 0,80 22 / 0,61 0,53 0,57 0,78 63 /
0385 algorithms with respectively J48 method, bagging strat-

N A~ :

08 S~ egy, and Random Forest set as base learners. It is worth
075 —— e N mentioning that the cost-sensitive algorithm implement-
07 /) o= — A _— ing bagging as a base learner is compared to MetaCost,
0,65 / N\ an algorithm often cited when introducing cost-sensitive
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FIGURE 15. Performance of the the proposed approach with 5 bags for
different RKNN order (UNIBs).
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FIGURE 16. Performance of the proposed approach with 3 bags for
different RKNN order (UNIBs).

algorithms, algorithm level strategies, and cost-sensitive
approaches. Since most traffic classification meth-
ods rely on data level approaches or on ensemble
algorithms [14], we propose to compare our perfor-
mances to five undersampling algorithms (Edited Near-
est neighbor, Repeated Nearest neighbor, All kNN, RUS,
TomekLink), four oversampling algorithms (ADASYN,
KmeansSMOTE, SMOTE, ROS), one hybrid (SMOTE
with TomekLink) and two algorithm level strategies
(a data level balanced Random Forest-based bagging,
RUSBoost). Details about these algorithms can be found
in [7]. Also, we compare in this section, our correlation-
based cost-sensitive strategy for online imbalanced
DC traffic classification to three other cost-sensitive
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classification [7], [43]. Meta in MetaCost refers to meta-
learning defined in [44] as the process of learning from
various accumulative experiences. Ensemble algorithms
belong then to the meta learners family. We calculated
the cost matrix for cost-sensitive algorithms such as
in [7], following the equation below. In other words,
misclassification cost of class i as j, Cj; depends on the
number of flows in each class M; or M;.

logio(Mi)/log1o(M}), if i # ]
0, otherwise,

Experiments were conducted on four different datasets,
and are summarized in Table 1 and 2. Classification
performance metrics used to compare the algorithms are
precision, recall, F1 measure, AUC, and Kappa.

It is worth mentioning that Kappa metric is measured
between the ground truth labels, the labels obtained
through our approach, and the labels obtained through
the algorithm we are comparing our algorithm to, reason
why there is no Kappa value in the row ‘““our approach”
of each of the tables.

CAIDA dataset: First, for AUC and kappa metrics,
we notice that oversampling undersampling and hybrid
algorithms result in good values. Ensemble algorithms
result in higher AUC ranging from 73 to 92% express-
ing the classifier’s high degree of separability between
classes but in 40% Kappa, which indicates a weak
agreement between classifiers. Finally, cost-sensitive
algorithms exhibit acceptable AUC and a weak Kappa.
Regarding Precision, Recall, and F1 measure, we notice
that all algorithms result in either high precision and low
recall or vice versa and never a balance between the two.
Compared to these algorithms, our proposed approach

Cy= ©)
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TABLE 2. Performance metric comparison between our approach and existing ones for UNI2 and UNIBs datasets.

Dataset UNI2 UNIBs

Algorithm Precision  Recall Fl AUC Time(s) Kappa | Precision Recall FI1 AUC Time(s) Kappa
SMOTE 0,82 0,94 0,87 0,96 0,1 0,9 0.73 0.78 0.75 0.82 2,61 0,73
kMeans Smote | 0,78 0,94 0,85 0,978 0,31 0,88 0.79 0.69 0.74 0.80 2,88 0,735
ROS 0,73 0,97 0,83 0,97 0,07 0,9 0.75 0.74 0.75 0.81 2,35 0,75
ADASYN 0,79 0,94 0,86 0,86 0,12 0,88 0.71 0.81 0.75 082 3,58 0,72
RUS 0,66 1 0,8 0,98 0,05 0,95 0.67 0.85 0.75 0.82 1,05 0,71
TomekLink 0,86 0,73 0,79 0,85 0,09 0,71 0.75 0.74 0.75 0.81 2,26 0,75
Condenced NN | 0,89 0,73 0,8 0,86 1,93 0,78 0,63 0,83 0,71 0,80 911,87 0,59
Edited NN 0,77 1 0,87 0,989 0,08 0,93 0.64 0.89 0.74 0,82 1,82 0,707
Repeaded NN 0,63 1 0,75 0,98 0,124 0,93 0.60 0.91 0.73 0.81 3,62 0,656
Al kNN 0,63 1 0,78 0,98 0,12 0,93 0.62 0.90 0.73 082 2,84 0,7
Hybrid 0,74 0,94 0,83 0,859 0,15 0,952 0.72 0.78 0.75 0.81 3,52 0,74
Balanced RF 0,65 1 0,79 09814 0,17 0,94 0.71 0.81 0.76 0.83 7 0,75
RUS Boost 0,76 0,76 0,76 0,87 0,19 0,92 0,77 0,62 0.9 076 3 0,71
CS (J48) 0,7 0,909 0,88 0,95 0,01 0,88 0,86 0,87 0,86 0.77 0,54 0,56
CS (Bagging) 0,87 0,901 0,88 0,95 0,03 0,88 0,88 0,88 0,88 0,81 1,6 0,62
CS (RF) 0,87 0,91 0,89 0,95 0,1 0,88 0,89 0,89 0,89 0.82 554 0,64
Our approach 0,82 1 0,9 0,99 3,24 / 0,71 0,73 0,72 0,80 6831 /

results in a more balanced performance metrics with
62% precision, 64% recall, 63% F1 measure and a higher
AUC (80%) in 22 seconds of training.

UNI1 dataset: We notice a good agreement between
our classifier and the oversampling, most undersampling
(except RUS), and hybrid strategies with Kappa values
around 70%, but on the other hand, smaller Kappa val-
ues with ensemble and cost-sensitive strategies which
exhibits the worst classification performances. Our sce-
nario outperforms the best classifier (TomekLink) in
terms of recall and AUC.

UNI2 dataset: We notice more stability with higher
values for all classification performances for almost all
algorithms, even ensemble and cost-sensitive algorithms
resulting so far in weak classifications. Kappa values
are approaching 90% while AUC are acceding 90%,
thus excluding the possibility of a random classification
using our approach. It is worth mentioning that cost-
sensitive approaches provide the best performances for
UNI2 as opposed to previous datasets. Although few
seconds slower, our approach outperforms all algorithms
and results in 82% precision, 100% recall, 90% F1 mea-
sure and 99% AUC.

UNIBs dataset: Lastly, with UNIBs datasets we also
observe good Kappa values for all algorithms (higher
than 70% but a little less for cost-sensitive algorithms).
Also, most AUC values exceed 80%. As for precision,
recall, and F1 measure, they fluctuate around 70%, for
oversampling and ensemble algorithms and have values
of 60%, 70% and 70% respectively for undersampling.
Cost-sensitive algorithms exhibit significant enhance-
ments and outperform the rest of the methods. Our
approach obtains satisfying results estimated at 71%
precision, 73% recall, and 70% F1 measure, which is
better than several algorithms, especially undersampling
strategies and which also approaches the optimal ones.
It is worth noticing that for all datasets, the worst algo-
rithm in terms of running time is Condensed Nearest
neighbor. However, it produces better results than the
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fastest algorithm, which for most datasets is RUS. For
CAIDA for example, CNN (344.77 seconds of training)
provides 60% precision, 57% recall, 59% F1 measure,
78% AUC and 62% kappa as opposed to 24% precision,
97% recall, 38 % F1-measure, 92.7% AUC and 36%
Kappa with RUS (0.13 seconds).

In summary, regarding our approach, although slower
than most of the others, it mostly outperforms the other
algorithms in regard to precision, recall, and F1 measure
and exhibits a satisfying AUC and Kappa values. If we
take a closer look at the obtained results, we discuss
that classification performances are not directly related
to the level of imbalance, for example, if we compare
CAIDA and UNI1, CAIDA is more imbalanced than
UNII1, however, our algorithm results in better perfor-
mances (62% precision, 64% recall, 63% F1 measure,
and 80% AUC for CAIDA as opposed to 61% precision,
53% recall, 57 % F1-measure, and 78% AUC for UNI1).
Also, these performances are not related to the size of
the dataset (although this latter parameter does affect the
running time of our algorithm). These performances can
be related to the quality of traffic traces.

An advantage of our solution is its ability to select
any RKNN order. Indeed, higher or lower RkNN
orders hardly affects the training time. Thus, we can
efficiently tune the hyperparameters of our approach
without increasing the running time. However, although
efficient, the Random Forest algorithm can make the
classification, resource-hungry, and time-consuming,
depending on the number of trees. Consequently, we will
test the effectiveness of our approach, with other pruning
strategies and other base learners in future works. As for
testing time, we will develop a strategy that will not
measure the RKNN correlation for each testing sample.

VI. STATISTICAL ANALYSIS

Through the previous section, we studied the efficiency of
our proposed approach against data imbalance and for online
classification. We also compared obtained results following
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TABLE 3. Statistical analysis, Friedman’s test.

Precision | Recall Fl-measure | AUC
Friedman’s score | 35.025 38.658 44.354 34.682
P_values <0.0001 <0.0001 | <0.0001 <0.0001

the best scenario for each dataset to classification perfor-
mances of state of the art approaches. However, in order to
validate the statistical significance of these results, it is impor-
tant to establish statistical analysis between the different
algorithms on the various datasets [7]. Indeed, when several
classifiers are applied on diverse datasets, their performances
must be different, and it is important to test whether these
differences are random or real [45].

Two categories of statistical analysis methods exist para-
metric and nonparametric. While the former is build on
several hypotheses regarding data distributions, the latter
does not require any assumptions. When data normality and
variance equality or such as in our case the distribution is
unknown, nonparametric methods are the best choice [46].
Therefore, we have decided to statistically validate our results
through Friedman’s test, one of the most used nonparametric
approaches [45].

Friedman’s test consists of confirming or not a null hypoth-
esis that states that repeated measurements obtained differ-
ently have the same distribution. In other words, the different
algorithms have similar behavior in all datasets. We aim
to reject the null hypothesis and thus prove the statistical
difference between the deployed algorithms.

Friedman’s test starts by sorting the algorithms according
to the value of the classification performance for each dataset,
after which it allocates a score to each algorithm depending
on its rank. Finally, the Friedman score X;% is calculated
following the bellow equation [exploratory]. Where N rep-
resents the number of datasets on which tests have been
established, k the number of trained algorithms, and finally
R; is the score obtained after sorting the algorithms.

2
XF =

12N 5
— R? — 0.25k  (k + 1 10
k(k + 1) ;J FEED (10

In Table 3, we present the Friedman’s scores obtained
when comparing oversampling, undersampling, hybrid, algo-
rithm level, and cost sensitive approaches on different datsets.
In order to analyze these values, we also measure their
corresponding P-values. Similarities between algorithms are
expressed through high values of p-value, on the opposite,
smaller values express statistical significance. Judging from
the very low values of P-value, we can confirm the statistical
differences between the algorithms.

VIl. CONCLUSION AND FUTURE WORKS

In this paper, we propose a novel classification approach
combining the efficiency of cost-sensitive methods and the
robustness of bagging ensemble approaches through an
inter-flow correlation-based strategy. After training several
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Random Forests on bags of data traffic, we use the RKNN
algorithm to measure the correlation between testing samples
representing traffic flows and each bagging classifier to com-
pute the rebalancing weights. To the best of our knowledge,
no such combination has been proposed to overcome the
challenges of imbalanced traffic while respecting time con-
straints. To evaluate our approach, we vary the hyperparam-
eters of our algorithm and compare its performances on data
center traffic traces to other approaches for imbalanced traffic
classification. Our correlation-based classification approach
outperforms other algorithms in regard to precision, recall,
and F1 measure by rebalancing the training set following a
cost-sensitive way that avoids the use of a misclassification
cost matrix. Our algorithm balances the trade-off between
precision and recall and produces a confusion matrix with
good FP and FN ratios that prevent over-provisioning as well
as congestion. By correctly tuning our algorithm, the results
show running times.

For future works, we will improve the cost-sensitive
approach of our RkNN-based correlation algorithm in order
to enhance classification performances, particularly in terms
of computational time, by substituting the tree-like strategy
with an efficient clustering approach. Also, we will include
UDP packets, which introduce more challenges in the ini-
tialization step of constructing the ground truth and improve
the robustness of our proposed approach against larger traffic
datasets.

ACKNOWLEDGMENT
The authors would like to thank Chuan Pham for his help.

REFERENCES

[1] G. Collell, D. Prelec, and K. R. Patil, “A simple plug-in bagging ensemble
based on threshold-moving for classifying binary and multiclass imbal-
anced data,” Neurocomputing, vol. 275, pp. 330-340, Jan. 2018.

[2] F. Tang, L. Li, L. Barolli, and C. Tang, “An efficient sampling and

classification approach for flow detection in SDN-based big data centers,”

in Proc. IEEE 31st Int. Conf. Adv. Inf. Netw. Appl. (AINA), Mar. 2017,

pp. 1106-1115.

M. Kiran and A. Chhabra, “Understanding flows in high-speed scientific

networks: A netflow data study,” Future Gener. Comput. Syst., vol. 94,

pp. 72-79, May 2019.

[4] M. Noormohammadpour and C. S. Raghavendra, ‘““Datacenter traffic con-
trol: Understanding techniques and tradeoffs,” IEEE Commun. Surveys
Tuts., vol. 20, no. 2, pp. 1492-1525, 2nd Quart., 2018.

[5] S.E.Go6mez, B. C. Martinez, A.J. Sanchez-Esguevillas, and L. H. Callejo,
“Ensemble network traffic classification: Algorithm comparison and
novel ensemble scheme proposal,” Comput. Netw., vol. 127, pp. 68-80,
Nov. 2017.

[6] X. Zhang, Y. Li, R. Kotagiri, L. Wu, Z. Tari, and M. Cheriet, “KRNN:
K rare-class nearest neighbour classification,” Pattern Recognit., vol. 62,
pp. 33-44, Feb. 2017.

[71 S. E. Gobmez, L. Hernindez-Callejo, B. C. Martinez, and
A.J. Sanchez-Esguevillas, “Exploratory study on class imbalance
and solutions for network traffic classification,” Neurocomputing,
vol. 343, pp. 100-119, May 2019.

[8] L. Ding, J. Liu, T. Qin, and H. Li, “Internet traffic classification based
on expanding vector of flow,” Comput. Netw., vol. 129, pp. 178-192,
Dec. 2017.

[9] Z. Liu, R. Wang, and M. Tao, “SmoteAdaNL: A learning method for
network traffic classification,” J. Ambient Intell. Hum. Comput., vol. 7,
no. 1, pp. 121-130, Feb. 2016.

3

VOLUME 8, 2020



M. A

Si Saber et al.: Online DC Traffic Classification Based on Inter-Flow Correlations

IEEE Access

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Z.Liu and Q. Liu, “Studying cost-sensitive learning for multi-class imbal-
ance in Internet traffic classification,” J. China Universities Posts Telecom-
mun., vol. 19, no. 6, pp. 63-72, Dec. 2012.

H. Zhang, F. Tang, and L. Barolli, “Efficient flow detection and scheduling
for SDN-based big data centers,” J. Ambient Intell. Hum. Comput., vol. 10,
no. 5, pp. 1915-1926, May 2019.

H. Rastegarfar, M. Glick, N. Viljoen, M. Yang, J. Wissinger, L. LaComb,
and N. Peyghambarian, “TCP flow classification and bandwidth aggrega-
tion in optically interconnected data center networks,” J. Opt. Commun.
Netw., vol. 8, no. 10, pp. 777-786, Oct. 2016.

R. Hasibi, M. Shokri, and M. Dehghan, “Augmentation scheme for dealing
with imbalanced network traffic classification using deep learning,” 2019,
arXiv:1901.00204. [Online]. Available: http://arxiv.org/abs/1901.00204
A. Ferndndez, S. del Rio, N. V. Chawla, and F. Herrera, “An insight into
imbalanced big data classification: Outcomes and challenges,” Complex
Intell. Syst., vol. 3, no. 2, pp. 105-120, Jun. 2017.

Y. Sun, M. S. Kamel, A. K. C. Wong, and Y. Wang, “Cost-sensitive
boosting for classification of imbalanced data,” Pattern Recognit., vol. 40,
no. 12, pp. 3358-3378, Dec. 2007.

S.-C. Chao, K. C.-J. Lin, and M.-S. Chen, “Flow classification for
software-defined data centers using stream mining,” IEEE Trans. Services
Comput., vol. 12, no. 1, pp. 105-116, Jan. 2019.

S. del Rio, V. Lépez, J. M. Benitez, and F. Herrera, “On the use of MapRe-
duce for imbalanced big data using random forest,” Inf. Sci., vol. 285,
pp. 112-137, Nov. 2014.

S. Ahmed, F. Rayhan, A. Mahbub, M. R. Jani, S. Shatabda, and
D. M. Farid, “LIUboost: Locality informed under-boosting for imbalanced
data classification,” in Emerging Technologies in Data Mining and Infor-
mation Security. Springer, 2019, pp. 133-144.

C. Seiffert, T. M. Khoshgoftaar, J. Van Hulse, and A. Napolitano, “RUS-
Boost: A hybrid approach to alleviating class imbalance,” IEEE Trans.
Syst., Man, Cybern. C, Appl. Rev., vol. 40, no. 1, pp. 185-197, Jan. 2010.
A. Cano and B. Krawczyk, “Kappa updated ensemble for drifting data
stream mining,” Mach. Learn., vol. 109, no. 1, pp. 175-218, Jan. 2020.

J. Bian, D. Tian, Y. Tang, and D. Tao, “A survey on trajec-
tory clustering analysis,” 2018, arXiv:1802.06971. [Online]. Available:
http://arxiv.org/abs/1802.06971

J. Bian, D. Tian, Y. Tang, and D. Tao, “Trajectory data classification:
A review,” ACM Trans. Intell. Syst. Technol., vol. 10, no. 4, pp. 1-34,
Aug. 2019.

X. Shi, Y. D. Wong, M. Z.-F. Li, C. Palanisamy, and C. Chai, “A fea-
ture learning approach based on XGBoost for driving assessment and
risk prediction,” Accident Anal. Prevention, vol. 129, pp.170-179,
Aug. 2019.

R. Soleymani, E. Granger, and G. Fumera, “‘Progressive boosting for class
imbalance and its application to face re-identification,” Expert Syst. Appl.,
vol. 101, pp. 271-291, Jul. 2018.

Z. Zhang, K. Huang, T. Tan, P. Yang, and J. Li, “ReD-SFA: Rela-
tion discovery based slow feature analysis for trajectory clustering,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016,
pp. 752-760.

M. El Habib Daho, N. Settouti, M. E. A. Lazouni, and M. E. A. Chikh,
“Weighted vote for trees aggregation in random forest,” in Proc. Int. Conf.
Multimedia Comput. Syst. (ICMCS), Apr. 2014, pp. 438-443.

F. Angiulli, “On the behavior of intrinsically high-dimensional spaces:
Distances, direct and reverse nearest neighbors, and hubness,” J. Mach.
Learn. Res., vol. 18, pp. 1-170, 2017.

D. Yan, Z. Zhao, and W. Ng, “Monochromatic and bichromatic reverse
nearest neighbor queries on land surfaces,” in Proc. 21st ACM Int. Conf.
Inf. Knowl. Manage. (CIKM), 2012, pp. 942-951.

Y. Tao, D. Papadias, X. Lian, and X. Xiao, ‘“Multidimensional reverse kNN
search,” VLDB J., vol. 16, no. 3, pp. 293-316, May 2007.

S. Dawar, V. Goyal, and D. Bera, “Efficient reverse k nearest neigh-
bor evaluation for hierarchical index,” 2015, arXiv:1506.04867. [Online].
Available: http://arxiv.org/abs/1506.04867

A. Barewar, M. A. Radke, and U. A. Deshpande, “Geo skip list data
structure—storing spatial data and efficient search of geographical loca-
tions,” in Proc. Int. Conf. Adv. Comput., Commun. Informat. (ICACCI),
Sep. 2014, pp. 1479-14385.

D. Wu, X. Chen, C. Chen, J. Zhang, Y. Xiang, and W. Zhou, “On
addressing the imbalance problem: A correlated knn approach for network
traffic classification,” in Proc. Int. Conf. Netw. Syst. Secur. Springer, 2015,
pp. 138-151.

VOLUME 8, 2020

(33]

(34]

(35]

(36]
(37]

(38]

(391

[40]

(41]

[42]

(43]

[44]

(45]

[46]

S. S. Meriem Amina, B. Abdolkhalegh, N. K. Khoa, and C. Mohamed,
“Featuring real-time imbalanced network traffic classification,” in Proc.
IEEE Int. Conf. Internet Things (iThings) IEEE Green Comput. Commun.
(GreenCom) IEEE Cyber, Phys. Social Comput. (CPSCom) IEEE Smart
Data (SmartData), Jul. 2018, pp. 840-846.

G. Casanova, E. Englmeier, M. E. Houle, P. Kroger, M. Nett, E. Schubert,
and A. Zimek, “Dimensional testing for reverse k-nearest neighbor
search,” Proc. VLDB Endowment, vol. 10, no. 7, pp. 769-780, Mar. 2017.
CAIDA. (2011). Caida Aonymized 2011 Internet Traces Dataset.
[Online]. Available: http://www.caida.org/data/monitors/passive-equinix-
chicago.xml

T. Benson. (2010). Data Set for IMC 2010 Data Center Measurement.
[Online]. Available: http://cs.brown.edu/~tab/

UNIBS. (2009). Unibs: Data Sharing. [Online]. Available: http://netweb.
ing.unibs.it/~ntw/tools/traces/index.php

M. F. Igbal, M. Zahid, D. Habib, and L. K. John, “Efficient prediction
of network traffic for real-time applications,” J. Comput. Netw. Commun.,
vol. 2019, Feb. 2019, Art. no. 4067135.

T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics of
data centers in the wild,” in Proc. 10th Annu. Conf. Internet Meas. (IMC),
2010, pp. 267-280.

H. Zhang, G. Lu, M. T. Qassrawi, Y. Zhang, and X. Yu, “‘Feature selection
for optimizing traffic classification,” Comput. Commun., vol. 35, no. 12,
pp. 1457-1471, Jul. 2012.

H. Doroud, G. Aceto, W. de Donato, E. A. Jarchlo, A. M. Lopez,
C. D. Guerrero, and A. Pescape, ““Speeding-up DPI traffic classification
with chaining,” in Proc. IEEE Global Commun. Conf. (GLOBECOM),
Dec. 2018, pp. 1-6.

M. L. McHugh, “Interrater reliability: The kappa statistic,”
Medica, vol. 22, no. 3, pp. 276-282, 2012.

S. Jain, E. Kotsampasakou, and G. F. Ecker, “Comparing the performance
of meta-classifiers—A case study on selected imbalanced data sets relevant
for prediction of liver toxicity,” J. Comput.-Aided Mol. Des., vol. 32, no. 5,
pp. 583-590, 2018.

S. A. Shilbayeh, “Cost sensitive meta-learning,” Ph.D. dissertation, Dept.
Comput. Sci. Eng., Univ. Salford, Salford, WI, USA, 2015.

J. Demsar, “Statistical comparisons of classifiers over multiple data sets,”
J. Mach. Learn. Res., vol. 7, pp. 1-30, Jan. 2006.

Z. Ali and S. Bhaskar, “Basic statistical tools in research and data analy-
sis,” Indian J. Anaesthesia, vol. 60, no. 9, p. 662, 2016.

Biochemia

MERIEM AMINA SI SABER received the B.Eng.
degree (Hons.) in networking and telecommunica-
tions engineering from the University of Science
and Technology Houary Boumedienne (USTHB),
in 2013. She is currently pursuing the Ph.D. degree
with the Synchromedia Laboratory for Multime-
dia Communication in Telepresence, University
of Quebec, Montreal, under the supervision of
Dr. M. Cheriet. She worked as a QoS and Capacity
Planning Engineer with Telecom Algeria Mobilis,

for almost three years. Her research interests include traffic engineering, QoS
scheduling, and applied machine learning in data centers.

MEHDI GHORBANI received the bachelor’s
degree from the Sharif University of Technology.
He is currently pursuing the master’s degree in
telecommunications networks with the Synchro-
media Laboratory for Multimedia Communication
in Telepresence, University of Quebec.

60415



IEEE Access

M. A. Si Saber et al.: Online DC Traffic Classification Based on Inter-Flow Correlations

ABDOLKHALEGH BAYATI received the bach-
elor’s degree in software engineering from the
Shahid Chamran University of Ahwaz, in 2009,
and the master’s degree in information technology
from the Sharif University of Technology, Tehran,
in 2012. He is currently pursuing the Ph.D. degree
with the Synchromedia Laboratory for Multimedia
Communication in Telepresence, Department of
System Engineering, University of Quebec, under
the supervision of Prof. C. Mohamed. He worked
on the project Error Concealment in Video. The goal of this project was to
fix damaged motion vectors of video. He used statistical methods to model
motion vector of video; and then, he estimated lost motion vectors. His main
research interests are data science, machine learning, and pattern recognition.
Most of his previous study and experiences can be summarized in statistics,
data analysis, statistical data modeling, and signal processing. He has worked
on different types of data such as image, video, and network traffic.

KIM-KHOA NGUYEN received the Ph.D. degree
in electrical and computer engineering from Con-
cordia University. He served as the CTO of
Inocybe Technologies, a leading company in
software-defined networking solutions. He was an
Architect of the Canarie’s GreenStar Network and
also involved in establishing CSA/IEEE standards
' ./ i . for green ICT. He has led research and develop-
4 ment in large-scale projects with Ericsson, Ciena,
ei“ Telus, and InterDigital. He is currently an Asso-
ciate Professor with the Department of Electrical Engineering, Ecole de
technologie supérieure, University of Quebec, Montreal, QC, Canada. He has
authored 60 publications and holds several industrial patents. His research
interests include network optimization, cloud computing, the IoT, big data,
machine learning, smart city, high-speed networks, and green ICT. He was
a recipient of the Microsoft Azure Global IoT Contest Award, in 2017, and
the Ciena’s Aspirational Prize, in 2018.

60416

MOHAMED CHERIET (Senior Member, IEEE)
received the M.Sc. and Ph.D. degrees in computer
science from the University of Pierre et Marie
Curie (Paris VI), Paris, France, in 1985 and 1988,
respectively. Since 1992, he has been a Professor
with the Department of Automation Engineering,
Ecole de Technologie Supérieure (ETS), Univer-
sity of Quebec, Montreal, QC, Canada, where he
was a Full Professor, in 1998. Since 1998, he

L has been the Founder and the Director of the
Synchromedia Laboratory for Multimedia Communication in Telepresence,
(ETS), which targets multimedia communication in telepresence applica-
tions. He also Co-Founded the Laboratory for Imagery, Vision, and Artificial
Intelligence, ETS, where he was the Director, from 2000 to 2006. He is
an expert in computational intelligence, pattern recognition, mathematical
modeling for image processing, cognitive learning, and machine learning
approaches and perception. His research has acquired extensive experience in
cloud computing and network virtualization. He has authored or coauthored
more than 450 technical articles in the field. He has coauthored a book
Character Recognition Systems: A Guide for Students and Practitioners
(Wiley, Spring 2007). He was a recipient of the 2016 IEEE J. M. Ham
Outstanding Engineering Educator Award and the 2012 Queen Elizabeth
II Diamond Jubilee Medal. He is a fellow of the International Association
for Pattern Recognition, the Canadian Academy of Engineering, and the
Engineering Institute of Canada, the Founder and the Former Chair of the
IEEE Montreal Chapter of Computational Intelligent Systems, the Steering
Committee Member of the IEEE Green ICT Initiative, and the Chair of the
IEEE ICT Emissions Working Group. He serves on the editorial boards of
several renowned journals and international conferences.

VOLUME 8, 2020



	INTRODUCTION
	RELATED WORK
	THEORETICAL FOUNDATIONS
	BAGGING ENSEMBLE
	CONCEPTUAL FOUNDATIONS OF THE RkNN ALGORITHM

	PROPOSED APPROACH
	SYSTEM DESCRIPTION
	REVERSE K-NEAREST NEIGHBOR PROPOSED ALGORITHM FOR CORRELATION COMPUTATION

	EXPERIMENTS
	DATASETS
	PERFORMANCE EVALUATION
	PERFORMANCE METRICS
	EXPERIMENTAL RESULTS AND ANALYSIS


	STATISTICAL ANALYSIS
	CONCLUSION AND FUTURE WORKS
	REFERENCES
	Biographies
	MERIEM AMINA SI SABER
	MEHDI GHORBANI
	ABDOLKHALEGH BAYATI
	KIM-KHOA NGUYEN
	MOHAMED CHERIET


