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ABSTRACT In this paper, an adaptive iterative learning control scheme is proposed to solve the trajectory-
tracking problem for tank gun servo systems with input deadzone and arbitrary initial states. A time-varying
boundary layer is constructed to deal with the nonzero initial error during the iterative learning controller
design. Neural network control and robust control are jointly used to compensate uncertainties and deadzone
nonlinearity. The ideal weight of neural network and the upper bound of noncontinuous uncertainties are
estimated by using difference learning method. As the iteration number increases, the filtering error can
converge to the time-varying boundary layer. All signal are guaranteed to be bounded. A simulation example
is presented to verify the effectiveness of the proposed scheme.

INDEX TERMS Tank gun servo systems, iterative learning control, deadzone.

I. INTRODUCTION
Tank is a useful weapon in battle fields, whose effects include
helping troops enhance the efficiency of artillery firepower
and improving the surviving ability of soldiers. During fight-
ing situations, the tank gun control servo systems are required
to accomplish missions with accuracy, stability and speed of
response, despite the existence of friction, uncertainties and
external disturbances. Researchers have explored the motion
control of tank gun servo systems for at least three decades.
Dana et al. proposed a variable structure control scheme to
solve the position trajectory tracking problem for uncertain
tank gun systems [1]. In [2] and [3], optimal control tech-
nique was adopted to control design for tanks. In [4], a PID
control algorithm was proposed to realize the firing precise
control for tanks in motion. For compensating uncertainties
and external disturbances in tank gun servo systems, adap-
tive control and its related control technology were adopted
to the motion control, such as direct adaptive control [5],
adaptive fuzzy control [6] and adaptive robust control [7].
The corresponding strategies of disturbance observer were
reported in [8] and [9], respectively. In [10], the adaptive
neural network was used to approximate the uncertainties
and disturbances in tank gun servo control systems. In [11],
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an event-triggered adaptive control scheme was proposed for
the gun control system subjected to external disturbances,
uncertain modeling errors and unknown parameters. In [12],
an adaptive learning control scheme was proposed to solve
high-precision velocity tracking problem for tank gun control
servo systems under alignment condition. These above results
have promoted the development of control technique for tank
gun servo control systems. However, due to the inaccurate
system modeling and complex working environments, how
to obtain good control performance for the tank gun servo
systems has been not easily accomplished.

The past decades have witnessed the great efforts to inves-
tigate advanced industry control schemes for obtaining better
control performance [43]. As a well-known high-precision
control technique, iterative learning control (ILC) is effective
in dealing with repeated control processes over a finite inter-
val [13]–[17]. One of its merits is that ILC can work well
in the cases where the system model is hard to be got. In
an ILC system, through updating the control input accord-
ing to system error and the system operation information
in the previous iteration, the tracking performances may be
gradually improved, until perfect tracking performance may
be obtained after many iterations. Up to now, there have
been many ILC results on the position/velocity control of
motors [18], [19]. In [20], an ILC scheme was proposed
to reduce periodic torque pulsations in permanent magnet
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synchronous motors. The motion control of permanent mag-
net synchronous motors was considered in [21], where ILC
technique was used to eliminate the influence of force ripple
on the system performance of a position servo system. In
[22], Precup et al. proposed a 2-DOF proportional-integral-
fuzzy control scheme for a class of servo systems, in which,
an iterative feedback tuning strategy is adopted to achieve the
extended symmetrical optimum control design. On thewhole,
the ILC results on the trajectory-tracking problem for gun
control servo systems of tank is few.

We consider two important aspects of ILC algorithm
designs for tank gun servo systems in this work. The first
aspect is about the initial state condition of ILC. In most
existing ILC schemes, the initial system error is required
to be zero at each iteration [23]–[25]. Otherwise, a slight
initial error may lead to divergence of the tracking error. Since
perfect system resetting for each iteration is not easily achiev-
able in actual applications, relaxing or removing the zero-
error resetting condition is of practical significance for ILC
design. Adaptive ILC without zero-error resetting condition
has been explored in this decade, and a few solutions have
been proposed such as time-varying boundary layer technique
[26], error-trackingmethod [27]–[29], initial rectifying action
[30]–[32] and so on. Up to now, the ILC results on accurate
tracking for tank gun control servo systems have been very
few yet.

The second aspect we will address in this work is about
the compensation of deadzone nonlinearities. In the actua-
tor of motion control, there often exist nonlinearities such
as saturation, deadzone and hysteresis. Since these nonlin-
earities degrade the control performance, the corresponding
compensating should be adopted for improving control per-
formance in the process of controller design. Among satu-
ration, deadzone and hysteresis, deadzone is a class of the
most common nonlinearities [33]. Up to now, there have
been three strategies to deal with deadzone nonlinearities.
The first one is direct adaptive compensating approach [34],
[35]. In this approach, the parameters of deadzone are esti-
mated by constructing an adaptive deadzone inverse model.
Robust adaptive compensating approach is an alternative
approach [36], [37]. In this approach, a deadzone nonlinearity
is seen as the synthesis of a linear parametric uncertain term
and a disturbance, which may be respectively compensated
according to adaptive control technique and robust control
technique. The third one is to approximate deadzone by
using neural networks [38] or fuzzy systems [39]. So far,
the research resluts on the tank gun servo systems with input
deadzone have been very few [40]. To the best of authors’
knowledge, the adaptive ILC for tank gun servo systems
with arbitrary initial states and input deadzone has not been
investigated yet, which motivates the current study of this
paper.

This paper focus the adaptive ILC algorithm design for
tank gun servo systems with arbitrary initial states and
input deadzone. The time-varying boundary layer method is
adopted to deal with the nonzero initial errors in tank gun

FIGURE 1. Structure diagram of vertical servo system of all-electrical
tank gun.

servo systems. Neural network control technique, together
with robust control technique, is used to deal with uncertain-
ties and deadzone nonlinearity. It is shown that the velocity
trajectory of tank gun servo systems can accurately track the
desired signal by the proposed ILC control scheme. Compar-
ing with existing results, the main contributions of this work
lie in the following:

(1) Time-varying boundary layer approach is adopted to
deal with the nonzero initial error problem in the ILC design
for tank gun servo systems.

(2) Through constructing a proper Lyapunov function, an
adaptive ILC scheme is proposed for tank gun servo control
systems with the input deadzone.

(3) Adaptive learning neural network and robust control
are adopted to compensate the uncertainties , disturbance end
deadzone nonlinearities in tank gun servo systems.

The rest of this paper is organized as follows. The problem
formulation is introduced in Section 2. The detailed design
process of ILC system is addresed in Section 3. Section 4
presents the convergence analysis of the closed loop tank
gun servo system. To demonstrate the effectiveness of the
proposed adaptive ILC scheme, an illustrated example is
shown in Section 5, followed by Section 6 which concludes
this work.

II. PROBLEM FORMULATION
In all-electric tank gun control systems, the horizontal-
direction adjustments and vertical-direction adjustments of
turret and gun are accomplished by motor drives. Due to the
advantages such as simple structure, excellent performance
and high efficiency, nowadays full-electric tank gun control
systems have been widely adopted as a replacement for
traditional electro-hydraulic/all-hydraulic gun control sys-
tems. The structure diagram of vertical servo system of all-
electrical tank gun is shown in Fig. 1. It can be seen that the
controlled device mainly includes AC motor, speed reducer
and barrel.

The block diagram of tank gun control systems, a care-
ful reduction of a complex nonlinear simulation model, is
shown in Fig. 2. The definition of corresponding variables
and parameters in this figure is presented in Table 1.

On the basis of Fig. 2, we can get the model of gun control
servo systems of tank as

i̇q = −
R
L
iq −

Kei
L
ω +

Ka
L
uq, (1)
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FIGURE 2. Block diagram of tank gun control systems.

TABLE 1. The definitions of symbols.

ω̇ =
Kt
Ji
iq −

1
Ji
TLs, (2)

where TLs = TL + Tf . uq and v are the input and the output
of an unknown deadzone nonlinearity, and they meet the
relationship as

uq =


mr (v− br ) v ≥ br
0 bl ≤ v < br
ml(v− bl) v < bl,

(3)

where mr = ml = m > 0, br > 0, bl < 0; the deadzone
parameters including m, br and bl are unknown; uq is not
available for measurement.

By letting

bu =


br v ≥ br
uq bl ≤ v < br
bl v < bl,

(4)

(3) can be rewritten as uq = v − bu. According to this,
combining (1) with (2) yields

ω̈=−
R
L
ω̇ −

KtKe
LJ

ω +
KaKt
LJi

m(v− bu)− (
R
LJi

TLs +
1
Ji
ṪLs).

Define x1 = ω, x2 = ω̇. Then, from (5), the dynamics of tank
gun control systems at the kth iteration can be written as

ẋ1,k = x2,k ,

ẋ2,k = −
R
L
x2,k −

KtKe
LJ

x1,k +
KaKtm
LJi

vk

−mbu +1f (xxxk , t),

(5)

where, k ∈ N denotes the iteration number,xxxk = [x1,k , x2,k ]T ,
1f (xxxk , t) = −( R

LJiTLs +
1
Ji ṪLs). Without loss of generality,

we assume 1f (xxxk , t) = f1(xxxk ) + f2(xxxk , t), where f1(xxxk ) rep-
resents a Liphitz continuous function with respect to xxxk , and
f2(xxxk , t) represents noncontinuous but bounded perturbations.
|f2(xxxk , t)| ≤ εf (t). εf (t) is an unknown time-varying but
iteration-invariant parameter.

The control target is to find a sequence of appropriate
control inputs vk , such that as the learning number increases,
xxxk (t) can accurately track xxxd (t) under the condition that
xk (0) 6= xxxd (0).

III. CONTROL SYSTEM DESIGN
Based on (5), setting eeek (t) = [e1,k (t), e2,k (t)]T =

xxxk (t)− xxxd (t) leads to
ė1,k = e2,k ,

ė2,k = −
R
L
x2,k −

KtKp
LJ

x1,k +
KaKtm
LJi

vk

−mbu +1f (xxxk , t)− ẍd .

(6)

Let us define sk = λe1,k + e2,k , and

sφ,k (t) = sk (t)− φk (t)sat−1,1

(
sk (t)
φk (t)

)
, (7)

where,

φk (t) = |sk (0)|e−µt , (8)

λ > 0, µ > 0. The saturation function sat·,·(·) is defined as
follows: for a scalar â,

sata,ā(â) =


ā â > ā

â a ≤ â ≤ ā

a â < a;

for a vector âaa = [â1, â2, · · · , âm] ∈ RRRm, sata,ā(âaa) =[
sata,ā(â1), sata,ā(â2), · · · , sata,ā(âm)

]T .
Remark 1: φk (t) is a time-varying boundary layer, whose

absolute value decreases along time axis. Note that
sφ,k (0) = 0, ∀k holds, which helps to solve the initial problem
of ILC.

Then, we choose a candidate control Lyapunov function at
the kth iteration as

Vk =
1
2β

s2φ,k , (9)
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where β = KaKtm
LJi . The time derivative of Vk is

V̇k = sφ,k [
1
β

(
λe2,k −

R
L
x2,k −

KtKp
LJ

x1,k + f1(xxxk )

−ẍd
)
+

1
β

(
f2(xxxk , t)− mbu

)
+ vk ] (10)

= sφ,k [θθθTψψψk +
1
β
f1(xxxk )+

1
β

(
f2(xxxk , t)− mbu

)
+ vk ],

(11)

where, θθθ = [ λ
β
,− B

Lβ ,−
KtKp
LJβ ,−

1
β
]T , ψψψk = [e2,k , x2,k , x1,k ,

ẍd ]T . Then, a radial basis function (RBF) neural network is
used to approximate 1

β
f1(xxxk ), i.e.,

1
β
f1(xxxk ) = ηηη∗Tϕϕϕ(xxxk )+ ε(xxxk ), (12)

where ηηη∗(t) is the ideal weight of neural network, ε(xxxk ) is
the approximation error of neural network, |ε(xxxk )| ≤ εN , and
ϕϕϕ(xxxk ) = [ϕ1,k , ϕ2,k , · · · , ϕm,k ]T with

ϕj,k = e
−
‖xxxk−cccj‖

2

2b2j , j = 1, 2, · · · ,m. (13)

In (13), cccj = [cj1, cj2]T and bj are the center vector and the
width of the hidden layer, respectively.

Substituting (12) into (11), we have

V̇k = sφ,k [θθθTψψψk + ηηη
∗Tϕϕϕ(xxxk )+ ε(xxxk )+

1
β

(
f2(xxxk , t)− mbu

)
+vk ]

≤ sφ,k [θθθTψψψk + ηηη
∗Tϕϕϕ(xxxk )+ vk ]+ |sφ,k |ρε, (14)

where, ρε = εN +
1
β
εf (t) + 1

β
|mbu| ≥ |ε(xxxk )

+
1
β

(
f2(xxxk , t)− mbu

)
|.

On the basis of (14), we propose the control law as

vk = −γ1sφ,k − θθθTkψψψk − ηηη
T
k ϕϕϕ(xxxk )− ρε,ksat−1,1

(
sk (t)
φk (t)

)
,

(15)

and learning laws as

ηηηk = satη,η̄(ηηηk−1)+ γ2sφ,kϕϕϕ(xxxk ),ηηη−1 = 0, (16)

θθθk = satθ,θ̄ (θθθk−1)+ γ3sφ,kψψψk , θθθ−1 = 0, (17)

ρε,k = sat0,ρ̄(ρε,k−1)+ γ4|sφ,k |, ρε,−1 = 0, (18)

where γ1 > 0, γ2 > 0, γ3 > 0, γ4 > 0, θθθk , ηηηk and ρε,k are
used to approximate θθθ , ηηη∗ and ρε .
Remark 2: The RBF neural network constructed in

(12)-(13) belongs to adaptive learning RBF neural network,
which is similar to adaptive RBF neural network [10], [48].
The difference between them lies in: as shown in (17), the for-
mer’s ideal weight is estimated by using difference learning
method, while the latter’s ideal weight is estimated by using
differential learning method.

Remark 3: In (7), the saturation function sat·,·(·) is used to
construct time-varying boundary layer. In (16)-(18), the satu-
ration functions are adopted for guaranteeing the boundedess
of learning variables including θθθk , ηηηk and ρε,k . More detailed
for the explanation on saturation functions, see [26], [45]–
[47].

For brevity, in the rest of this paper,ϕϕϕ(xxxk ) is abbreviated as
ϕϕϕk , and arguments are sometimes omitted while no confusion
occurs.

IV. CONVERGENCE ANALYSIS
We summarize the design in the following statement.
Theorem 1: For the closed loop tank gun servo system

(5), control law (15) and learning laws (16)-(18), all system
variables are guaranteed to be bounded at each iteration.
Moreover, as the iteration number k increases, the closed loop
system converges in the sense that

lim
k→∞

sφ,k (t) = 0, ∀t ∈ [0,T ] (19)

and

e1,k (t) = e−λte1,k (0)+
e−µt − e−λt

λ− µ
|sk (0)|. (20)

Proof:
1). Difference of Lk (t)
Substituting (15) into (14) leads to

V̇k ≤ −γ1s2φ,k + sφ,kθ̃θθ
T
kψψψk + sφ,kη̃ηη

T
k ϕϕϕk + |sφ,k |ρε

−sφ,kρε,ksat−1,1

(
sk (t)
φk (t)

)
, (21)

where θ̃θθk = θθθ − θθθk , η̃ηηk = ηηη∗ − ηηηk . Note that
sφ,ksat−1,1

(
sk (t)
φk (t)

)
= |sφ,k |. If follows from (21) that

V̇k ≤ −γ1s2φ,k + sφ,kθ̃θθ
T
kψψψk + sφ,kη̃ηη

T
k ϕϕϕk + |sφ,k |ρ̃ε,k , (22)

where ρ̃ε,k = ρε − ρ̂ε,k . Since Vk (0) = 0, we deduce from
(22) that

Vk ≤ −γ1

∫ t

0
s2φ,kdτ +

∫ t

0
sφ,k (θ̃θθ

T
kψψψk + η̃ηη

T
k ϕϕϕk )dτ

+

∫ t

0
|sφ,k |ρ̃ε,kdτ. (23)

Define a Lyapunov functional as follows:

Lk = Vk +
1
2γ2

∫ t

0
η̃ηηTk η̃ηηkdτ +

1
2γ3

∫ t

0
θ̃θθ
T
k θ̃θθkdτ

+
1
2γ4

∫ t

0
ρ̃2ε,kdτ. (24)

While k > 0, on the basis of (23), we can derive

Lk−Lk−1=−γ1

∫ t

0
s2φ,kdτ − Vk−1 +

1
2γ2

∫ t

0
(η̃ηηTk η̃ηηk

−η̃ηηTk−1η̃ηηk−1)dτ+
1
2γ3

∫ t

0
(θ̃θθ
T
k θ̃θθk−θ̃θθ

T
k−1θ̃θθk−1)dτ
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+
1
2γ4

∫ t

0
(ρ̃2ε,k − ρ̃

2
ε,k−1)dτ (25)

By using the relationship (a − b)2 − (a − p)2 ≤ a − b)2 −
(a− satp,p̄(p))2, from (16), we obtain

1
2γ2

(η̃ηηTk η̃ηηk − η̃ηη
T
k−1η̃ηηk−1)+ sφ,kη̃ηη

T
k ϕϕϕk

≤
1
2γ2

[(ηηη∗ − ηηηk )T (ηηη∗ − ηηηk )− (ηηη∗ − satη,η̄(ηηηk−1))
T (ηηη∗

− satη,η̄(ηηηk−1))]+ sφ,kη̃ηη
T
k ϕϕϕk

≤
1
2γ2

(2ηηη∗ − ηηηk − satη,η̄(ηηηk−1))
T (satη,η̄(ηηηk−1)− ηηηk )

+ sφ,kη̃ηη
T
k ϕϕϕk

≤
1
γ2

(ηηη∗ − ηηηk )T (satη,η̄(ηηηk−1)− ηηηk )+ γ2sφ,kϕϕϕk )

= 0. (26)

Similarly, from (17) and (18), we can obtain

1
2γ3

(θ̃θθ
T
k θ̃θθk − θ̃θθ

T
k−1θ̃θθk−1)+ sφ,kθ̃θθ

T
kψψψk

≤
1
γ3

(θθθ − θθθk )T (satθ,θ̄ (θθθk−1)− θθθk )+ γ2sφ,kψψψk )

= 0 (27)

and
1
2γ4

(ρ̃2ε,k − ρ̃
2
ε,k−1)+ |sφ,k |ρ̃ε,k

≤
1
γ4

(ρε − ρε,k )(sat0,ρ̄(ρε,k−1)− ρε,k + γ3|sφ,k |)

= 0, (28)

respectively. Substituting (26)-(28) into (25), we have

Lk − Lk−1 ≤ −Vk−1 (29)

which further implies

Lk (t) ≤ L0(t)−
1
2β

k−1∑
j=0

s2φ,j. (30)

2). Finiteness of L0(t)
By direct calculation, the time derivatives of L0 = V0 +

1
2γ2

∫ t
0 η̃ηη

T
0 η̃ηη0dτ +

1
2γ3

∫ t
0 θ̃θθ

T
0 θ̃θθ0dτ +

1
2γ4

∫ t
0 ρ̃

2
ε,0dτ may be

obtained as

L̇0 = −γ1s2φ,0 + sφ,0η̃ηη
T
0ϕϕϕ0 + sφ,0θ̃θθ

T
0ψψψ0 + |sφ,0|ρ̃ε,0

+
1
2γ2

η̃ηηT0 η̃ηη0 +
1
2γ3

θ̃θθ
T
0 θ̃θθ0 +

1
2γ4

ρ̃2ε,0

= −γ1s2φ,0 +
ηηηT0

γ2
(ηηη∗ − ηηη0)+

θθθT0

γ3
(θθθ − θθθ0)

+
1
γ4
ρε,0(ρε − ρε,0)+

1
2γ2

(ηηη∗ − ηηη0)
T (ηηη∗ − ηηη0)

+
1
2γ3

(θθθ − ηηη0)
T (θθθ − θθθ0)+

1
2γ4

(ρε − ρε,0)2

= −γ1s2φ,0 +
1
2γ2

(ηηη∗Tηηη∗ − ηηηT0ηηη0)

+
1
2γ3

(θθθTθθθ − θθθT0 θθθ0)+
1
2γ4

(ρ2ε − ρ
2
ε,0)

≤ −γ1s2φ,0 +
1
2γ2

ηηη∗Tηηη∗ +
1
2γ3

θθθTθθθ +
1
2γ4

ρ2ε . (31)

Since 1
2γ2
ηηη∗Tηηη∗ + 1

2γ3
θθθTθθθ + 1

2γ4
ρ2ε is bounded, it follows

from (31) that L̇0(t) is bounded for t ∈ [0,T ]. As a direct
conclusion, we have

0 ≤ L0(t) < +∞, ∀t ∈ [0,T ]. (32)

3). Convergence of tracking error
Combining (30) with (32), we can draw a conclusion that

lim
k→+∞

sφ,k (t) = 0, ∀t ∈ [0,T ], (33)

which means

lim
k→+∞

|sk (t)| ≤ |sk (0)|e−µt , ∀t ∈ [0,T ]. (34)

Using the relationship ė1,k + λe1,k = sk , from (34), we can
obtain

|e1,k (t)| = e−λt |e1,k (0)| +
e−µt − e−λt

λ− µ
|sk (0)|. (35)

Therefore, |e1,k (t)| decreases exponentially with respect to
time since λ and µ are positive. By setting the appropriate
value of λ, the closed loop tank gun servo control systemmay
achieve better control performance.
In this work, the partial saturation strategy is used to design

learning laws for guaranteeing the the boundedness of the
estimation of parameters. It effectively improves the security
and reliability of controlled systems, comparing with the
learning law design of unsaturation strategy.

V. NUMERICAL SIMULATION
Let us consider a tank gun servo system as follows [42]:

ẋ1,k = x2,k ,

ẋ2,k = −
R
L
x2,k −

KtKe
LJ

x1,k +
KaKt
LJi

uq,k

+1f (xxxk , t),

(36)

where R = 0.4�, J = 5239kg · m2, i = 1039, L =
2.907×10−3H,Kt = 0.195N ·m/A,Ke = 0.197V/( rad·s−1),
B = 1.43 × 10−4 N · m, Ka = 2, 1f (xxxk , t) = 13.2 +
0.1x1,k + 0.2x2,k + 0.2sign(x2,k ) + 0.2rand1(k) sin(0.5t),
xd = 0.5 cos(0.5π t),T = 6. The system initial state is
set as xxxk (0) = [0.3 + 0.1rand2(k), 0.05rand3(k)]T . Here,
rand1(·), rand2(·) and rand3(·) represent random numbers
between 0 and 1. The deadzone parameters are br = 0.3, bl =
−0.4,m = 1.2. The control objective is to make x1,k accu-
rately track its reference xd .

The adaptive ILC law (15) and adaptive learning laws
(16)-(18) are adopted in the simulation, with γ1 = 10,
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FIGURE 3. x1 and its reference signal x1,d (TVBL).

FIGURE 4. x2 and its reference signal x2,d (TVBL).

FIGURE 5. The error e1 (TVBL).

γ2 = 2, γ3 = 2, γ4 = 0.02, θ = −100, θ̄ = 100, η = −30,
η̄ = 30, ρ̄ = 10. The RBF neural network is constructed
as (13), with bj = 3. cj1 and cj2 are averagely spaced on
[−2, 2], for j = 1, 2, · · · , 5. The trajectory-tracking profiles
of angular velocity and angular acceleration for the tank gun

FIGURE 6. The error e2 (TVBL).

FIGURE 7. Maximum value of |sφ,k | at each iteration (TVBL).

FIGURE 8. Control input (TVBL).

servo system at the 20th cycle are shown in Figs. 3-4, respec-
tively, with the tracking error profiles illustrated in Fig. 5-6.
The convergence history of |sφ,k (t)| is given in Fig. 7, where
Jk is defined as maxt∈[0,T ] |sφ,k (t)|. Fig. 8 illustrate the value
of control input signal at the 20th iteration. As shown in
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FIGURE 9. x1 and its reference signal x1,d (TIBL).

FIGURE 10. x2 and its reference signal x2,d (TIBL).

Figs. 3-7, the closed-loop tank gun servo system owns good
tracking performance.

For comparison, the traditional adaptive ILC algorithm
(37)-(40) is adopted for simulation. Note that s$,k is different
from sφ,k for$ is a time-invariant constant, and φ(t) is time-
varying. That is to say, time-invariant boundary layer (TIBL)
applied in (37), which is different from the time-varying
boundary layer (TVBL) adopted in (15).

vk = −γ1s$,k − θθθTkψψψk − ηηη
T
k ϕϕϕ(xxxk )− ρ$,ksat−1,1

( sk
$

)
,

(37)

ηηηk = satη,η̄(ηηηk−1)+ γ2s$,kϕϕϕ(xxxk ),ηηη−1 = 0, (38)

θθθk = satθ,θ̄ (θθθk−1)+ γ3s$,kψψψk , θθθ−1 = 0, (39)

ρ$,k = sat0,ρ̄(ρ$,k−1)+ γ4|sφ,k |, ρ$,−1 = 0, (40)

where s$,k = sk − $ sat−1,1
( sk
$

)
. β is a positive constant

and its value is set as 0.02 in this simulation, and other
control parameters in (37)-(40) are the same as the ones in
the previous simulation. The trajectory-tracking profiles of
angular velocity and angular acceleration for the tank gun
servo system at the 20th cycle are shown in Figs. 9-10, respec-

FIGURE 11. The error e1 (TIBL).

FIGURE 12. The error e2 (TIBL).

tively. The profiles of system error are given in Figs. 11-12,
respectively. We can see that system states can not accurately
track the corresponding reference trajectories. The maxi-
mum value of |s$,k | for 50 cycles is illustrated in Fig. 13,
where Jk , maxt∈[0,T ] |s$,k (t)|. Comparing Figs. 3-7 with
Figs. 9-13, we conclude that it is necessary to handle the
nonzero initial errors during the adaptive ILC design for tank
gun servo systems, the approach of time-varying boundary
layer is useful to solve the nonzero initial error problem for
the adaptive ILC development of tank gun servo systems.

The above simulation results verify the effectiveness of the
proposed adaptive ILC scheme for tank gun servo systems.
Remark 4: Note that the proposed ILC algorithm is dif-

ferent from finite-time ILC control algorithm [44]. But the
control effect, as shown in Figs. 1-4, is similar to that of finite-
time ILC control algorithm.
Remark 5: The robust learning control algorithm pro-

posed in [12] is suitable for the tank gun servo systmes
whose reference trajectories are smoothly closed. In this
work, the above-mentioned assumption is relaxed, which
promote the application of ILC technology in tank gun servo
systmes. In addition, our proposed algorithm may be used
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FIGURE 13. Maximum value of |s$,k | at each iteration (TIBL).

in tank gun servo systmes with input deadzone nonlinearity,
whereas the algorithm proposed in [12] is suitable to solve
trajectory-tracking problem for tank gun servo systmes with-
out input deadzone nonlinearities.

VI. CONCLUSION
The trajectory-tracking problem for tank gun servo systems
is addressed in this paper. The iterative learning controller is
developed by using Lyapunov approach, with a time-varying
boundary layer constructed to deal with the nonzero initial
errors. Adaptive learning neural network control and robust
control are jointly used to compensate uncertainties and
deadzone nonlinearity. According to the simulation result,
the closed loop tank gun servo system owns better control
performance.
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