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ABSTRACT The smooth operation of largely deployed Internet of Things (IoT) applications will depend
on, among other things, effective infrastructure failure detection. Access failures in wireless network
Base Stations (BSs) produce a phenomenon called ‘‘sleeping cells’’, which can render a cell catatonic
without triggering any alarms or provoking immediate effects on cell performance, making them difficult to
discover. To detect this kind of failure, we propose a Machine Learning (ML) framework based on the use of
Key Performance Indicators (KPIs) statistics from the BS under study, as well as those of the neighboring BSs
with propensity to have their performance affected by the failure. A simple way to define neighbors is to use
adjacency in Voronoi diagrams. In this paper, we propose a much more realistic approach based on the nature
of radio-propagation and the way devices choose the BS to which they send access requests. We gather data
from large-scale simulators that use real location data for BSs and IoT devices and pose the detection problem
as a supervised binary classification problem. We measure the effects on the detection performance by the
size of time aggregations of the data, the level of traffic and the parameters of the neighborhood definition.
The Extra Trees and Naive Bayes classifiers achieve Receiver Operating Characteristic (ROC) Area Under
the Curve (AUC) scores of 0.996 and 0.993, respectively, with False Positive Rates (FPRs) under 5%. The
proposed framework holds potential for other pattern recognition tasks in smart-city wireless infrastructures,
that would enable the monitoring, prediction and improvement of the Quality of Service (QoS) experienced
by IoT applications.

INDEX TERMS Failure detection, IoT, M2M communications, machine learning, sleeping cells, smart
cities, wireless networks.

I. INTRODUCTION
The deployment of the Internet of Things (IoT) in urban areas
is enabling the creation of so-called ‘‘smart cities’’ where
city life will be improved by using large amounts of infor-
mation coming from hundreds of thousands of geographi-
cally distributed communicating devices. This information
will lead to the automation of some systems and the cre-
ation of new applications that will enhance city living. Smart
parking, smart pedestrian crossings, intelligent transportation
systems, and intelligent power distribution are just a few
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of the new types of innovations that can be put in place
with the effective exchange of information between city IoT
devices. IoT-enabled data and services in smart cities rely on
either (a) users interacting with smart devices connected to
the Internet or (b) users using network services that depend
on IoT devices serving as sensors or actuators [1]. In both
cases, communications are essential for the IoT applications
to work.

Even though several telecommunication technologies have
been proposed for the deployment of different IoT applica-
tions in cities [2], [3], the ubiquity of cellular communica-
tions is making operators and standardization entities such
as the 3rd Generation Partnership Project (3GPP) push for a
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common cellular infrastructure for smart cities based on 4th

Generation of broadband cellular network technology (4G)
enhancements and 5th Generation (5G).
Even with the use of a common communication infras-

tructure, there are several drawbacks of smart-city large-scale
implementation. First, it heavily depends on reliable telecom-
munications, as even banal failures may lead to the massive
malfunctioning of key automated systems. Second, the type
of telecommunication traffic produced in smart cities will
mostly be produced by IoT machines inside those automated
systems. The problem is that the statistical behaviour of this
traffic is quite different from that produced by humans [4],
and the lack of direct human interaction will make it even
more difficult to detect telecommunication failures. Finally,
the distributed nature of the applications and the large number
of devices and connections will also hinder failure detection.

One of the most difficult types of failure to detect in
cellular networks is the so-called ‘‘sleeping cell’’ failure.
It consists of failures that will not set-off alarms even if
the cell is malfunctioning. In human cellular communica-
tions, a sleeping cell will cause users to react to the lack of
service, change location and eventually notify the operator.
This failure can be prolonged, in some cases days, before
being detected by the operator, and corrective measures are
taken [5]. The influence of sleeping cell failures is greatly
amplified in smart cities, where many automated systems
may depend on the normal function of a particular cell. Thus,
the city does not have the luxury of waiting several days for
the malfunctioning cell to be detected. The delay constraints
of essential smart-city applications might be difficult to sat-
isfy even with fully-operational Base Stations (BSs) due to
the massive number of devices that are expected to request
access [6].

The objective of this paper is to present a Machine Learn-
ing (ML) framework to detect sleeping cells in a smart-city
IoT context. The framework is based on the following:
• the introduction of a novel concept of neighborhood
between BSs, and

• the use of aggregated Key Performance Indicators
(KPIs) over time intervals for different types of IoT
applications.

The data used to feed our framework were extracted from a
large-scale IoT infrastructure simulator that takes as its input
a real city database of geographical locations of potential IoT
devices and the current locations and features of the BSs of
several service providers.

In the remainder of this paper, we present the state of the
art in Section II. In Section III, we present the modeling of
the system, emphasizing the relationship between the infras-
tructure technology and the locations of the IoT devices. The
ML framework is detailed in Section IV, starting with novel
definitions of the cell neighborhood and proximity that are at
the core of the framework, followed by the simulation andML
methodologies, and ending with some remarks on the imple-
mentation. Numerical results are shown and commented on
Section V, and conclusions are presented in Section VI.

II. STATE OF THE ART
Failure detection of network elements is one of the main
concerns of mobile network operators. Several papers in the
literature address this problem using real network operator
data at the BS level [7]–[11]. This approach produces very
accurate results for the specific networks, but the solutions
are not easily generalized due to the difficulty in retrieving
real cellular network data. As a consequence, most authors
use simulated data, such as in [7], [10], [12]–[19], though
emulations based on real data can also be found [20]. In this
work, we employ simulated network data generated with
a large-scale network simulator [21] (an extension of [4]),
which employs real data on the positions of network elements
and the parameters of the communicating nodes.

There has been much work dedicated to solving prob-
lems in wireless networks using ML; for an extensive sur-
vey, see [22]. A common approach in failure detection is
to learn standard traffic patterns and quickly detect devi-
ations from normal behavior (i.e., unsupervised learning).
In particular, existing research focuses on i) anomaly detec-
tion [7], [23], [24], ii) KPIs [25], iii) clustering [11], [14],
[16], and iv) dimensionality-reduction techniques [14], [26].
Other authors exploit known properties of cellular networks
to perform supervised learning to detect faulty elements in a
network [11], [13], [18], [19], [24], [27].

A complementary approach to ML proposed by [28] is
to acquire data from troubleshooting (human) experts in
mobile networks and to use their experience and knowl-
edge to improve fault detection. In addition to the proposed
techniques, fuzzy models can be used for failure detection,
as presented in [17], [20].

Finally, some authors propose detecting failures in a net-
work element by looking at anomalies in the traffic and KPIs
from neighboring cells [10], [13], [19]. This is particularly
powerful when the traffic generated in a defected cell does not
present remarkable anomalies in its KPIs, such as in the case
of Random-Access Channel (RACH)-sleeping cells, where
new users cannot connect but existing users in the cell can
continue to transmit regularly during a failure.

In this paper, we propose using well-known supervised
learning techniques for BS failure detection in a smart-
city cellular infrastructure. In particular, for each cell, KPIs
from neighboring cells are analyzed to highlight anoma-
lies and detect defective BSs. Different from the reviewed
literature:
• we consider advanced propagation models based not
only on distance but also on other parameters, such as
Received Signal Strength (RSS), the bandwidth, fre-
quency, and antenna orientation, and

• we define different neighbor categories to improve
failure detection.

III. SYSTEM MODELLING
Let us first mention that we provide in Table 1 a summary of
the mathematical notation used in our modelling of the sys-
tem as well as in the description of the proposed framework.
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TABLE 1. Summary of mathematical notation.

A. COMMUNICATION INFRASTRUCTURE
The cellular network model is composed of a set B of base
stations enumerated as {b1, . . . , bM }, a set of IoT devices in
geographical locations {g1, . . . , gL} ⊂ G, a backbone N ,
and a Data Management Center (DMC). Only the uplink
performance is considered; the core and metropolitan part of
the network are modeled as a black box.

We assume a limited number of wireless channels (i.e.,
the Resource Blocks (RBs) in Long-Term Evolution (LTE))
can be used to transmit data between users and BSs. This is
done through dedicated control channels allocated through
a random access procedure (RACH), based on preamble
transmissions. The available preambles are limited and might
collide, triggering retransmission and introducing additional
delay in the communications between devices and BSs.

The key parameters in this study are the collision proba-
bility and the access delay, i.e., the time required for a user
packet to be received by the associated BS. In particular,
high-order statistics on those two parameters are used to
detect sleeping cells. Further details on the methodology are
provided in Section IV.

B. TOPOLOGY DEFINITION
The framework was built with real telecommunications and
urban data from the city of Montreal (see details in [4]).
In Fig. 1, a toy example of a smart-city cellular system is
displayed: network users are represented by IoT devices, such
as cars, buses, traffic lights, and security cameras. Details on
the types of IoT device considered and their characteristics
can be found in a previous work [29], where six different
IoT applications are presented. The rectangle represents the
geographical boundaries of a smart city, in which three BSs
bi, bj, and bk are installed and provide network access to
the IoT devices. The geographical position and other features
of the BSs, such as the bandwidth, transmitted power, and
orientation, were retrieved from [30].

FIGURE 1. A sample scheme of the proposed architecture with three BSs
and a large number of IoT devices.

To characterize the links between users and BSs we
i) define a threshold on the received power, ii) compute the
power received from each of the BSs by each IoT device,
and iii) determine the list of BSs that cover each IoT device.
A threshold of −100 dBm is considered in this study. The
received power is computed according to the Cost-Hata
(Cost-231 defined in [31]) propagation model, which allows
computing the path loss based on key parameters, such as the
frequency, distance, and height. This propagation model is
also combined with the corresponding radiation patterns for
each BS. This leads to computing the Equivalent Isotropic
Radiated Power (EIRP), based on the elevation, gain and
inclination of the antennas, which are also available at [30].
The list of BSs covering a certain IoT device can be very
large, especially in a densely populated urban scenario like
Montreal, and this can lead to computational inefficiencies
and large execution times. As a consequence, this list is
limited to the ξ BSs with the highest received power. The list
is used, as described in Section IV-A, to combine the analysis
of one cell’s KPIs with those of neighbor cells, and ultimately
to detect the sleeping cells with high accuracy.

C. THE SLEEPING CELL PROBLEM
A sleeping cell is usually defined as a cell that is not entirely
operational and whosemalfunctioning is not easily detectable
by the network operator, as highlighted in [25]. This term
is generally used to describe a wide variety of hardware
and software failures, which degrade the Quality of Service
(QoS) and Quality of Experience (QoE) and can remain
hidden to the network operator for a long time (days or even
weeks) [32]. In this study, we address a particular type of
sleeping cells that affects the RACH in LTE networks [25].
On the one hand, this type of problem affects new users
who are not able to complete the access procedure and con-
sequently cannot access the network. On the other hand,
existing users, which were already connected to the BS when
the problem manifested, continue to transmit. As a conse-
quence, standard methods based on traffic monitoring fail to
detect the problem, because the network operator continues to
monitor updated statistics coming from the RACH-sleeping
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FIGURE 2. Priority list example.

BS. Progressively, all the ongoing connections end, and the
cell ceases all activity.

IV. A FRAMEWORK FOR SLEEPING CELL DETECTION
A. NEIGHBORHOOD/CLOSENESS DEFINITION
When trying to detect if a particular BS has failed, our key
idea is to include data from its ‘‘neighborhood’’. However
how does one determine which BSs can be considered as
‘‘neighbors’’? Though the BS distance can be used, as done
in [19], we now propose a richer definition: a neighboring
BS is actually one whose performance KPIs are likely to be
affected by the access failure in the BS under study. Accord-
ingly, we base our definition on the following:
1. Antenna Priority and RSS: when sending access

requests, an IoT device at location g ∈ G will choose the
BS bm ∈ B such that:

m = argmax
1≥j≥M

{rg(j)} (1)

where rg(j) is the signal strength of a BS bj measured at
location g. The set of all the BSs considered as options for
a device located at g ∈ G is depicted as a priority list sg of
size ξ , defined as the following sorted list of BSs:

sg = [bg,1, bg,2, . . . , bg,ξ ] (2)

where the RSS values of the BSs b1 = bg,1, b2 = bg,2,
. . . , bξ = bg,ξ , hold the following relationship:

rg(1) ≥ rg(2) ≥ . . . ≥ rg(ξ ) (3)

A device at location g will send its access request to BS
bg,1 first. When the BS fails, the next BS on the list (bg,2)
is considered, and so on. Fig. 2 shows examples of BSs and
their positions in priority lists of size ξ = 3 for a series of
locations. Note that in our implementation the 12 antennas
with the highest RSS are considered (ξ = 12). In some
locations, the priority list can be shorter, as a consequence of
the threshold mentioned in Section III-B. The reader should
be aware that even if RSS decay is presented in Fig. 2 as
decreasing linearly with distance, this is done only to simplify
the explanation.

FIGURE 3. Example of neighborhood categories 1 and 2.

2. Directional Antennas: antenna tilt and orientation are
important factors in the computation of the RSS in the prop-
agation model used in our simulator. Therefore, the strongest
received signal might not come from the closest BS. In Fig. 3,
where a set of BSs numbered from 1 to 17 are shown.
We observe that even though BS 6 is closer than BS 15 to
the BS under study, it might not be the second BS in the
priority list for any location, while BS 15 effectively is in
a second position for at least one location. In our modeling
of the system, this might occur because no location receives
the signals of BS 6 and the one BS under study as the two
strongest BSs, due to the antenna directionality and power
values.
3. KPIs Availability: it is feasible to obtain aggregations of

KPIs for all packets processed by a BS during any period of
time.

The type of failure we analyze in this paper is that of the
sleeping cells, which are BSs whose access function becomes
inactive, affecting the performance of ‘‘close’’ BSs. This
process can be described as follows:
• Step 1: The observedBS’s access function fails. Ongoing
transmissions continue to be served by the BS.

• Step 2: Idle devices that usually would request access
to the failed BS, choose the BS with the second-highest
RSS as an alternative.

• Step 3: The additional traffic, produced by the ‘‘new’’
devices requesting access, induces a performance degra-
dation in the chosen BS.

Because of its degradation, it is of interest to include the
BS chosen in step 2 as a neighbor in the pattern analysis
process. This is why we base our definition of neighborhood
on the notion of the probability of experiencing a perfor-
mance degradation. Note also that, even though simultaneous
failures of nearby BSs may not be frequent, they cannot be
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ruled out. Therefore devices around the failed locationmay go
down their priority list until they find an operational BS. The
farther down a BS is in the priority list, the less likely it is to
receive the extra traffic, as it would require the simultaneous
failure of all the BSs positioned ‘‘above’’ it in the priority list.

1) USING PROBABILITIES TO DEFINE NEIGHBORHOOD
CATEGORIES
We define now a novel idea to determine whether two BSs are
‘‘neighbors’’ or not, based on a threshold on the probability
of each of the BSs affecting the other’s performance in case
of a failure. The following example with ξ = 4 illustrates
the intuition behind this approach. Let p be the probability of
access failures of any BS during any given time interval of
duration T . Let us also assume that failures in different BSs
and time intervals are independent. Given the device location
g ∈ G, let sg = [bg,1, bg,2, bg,3, bg,4] be the priority list
containing the 4 BSs with the highest received power at g.
When bg,1 fails, one of the following occurs:
• bg,2 is operational with probability (1 − p) and it will
receive all the traffic from devices at g with probability
1(1− p).

• bg,2 is asleep, which will happen with probability p, bg,3
is operational with probability (1− p), and the requests
for access of the device at gwill be handled by bg,3. This
will occur with probability p(1− p).

• both bg,2 and bg,3 are asleep with probability p2, bg,4 is
operational with probability (1− p), and bg,4 will be the
alternative BS receiving the access requests. This will
happen with probability p2(1− p).

This example shows the intuition behind our definition of
neighborhood of category n of BS bk . A BS is a category n
neighbor of BS bk when it is the n-th option to request access
if BS bk fails.

To formalize the relationship between the probability of
receiving traffic normally served by bg,1 ∈ sg, and the
condition of being a neighbor of category n, let us first define
the failing state indicator of the RACH function of BS bi ∈ B
as:

f (bi) =

{
1 if access function of bi is inactive
0 otherwise

(4)

Given an ongoing access failure in bg,1 ∈ sg, the probabilities
of failure for the BSs in sg are:

Pr(f (bg,1) = 1) = 1 (5)

Pr(f (bg,n = 1) = p; ∀n = 2, . . . , ξ (6)

When the access function of BS bi = bg,1 fails, we can
defineQ(i, j) as the probability of BS bj = bg,n ∈ sg receiving
traffic normally served by BS bi. This probability can be
modeled as:

Q(i, j) = Pr(f (bg,1 = 1) ∩ . . .

. . . ∩ Pr(f (bg,n−1 = 1) ∩ Pr(f (bg,n = 0)

= pn−1(1− p) (7)

We now define Cn(bi), the neighborhood category n as:

Cn(bi) = {bj 6=i|Q(i, j) ≥ pn−1(1− p)} (8)

As a consequence of Equation (8), each neighborhood
is nested inside those of higher categories, following the
structure of a set of Russian dolls (a.k.a. Matryoshkas or
Babushkas):

C1(bi) ⊂ . . . ⊂ Cξ−1(bi) (9)

Applying the definitions to the example, assuming that
there is only one device location in the system g ∈ G,
we obtain the following possible neighborhood category sets
for bi = bg,1:

C1(bg,1) = {bg,2}
C2(bg,1) = {bg,2, bg,3} (10)

C3(bg,1) = {bg,2, bg,3, bg,4}

where bg,1, bg,2, bg,3, bg,4 ∈ sg ⊂ B.
Note that in Fig. 3, BS 7 is the target of this analysis, and the

BSs in neighborhood category 1 (dark gray) are part of the set
of category 2 (light gray), as a consequence of Equation (9).
To highlight the differences between the proposed neigh-
boring structure and the classical geographical one, in this
example, an immediate neighbor, such as BS 6, is excluded
from the neighborhood of category 1, and the more distant BS
4 instead belongs to it. This choice emphasizes the fact that
distance is not the criterion for determining the membership
of a neighborhood set, which is actually determined by the
position in priority lists.

2) THE U-V PROXIMITY
To find the set of neighbors for each target BS, we need to first
compute the u − v proximity. Two BSs have u − v (u < v)
proximity if there exists at least one device location such that
in its priority list, the positions occupied by the two BSs are
between the uth and vth positions (including the extremes).

Based on this definition, multiple u− v proximities can be
defined for a single pair of BS if there is more than one loca-
tion whose list contains antennas from both BS. This occurs
because a pair of BSs can occupy very diverse positions in
the priority lists in different device locations. At a location
well positioned to receive signals from both BSs, both might
occupy the first two positions of the list. At a location far from
both BSs, they might occupy the two last positions of the list.

The existence ofmultiple u−v proximities for the same pair
of BSs is not necessarily a problem. Their usefulness becomes
evident whenwe consider that the signals from a single pair of
BSs might not be received with enough strength in any device
to have 1−2 proximity, for example, but are received strongly
enough in at least one device to have 2 − 3 proximity. This
allows us to say that these BSs do not belong to each other’s
neighborhood category 1 but that they belong to each other’s
neighborhood category 2. No device normally connected to
one of them will have as a first choice the other BS in case of
an access failure, unless there are two simultaneous failures.
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FIGURE 4. Range u-v of proximity between BSs (i,j).

We can formally define the u− v range of priorities as the
following ordered set:

Iu−v = {u, u+ 1, . . . , v} (11)

where ξ ≥ v > u ≥ 1.
Let the u−v proximity indicator of a pair of BSs bi, bj ∈ B

be defined as follows:

Pu−v(bi, bj) =

{
1 if ∃g ∈ G : bi, bj ∈ {bg,u, . . . , bg,v}
0 otherwise

(12)

where
i 6= j;
u, u+ 1, . . . , v ∈ Iu−v;
bi, bj,∈ B; and
bg,u, . . . , bg,v ∈ sg ⊂ B.

In Fig. 4, to visually show the u − v proximity concept,
the following are displayed: location g ∈ G; the set of
machines installed in g; and some of the ξ BSs in the priority
list sg. Note that, in this example, u, i, j, and v all belong
to the range Iu−v. Therefore, applying the definition in (12),
we have that Pu−v(A,B) = 1, for BSs A = bg,i and B = bg,j.
Note that the u − v proximity is a symmetrical property,

under the general assumption of the existence of at least one
other location where the positions that both BSs occupy in
a priority list are inverted. Therefore, for any pair of BSs
bi, bj ∈ B, we have that:

Pu−v(bi, bj) = Pu−v(bj, bi), ∀i 6= j (13)

The u − v proximity is a property that can be used to
determine whether any pair of BSs has high, medium or low
propensity of affecting each other’s performance by consider-
ing a u−v range that covers positions at the beginning, middle
or last part of the priority list. In our specific implementation,
we are interested in identifying those BSs that belong to a
specific neighborhood category. We can see in Equation (8)
that the BSs of interest for a particular Cn are receiving traffic
from the target BS with a probability of pn−1(1−p) or higher.
This means that the u − v range for this application starts in
the first position (u = 1).

TABLE 2. Relation between priority, probability, category and proximity.

Table 2 illustrates where the u− v range ends, in relation-
ship to a particular neighborhood category. We can observe
the relationship between:
1) The position of the BSs in a priority list,
2) The probability they have of receiving access requests

typically served by the BS in the first position if it fails,
3) The neighborhood of lowest category that includes

each BS, and
4) the u− v interval associated to each case.

Table 2 was built following the toy example presented in
section IV-A.1 to illustrate the intuition behind our approach,
which was also used in Equation (10). Under the assumption
that bg,1 fails, each of the three BSs has decreasing probabil-
ities of receiving access requests originally intended for the
BS in first position. We can appreciate as a general rule that
for a neighborhood category n:
• BSs in positions 2, . . . , n+ 1 are included in it.
• The lower bound of the probability these BSs have of
receiving access requests from bg,1 is pn−1(1− p).

• The associated proximity range ends in n+ 1.
We conclude that the u−v range associated to a neighborhood
category n is 1− (n+ 1).
Formally:

bj 6=i ∈ Cn(bi)⇔ P1−(n+1)(bi, bj) = 1 (14)

for at least one location g ∈ G.
We can illustrate this relationship with the following exam-

ple: if BS bj belongs to the neighborhood category 3 of bi
(bj ∈ C3(bi)), it means that bi and bj have 1 − 4 proximity
(P1−4(bi, bj) = 1).
Because of the association defined between the notions of

proximity and neighborhood, the symmetry defined in (13)
also implies a symmetry in neighborhood relationships such
that:

bj ∈ Cn(bi)⇔ bi ∈ Cn(bj), ∀i 6= j (15)

3) NEIGHBORHOOD MATRICES
In the proposed framework, we aggregate KPIs of the ‘‘neigh-
bors’’ of a BSwhose failing state wewish to study. To identify
the neighbor BSs, we use a neighborhood indicator for each
pair of BSs. We arrange these indicators in an M × M
neighborhood matrix, where M is the number of BSs in the
system.

For a neighborhood category n, each element of theM×M
neighborhood matrix Cn is defined as:

cni,j =

{
1 if bj ∈ Cn(bi), j 6= i
0 otherwise

(16)
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FIGURE 5. Example of neighborhood matrices.

Note that cni,j = 0 when i = j and that cni,j = cnj,i because
of (15).

The neighborhood matrices C1 and C5 computed in our
implementation are partially shown in Figs. 5a and 5b.We can
observe that the BS identified with a 0 is a neighbor of
BSs 2 and 4 when considering a neighborhood of category 1
(Fig. 5a). If we consider a neighborhood of category 5, BS
0 is also a neighbor of BS 5. We can observe a similar
situation for BSs 3 and 5, which have one more neighbor
when the category is augmented to 5. For the cellular network
simulated, the matrices Cn are of size 479× 479, as there are
479 BSs in the city.

The neighborhood matrices are computed once per cellular
infrastructure and recomputed only if there is a change in the
RSS values or if antennas or BSs are removed or added. The
matrices are evaluated when aggregating the neighborhood
KPIs for each of the BSs as part of the construction of
the ‘‘feature vectors’’ that allow the use of ML for failure
detection. As mentioned, a neighborhood is associated with
the probability of experiencing a performance degradation as
a consequence of a failure, whose pattern we intend to detect.
The specifics on how KPIs are aggregated can be found in
Section IV-C.

B. NETWORK SIMULATION
We use an LTE simulator1similar to the one described in [4].
The way IoT devices gain access to the BSs is based on the
computation of priority lists (ξ = 12) for each device served
by the mobile infrastructure. The simulator allows for several
propagation models to compute the RSS values involved in
the construction of the priority lists. Because this model
encompasses the uplink RACH procedure and the transmis-
sion until reception at the Evolved Packet Core (EPC), its
output is composed of counters and statistics related to both
phases:

• Number of packets created.
• Number of packets transmitted.
• Number of RACH collisions.
• Number of RACH attempts.
• Minima, maxima and average of the RACH delays.
• Minima, maxima and average of the transmission times
(from RACH completion to reception at the EPC).

TABLE 3. Simulation scenarios.

The priority lists are computed considering as options the
antennas, instead of the BSs. In the preprocessing to compute
the neighborhood matrices, the antennas identification codes
in these lists is replaced by the identification of the BS where
the antennas are installed.

The RACH failures are modeled as affecting simultane-
ously all the antennas of a particular BS. Because BSs gen-
erally do not have the same number of antennas, most of
the time, the probabilities for the positions in the priority
lists may have values higher than the theoretical minimum
described in Section IV-A for a particular neighborhood cat-
egory. We purposely choose to omit the implementation of
countermeasures in the preprocessing to address the ‘‘noise’’
introduced by it, as the effect on the results does not hinder
the methodology.

1) SIMULATED SCENARIOS
In Table 3, we show the devices types, levels of traffic,
duration of the simulation, total number of BSs and number
of failing BSs.

We considered two scenarios in our simulations: high
traffic and low traffic. In the high-traffic scenario, smart
meters, parking slots, bus stops, surveillance cameras, and
traffic lights generate packets at a double rate with respect
to the low-traffic scenario. The fire alarms and Micro-Phasor
Measuring Units (microPMUs) generated packets at the same
rate for both scenarios.

2) RACH FAILURE GENERATION
In a random sample of 50 BSs, total RACH failures were
parameterized to initiate at the beginning of each 1-hour
simulation, with a duration of 30 minutes. This process was

1Smart cities M2M: https://www.trafficm2modelling.com/
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FIGURE 6. Graphical description of the proposed framework for failure detection.

repeated 12 times (with different random seeds). In every sim-
ulation, the first 10 minutes are used to initialize the network
and their results are omitted from the KPI aggregation.

C. AN ML FRAMEWORK
1) PREPROCESSING
The output of the simulator was aggregated in three ways:

i) Across nonoverlapping time-bins or intervals (accord-
ing to the size of the time aggregations),

ii) across the antennas of each BS, and
iii) across the IoT devices.

As a result, the dataset contained the statistics at the BS level
and considered generic traffic (without distinction among
the traffic generated by the different devices/applications).
The results were preprocessed aggregating the data at the
BS level in time intervals of 5, 10, 15 and 30 minutes. This
allowed us to study the effect of aggregation size on detection
performance.

A fundamental part of the preprocessing was the computa-
tion of the neighborhood matrices for each of the neighbor-
hood categories. This process involves the following steps:
• Analyzing the priority lists for each location in the
network.

• Processing the priority lists to obtain the u− v proximi-
ties between each pair of BSs.

• Using the u− v proximities to obtain the neighborhood
matrices.

Our aggregating procedure consisted of computing the
following statistics: average, variance, skewness, kurtosis,
percentile (5, 25, 50, 75, 95), minimum, maximum and range.

After the data were aggregated for each interval/BS, a nor-
malization step is used to force the values to lie within the
range (0, 1).
The feature vectors xi,t to be used in the ML algorithms

are built by concatenating two vectors for each aggregation
interval t and ‘‘target’’ BS bi:
• Aggregation of the statistics of BS bi during interval t .
• Aggregation of the statistics of all the neighboring BSs
in Cn(bi) during interval t .

To perform supervised classification, the data set is com-
pleted by associating each feature vector xi,t to a category

label, a class indicator or a ‘‘target value’’ o(xi,t ), defined as:

o(xi,t ) =

{
1 if f (bi) = 1 at interval t
0 otherwise

(17)

This procedure is repeated using the data generated by the
simulator for each time aggregation size and neighborhood
category. The whole process, for a particular interval of time,
is described in the diagram in Fig. 6.

2) MODELS AND TRAINING STRATEGY
We report our results for the following binary classifiers:

i) Naive Bayes
ii) Logistic regression
iii) Linear, quadratic, cubic and Radial Basis Function

(RBF) Support Vector Machines
iv) Decision trees
v) Extra trees
vi) Bagged decision trees
vii) Random forest
viii) Shallow (single hidden layer) neural networks
For each of the simulation scenarios and preprocessing

strategies, the data set is randomly split into training (70%)
and testing (30%) sets. Parameter tuning for each of the clas-
sification models is performed via 10-fold cross-validation
(within the data from the training set).

The detection (classification) performance was mainly
evaluated via the Receiver Operating Characteristic (ROC)
Area Under the Curve (AUC) score. However, failure inves-
tigation activities associated with a false alarm represent
a considerable operational cost for telco providers. Conse-
quently, we also computed the False Positive Rates (FPRs)
as a performance index.

In Fig. 6, we explain the ML framework for failure detec-
tion. Note that the gray boxes represent processes or actions
and the white boxes represent their products, intermediate
products or inputs. The process starts with the RSS measure-
ments, by probing in a deployed network or by simulation.
In our implementation, RSS values were computed for each
antenna in each location g ∈ G and used to construct the
priority lists sg. After the lists were created, each pair of BSs
was considered one at a time, and the list of each location was
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FIGURE 7. Implementation process.

checked to see if it contained the pair of BSs and in which
positions of the priority lists. By observing these positions,
a practitioner could compute each of the u − v proximities
for the pair of BSs. Once the practitioner decided which
neighborhood category to consider, u− v proximities of each
pair of BSs could be used to determine whether or not they
were neighbors. When the feature vector was built for a
specific target BS, the KPIs vectors of its neighbors were
concatenated to the KPIs vector of the target BS. The process
was repeated for all the BSs, for all the time intervals under
study, to build the dataset. Then, the training process took
place by minimizing some norm of the difference between
the prediction and the real target value. The target value was
obtained from the simulation parameters. If there was an
ongoing failure in the BS in a specific interval, the target value
was defined as 1. Otherwise, the target value was 0.

D. IMPLEMENTATION AND SCALABILITY DETAILS
The proposed framework is based on four main processes
(see Fig. 7):

i) Retrieval of RSS values at each potential device loca-
tion and creation of priority lists.

ii) Computation of neighborhood sets based on the priority
lists.

iii) Data aggregation (both at the BS level and of neighbor-
hoods based on the neighborhood matrices).

iv) Training and evaluation of MLmodels using the aggre-
gated data.

The real-world application of the framework requires some
efforts from an operator:

i) RSS retrieval is a process that can be done via prob-
ing a deployed network at each of the potential IoT
device locations or via simulation of the BSs’ signal
propagation.

ii) Neighborhood computation requires finding the u − v
proximities for each pair of BSs and the further creation
of neighborhood sets for each neighborhood category.

iii) Data aggregation.
iv) All the MLs models to be trained and evaluated are

well-known models, whose complexities and difficul-
ties are well known, and there exists a plethora of pipe-
line design strategies that can be used.

In what follows, the first two operator’s challenges were
analyzed.

To obtain the RSS measurements, the telco operator would
first need to identify the potential IoT device locations and
undertake a project to probe, at each location, the signal
strength of the BSs in the range of each location. An alter-
native approach would be to use simulations, as in this
work. Instead of considering only the potential locations for
devices, we divided the space of the city into a grid of squares.
The positions of the IoT devices inside a grid square were
approximated with the center of the grid square. The RSS
of every antenna of every BS in the simulated network were
computed considering the antenna tilt, orientation and power,
as well as distances and frequencies.

The outcome of this simulation is a data structure of length
ξG (worst-case scenario), where G is the total number of
squares in the grid and ξ is the size of the priority lists of
antennas at each square. Each item in the structure is a vector
containing information regarding the location of the square,
the identification of both the BS and the antenna and the RSS
value.

Another important implementation task is the computation
of the neighborhood matrices. To study the scalability of
this process so that an operator can estimate its feasibility,
we show the computational complexity associated with the
process. Assuming that M is the total number of BSs in the
city, the computational complexity of the procedure is given
by the following polynomial expression:

O(M2
+ G) (18)

A distance-based approach, in contrast, involves the com-
putation of the Voronoi regions around each of the BSs,

VOLUME 8, 2020 61221



O. G. Manzanilla-Salazar et al.: ML Framework for Sleeping Cell Detection in a Smart-City IoT Telecommunications Infrastructure

TABLE 4. Minimum and average ROC AUC for each classifier.

a process the computational complexity of which is, in gen-
eral [33]:

O(M logM ) (19)

Compared to Equation (19), the complexity of the neigh-
borhood matrices can be considered more computationally
expensive. However, being polynomial, the method can be
considered scalable. If the number M of BSs of the network
is considered constant, Equation (18) becomes O(G), which
is linear with respect to the number G of potential IoT device
locations.

V. NUMERICAL RESULTS
We now discuss the results obtained after using four classi-
fiers in the following task: to determine if a specific vector
of aggregated KPIs taken during a time interval at a specific
BS was produced or not during an ongoing failure. This was
achieved without knowledge of the past behavior of the BS.

According to their classification performance both from
the point of view of the ROC AUC and FPR, in all of our
experiments, we could identify two groups of supervised
classifiers:
• Group 1: consisting of all the SVM classifiers, along
with logistic regressions and the shallow neural net-
works, which achieve on average an AUC score below
0.981.

• Group 2: consisting of the ensemble learners (bagged
decision trees, random forests and extra trees), Decision
Trees and Naive Bayes, the average AUC of which is
higher than 0.98. The extra trees classifiers in particular,
in the worst performance, achieved an AUC higher than
0.97, and the average score was above 0.99. We indicate
the classifiers of this group with italics in Table 4.

The behavior of the performance of these groups is shown
in Figs. 8, 10, and 9. It can be argued that the pattern is easily
separable, as a low-complexity classifier such as naive Bayes
(with a complexity of O(SF), where S is the training sample
size and F is the number of features) performs very well.
While extra trees is not a simple classifier, its building strat-
egy is less prone to overfitting than traditional one-hidden-
layer neural networks and kernel-based methods (SVMs),
which might explain its dominance over those models. When

FIGURE 8. Effect of neighborhood category on false positive rate per
classifier.

FIGURE 9. Effect of neighborhood category on AUC for each classifier.

choosing a classifier to implement the proposed method,
it is important to consider that even though the average per-
formance of extra trees might be 1.4% better than that of
naive Bayes, it has a higher complexity (with a computational
complexity of O(SFT ), where T is the number of trees).
It is important to keep in mind that these AUC and

FPR values are obtained without any BS-related information
(BS ID, time, coordinates, number of devices producing traf-
fic, application types, etc).

Among all the experiments, the average effect of increasing
the traffic intensity is mild (never higher than 1%), though in
most classifiers, the effect is slightly negative. Extra trees is
an exception, showing a slightly positive average reaction.

A. EFFECT OF NEIGHBORHOOD CATEGORY
In Fig. 8 we show the FPR observed when applying the clas-
sificationmodels on the 11 data sets generated by aggregating
the simulated data considering the 11 neighborhood matrices
(for categories 1, . . . , 11). The reader should note that the
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neighborhood definition affects which (and how many) BSs’
KPIs are included to detect the failure. The FPR computed
for each classifier in this graph is the average of the FPRs
obtained under the two traffic levels for each of the time
aggregation sizes, to observe only the effect of the change
in the neighborhood definition.

It is notable that, in general, increasing the category of
the neighborhood definition has a detrimental effect on the
FPR values for classifiers of group 1. The FPR values for
classifiers of group 2, on the other hand, exhibit neither a clear
improvement nor a clear deterioration when increasing the
size of the neighborhoods considered. The results suggest that
there is no justification for using neighborhoods of categories
higher than 3 when considering FPRs values.

In Fig. 9, we observe the response of the ROC AUC
values with respect to changes in the neighborhood defi-
nition. A clear distinction in the behavior of classifiers of
Groups 1 and 2 can also be observed in terms of the AUC,
and group 2 does not appear to benefit from having a neigh-
borhood category higher than 3. The performance of clas-
sification models in group 1 also deteriorates in terms of
the AUC, progressively losing the separation ability as the
neighborhood size increases.

Numerical results in Group 2 did not show a clear correla-
tion between the neighborhood category value and any of the
classification performance indicators (FPR and AUC) in any
of the aggregation sizes. It is possible to highlight, however,
the existence of a ‘‘peak’’ for the performance indicators in
a specific category value. As an example, consider the third
column in Fig. 12, showing the AUC values for aggregations
of 15 min for the naive Bayes classifier. The AUC reaches a
peak of 0.993 when the neighborhood category is 2 for this
aggregation level. A possible explanation for the existence of
these peaks is that:
• not including enough neighbors might leave out data
from the BSs whose performance was affected by a
failure, and

• including too many neighbors might ‘‘dilute’’ the effect
of these degradations by aggregating them with data
from too many unaffected BS.

B. EFFECT OF AGGREGATION SIZE
In Fig. 10, we show how the average ROC AUC values
for each group of classifiers responds to increasing sizes of
the aggregation time bins. To build this figure, we averaged
the AUC values obtained by each classifier over the data
generated under the two levels of traffic and preprocessed
under the 11 neighborhood categories to observe only the
effect produced by the size of the aggregation bins.

We find that increasing aggregation size from 5 to 10 min-
utes has effects that range from mild (for classifiers of
Group 2, which already have AUC values higher than 0.97) to
clearly positive (for classifiers of Group 1) (see Fig. 10).With
the exception of bagged Trees, all models in Group 2 clearly
benefit from the increase in aggregation from 10 to 15 min-
utes. Increasing the aggregation to 30 minutes, however,

FIGURE 10. Effect of aggregation on AUC for each classifier.

FIGURE 11. Joint effect of proximity and aggregation levels on Extra Trees
AUC score.

appears to blur the patterns and provoke a deterioration
of their performance. Models of Group 1 had no perfor-
mance improvement when augmenting the aggregation size
to 15 minutes and had no uniform response to the increase in
aggregation size to 30 minutes.

When averaging to observe the ROC AUC and FPR
responses to all the neighborhood categories and all the
aggregations sizes, extra trees consistently showed the best
performance. Naive Bayes, being a less complex classifier,
had similar results on average, and might be a sound enough
choice for an operator in the scenarios at hand.

C. INTERACTION BETWEEN AGGREGATION SIZE AND
NEIGHBORHOOD CATEGORY
Figs. 11 and 12 show the average AUC scores for the two best
models: extra trees and naive Bayes, respectively. In these
figures, to analyze the joint effect of time aggregation size
and neighborhood category, we created a heatmap, in which
lighter colors represent higher AUC scores and consequently
better detection performance.
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FIGURE 12. Joint effect of proximity and aggregation levels on Naive
Bayes AUC score.

To compute these values, the AUC values were averaged
among only the two traffic levels to observe the interaction
between the neighborhood definition and time aggregation.

In the aforementioned figures, it can be noted that both
methods producedAUC scores close to 1, making evident that
the models have a high separation capacity for these data sets.
However, neighborhood categories 2, 3 and 4 obtained the
best scores, especially when the size of the time aggregations
was 10, 15 and 30.

In particular, the best results were achieved with 15 min-
utes of aggregation and neighborhood category 2, allowing
the extra trees classifiers to achieve an AUC score of 0.996,
and the naive Bayes classifier a score of 0.993.

VI. CONCLUSION AND FUTURE WORK
In this paper, we proposed a supervised learning framework
to detect RACH-related sleeping cells in a smart-city cellu-
lar infrastructure. We used well-known binary classification
techniques to detect network elements at fault based on the
analysis of aggregated KPIs such as the RACH collision
probability and the delay.

RACH-related sleeping cells are difficult to detect due
to the lack of evidence in the KPIs from a faulty cell. To
overcome this problem, we have proposed to jointly consider
the KPIs of one cell with those from the neighboring cells.
We have also proposed a novel definition for neighbors of a
cell, not choosing the nodes geographically closer to a cell but
rather those that would be more likely impacted by its failure.

We used data obtained from a large-scale IoT network
simulator that employs real data on the telecommunication
infrastructure and on the position of IoT nodes in a smart-city
environment. Although LTE was chosen to obtain numerical
results, the proposed framework can easily be adapted to other
cellular technologies, such as 5G.

Different time aggregation interval sizes were tested for
the KPIs: 15 minutes resulted in the aggregation interval that
permitted achieving the highest AUC. This aggregation level
permits heavily reducing the amount of data to be analyzed

by a network operator to detect faulty elements, resulting in
large potential savings. The numerical results also proved
extra trees and naive Bayes to be the most effective binary
classification techniques among the ones considered in this
work. Broadly speaking, the results suggest that simple and
ensemble models, known for being less prone to overfitting,
are superior to kernel models and neural networks.

The preprocessing approach based on aggregations and the
inclusion of information regarding the ‘‘neighborhood’’ of a
BS has shown its value in the classification task. We are cur-
rently working on how to adapt this strategy for forecasting
and anomaly detection.
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