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ABSTRACT It is a difficult to accurately estimate the rotor position in a surface permanent magnet syn-
chronous motor (SPMSM), especially for low speed conditions because the back electromotive force (EMF)
is almost zero. In this paper, an improved sliding mode observer (SMO) with a continuous sliding mode
switching function (which could reduce the chattering effect) is proposed to estimate the real-time rotor
position at a low speed. Through the introduction of an intermediate variableH , the back EMF is extended at
low speed, which could improve the estimation accuracy for the rotor position. In addition, the chattering phe-
nomenon is reduced by redesigning the sliding switching function. On the other hand, inverter nonlinearity
also results in torque ripple and deteriorates the drive performance because of the harmonic components in the
three-phase stator current. Here, a generalized sliding discrete Fourier transform (GSDFT) strategy is studied
to extract the harmonic components, which can then be compensated with the corresponding compensation
voltage calculated from the motor mathematical model. With the proposed strategy, the estimation accuracy
can be apparently restricted when the rotor speed is lower than 50 rpm, while the chattering effect is also
improved. With the nonlinearity compensation, the total harmonic distortion obviously decreases, which
can improve the rotor estimation and the torque performance. In addition, the GSDFT algorithm executes in
approximately half the time of the SDFT compensation method.

INDEX TERMS Surface permanent magnet synchronous motor (SPMSM), low speed, slid-
ing mode observer (SMO), inverter nonlinearity compensation, generalized sliding discrete fourier
transform (GSDFT).

I. INTRODUCTION
Currently, permanent magnet synchronous motors (PMSMs)
are widely used in various industrial areas for their many
advantages. For PMSMs, the high-performance control
requires accurate speed and rotor information, which can
usually be obtained by mechanical sensors, e.g., rotary or
photoelectric encoders [1]. However, with the considerations
of cost, installation and harsh environments, thesemechanical
sensors are not suitable for all occasions, and it is necessary
to design sensorless control [2], [3].

Typically, three major kinds of sensorless methods have
been widely used for rotor position estimation: (1) meth-
ods based on high frequency signal injection, by which
the position information is contained in the induced signals
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because of the motor salient pole effect [4], but this method
is unsuitable for surface PMSMs; (2) methods based on
motor back EMF, e.g., the model reference adaptive method,
sliding mode observer (SMO) method and the Kalman filter
method; for example, a new sensorless control strategy based
on the combination of the SMO and the extended Kalman
filter (EKF) was proposed in [5] to estimate the rotor position,
and the chattering effect was improved; and (3) methods
based on intelligent algorithms: for example, in [6], the iter-
ative search strategy based on the dichotomy was designed
to calculate the back EMF, and the rotor position accuracy
was improved because of the successive iterations. In [7],
the artificial neural network (ANN) inverse method was used
to realize speed observation of a bearingless induction motor.

At present, the research question for sensorless control
is how to accurately estimate the rotor position when the
speed is low or even zero as the back EMF is almost zero
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and the signal-to-noise ratio is low [8], [9]. Considering
the robustness and the nonlinear adaptability of the sliding
model control [10], the SMO method is theoretically suitable
for sensorless control at a low speed, however, the inherent
chattering would affect the control performance. In [11],
a second-order SMOwith an online resistance estimation was
designed to reduce the chattering influence, but the algorithm
was complicated.

From another aspect, inverter nonlinearity could also
influences the motor performance, as nonlinearity results in
harmonic components in the stator currents that certainly
deteriorate the torque ripple and the back EMF [12], [13] and
affect the estimation of the rotor position. Therefore, essential
compensation measurements must be carried out to improve
the sensorless control performance. Proper harmonic com-
pensation often requires accurate real-time harmonic extrac-
tion or harmonic filtering, which can be generally categorized
into two kinds: time-domain methods and frequency-domain
methods [14], [15]. Usually, harmonic extraction can be
carried out in the frequency domain, in which the discrete
Fourier transform and its extension strategies are preferred
[16], [17]. Considering that the calculation for the common
discrete Fourier transform (DFT) is relatively complicated,
a sliding discrete Fourier transform (SDFT) was proposed in
[18], [19], which improved the speed of harmonic extraction
and was suitable for digital implementation. Although the
SDFT is computationally efficient, this method still might
have drawbacks, e.g., slow dynamic performance and sensi-
tivity to the frequency variation, and a generalized discrete
Fourier transform (GDFT) was researched in [20]; with the
reconstruction of the common DFT, signal extraction has
been realized with great performance and flexibility.

In this paper, a novel sensorless control strategy suitable
for low speed conditions is researched for SPMSMs based
on an improved SMO and inverter nonlinearity compensa-
tion. First, an intermediate variable H is introduced to the
improved SMO to extend the back EMF at low speed, which
could improve the estimation accuracy, and a new sliding
switching function is redesigned to reduce the chattering
phenomenon. Then, a generalized SDFT (GSDFT) strategy is
proposed to realize fast harmonic extraction, based on which
the corresponding compensation voltage can be generated
and involved in a compensation loop to improve the stator
current performance and the estimation accuracy of the rotor
position.

The structure of this paper is as follows. This new SMO is
designed in Section II. The influence of inverter nonlinearity,
the harmonic extraction with GSDFT and the corresponding
compensation method are introduced in Section III in detail.
Section IV contains the results analysis and comparison,
while the conclusion and outlook are given in Section V.

II. SLIDING MODE OBSERVATION
Sliding mode control is a typical nonlinear control system,
whose performance usually lies in the selection of the sliding

mode control laws, and this system is necessary to avoid the
excessive chattering.

A. CONVENTIONAL METHOD
Basically, the design of the traditional SMO is based on a
mathematical model. For the SPMSM, the voltage equations
in the αβ coordinates are as follows [21][

uα
uβ

]
=

[
R+ pLs 0
0 R+ pLs

] [
iα
iβ

]
+

[
Eα
Eβ

]
(1)

where Ls is the stator inductance; uα , uβ and iα , iβ are the sta-
tor voltages and currents in the αβ coordinates, respectively;
Eα , Eβ are the EMF components and p is the differential
operator. The EMF components can be represented as[

Eα
Eβ

]
= ωeψf

[
− sin θe
cos θe

]
(2)

whereωe is the electrical angular velocity,9f is the amplitude
of the magnetic flux linkage in each phase and θe is the
electrical rotor position.

From equation (2), it is obvious that the rotor position θe
can be estimated if the back EMF has been obtained at high
accuracy. Here, SMO is used to observe the back EMF value,
and the voltage equation is rewritten as

d
dt

[
iα
iβ

]
=

1
Ls

[
−R 0
0 −R

] [
iα
iβ

]
+

1
Ls

[
uα
uβ

]
−

1
Ls

[
Eα
Eβ

]
(3)

Assuming that îα, îβ are the observed stator current com-
ponents from SMO, uα , uβ are taken as the control input of
the observer, and vα , vβ are the sliding mode control laws to
be chosen, then the traditional SMO can be represented as

d
dt

[
îα
îβ

]
=

1
Ls

[
−R 0
0 −R

] [
îα
îβ

]
+

1
Ls

[
uα
uβ

]
−

1
Ls

[
vα
vβ

]
(4)

Taking the difference between equations (3) and (4),
the error equation can be settled as

d
dt

[
ĩα
ĩβ

]
=

1
Ls

[
−R 0
0 −R

] [
ĩα
ĩβ

]
+

1
Ls

[
Eα − vα
Eβ − vβ

]
(5)

where ĩα = îα − iα, ĩβ = îβ − iβ are the current observa-
tion errors in αβ coordinates respectively and the traditional
sliding mode control lows are usually set as following[

vα
vβ

]
=

[
k sgn(îα − iα)
k sgn(îβ − iβ )

]
(6)

where k is the sliding mode gain designed according to the
Lyapunov stability principle.

When the state variables of the observer (here preferring
iα and iβ ) reach the sliding surface, that means ĩα = 0 and
ĩβ = 0, and the observer state remains on the sliding surface;
in addition, the derivations of the current error are also zero,
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which means that equation (5) = 0, then the back EMF can
be obtained by equations (5) and (6) as follows[

Êα
Êβ

]
=

[
vα
vβ

]
=

[
k sgn(ĩα)
k sgn(ĩβ )

]
(7)

With equation (2), the rotor position can be obtained as

θ̂eq = − arctan(Êα/Êβ ) (8)

where ‘‘^’’ represents the observation value.
Since the actual control variable is a discontinuous high

frequency switching signal, a low-pass filter is usually needed
to extract the continuous back EMF. Considering that the
phase delay that results from the low-pass filter, an angle
compensation is added as follows

θ̂e = θ̂eq + arctan(ω̂e/ωc) (9)

where ωc is the cutoff frequency of the low pass filter, and
the estimated electrical angular velocity can be obtained from
equation (2).

ω̂e =

√
Ê2
α + Ê

2
β

ψf
(10)

The control diagram of the traditional SMO is shown
in Figure 1.

FIGURE 1. Block diagram of a traditional SMO.

B. IMPROVED METHOD
For the conventional method, when the motor runs at a low
speed, the back EMF is almost zero and the estimation accu-
racy is certainly reduced because of the low signal-to-noise
ratio. Here, a way to extend the back EMF is proposed that
introduces an intermediate variable ‘‘H ’’.
Similarly, assuming that îα and îβ are the observed stator

current components from the new SMO, the newly SMO
could be represented as

d
dt

[
îα
îβ

]
= A

[
îα
îβ

]
+

1
Ls

[
uα
uβ

]
−

1
Ls

[
Ksigmoid(îα − iα)
Ksigmoid(îβ − iβ )

]
+

1
2Ls

H (11)

where

A =

−
R
Ls

0

0 −
R
Ls

 ,
H =

ωc

s+ ωc

[
Ksigmoid(îα − iα)
Ksigmoid(îβ − iβ )

]

sigmoid(x) = 2
1+e−ax − 1, K is the sliding mode gain. Here,

H is designed to extend the back EMF.
Taking difference between equations (3) and (11), the error

equation can be represented by

d
dt

[
ĩα
ĩβ

]
= A

[
ĩα
ĩβ

]
−

1
Ls

[
Ksigmoid(ĩα)
Ksigmoid(ĩβ )

]
+

1
2Ls

H +
1
Ls

[
Eα
Eβ

]
(12)

In the same way, when the state variables of the observer
reach the sliding surface, the observer state remains on the
sliding surface; in addition, the derivations of the current error
are also zero, which means that equation (12) = 0, then the
back EMF can be obtained by equations (12) as follows[

Êα
Êβ

]
=

[
Ksigmoid(ĩα)
Ksigmoid(ĩβ )

]
−

1
2
H

= (1−
ωc

2s+ 2ωc
)
[
Ksigmoid(ĩα)
Ksigmoid(ĩβ )

]
(13)

Considering that ωc is much larger than the speed ωe,
equation (13) can be simplified as[

Êα
Êβ

]
=

1
2

[
Ksigmoid(ĩα)
Ksigmoid(ĩβ )

]
=

1
2

[
Hα
Hβ

]
(14)

Obviously, the value ofH is the twice that of the back EMF,
hence, H is used to replace the back EMF to estimate the
rotor position, which apparently doubles the back EMF and
is suitable for low-speed rotor position estimation.

With the consideration of the phase delay compensation,
the estimated rotor position can then be formulated as

θ̂e = arctan(−
Hα
Hβ

)+ arctan(
ω̂e

ωc
) (15)

To analyze the stability of the new SMO, the Lyapunov
function [22] is chosen as

V =
1
2
s2α +

1
2
s2β (16)

where sα = îα − iα , sβ = îβ − iβ is the designed sliding
surface.

Taking the derivative of equation (16) and substituting
equation (12) into the derivation, then

V̇ = sα ṡα + sβ ṡβ = −
R
Ls

(s2α + s
2
β )

+
1
Ls

[sα(Eα − Ksigmoid(sα)+
Kωcsigmoid(sα)

2s+ 2ωc
)

+ sβ (Eβ − Ksigmoid(sβ )+
Kωcsigmoid(sβ )

2s+ 2ωc
)] (17)

According to Lyapunov’s theorem, the new SMO is stable
when V̇ < 0; therefore, the stability conditions can be
deduced as follows

K > max{|2Eα|, |2Eβ |} (18)

It can be seen that as long as the sliding mode gain
K is large enough, the stability of the novel SMO can be
guaranteed.
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III. NONLINEAR HARMONIC COMPENSATION
A. HARMONIC INFLUENCE
Because of the inverter nonlinearity, e.g., dead-zone time,
saturation on-voltage drop of switching devices, and pulse
width modulation, there are harmonic components in the
stator currents, which also affects the estimation accuracy of
the rotor position [23]–[25].

For example, for a rotor speed n = 10rpm, the three-phase
stator currents are shown in Figure 2(a), and the harmonic
distortion of the A-phase is shown in Figure 2(b). Obviously,
there are (6k±1)th harmonic components and the low-order
harmonics are relatively large (5th: 4.08%; 7th: 4.11%, and
the total harmonic distortion (THD) is 8.06%), which affects
the back-EMF estimation because the signal-to-nose ratio
decreases.

FIGURE 2. Inverter nonlinearity influence on the stator currents.

To improve the estimation performance of the rotor posi-
tion, these current harmonic components should be accurately
extracted and compensated. In this paper, a new harmonic
extraction algorithm named the generalized sliding discrete
Fourier transform (GSDFT) is studied.

B. HARMONIC EXTRACTION METHOD—GSDFT
Basically, GSDFT has the same characteristics as the nor-
mal sliding discrete Fourier transform (SDFT) with better
dynamic performance and robustness.

Assuming that the stator current is a finite data sequence
that is expressed as i(m) and its length is M , its discrete
Fourier transform can be written as

I (k) = DFT[i(m)] =
M−1∑
n=0

i(m)W nk
M , (0 ≤ k ≤ M -1) (19)

whereWM = e−j2π/M .
Equation (19) can be mathematically expressed as

I (k) = i(0)+ i(1)e−j
2πk
M + i(2)e−j

2πk∗2
M +

. . . . . .+ i(M − 1)e−j
2πk∗(M−1)

M (20)

Suppose that the first sampling data M are i(0) ∼ i(M -1),
and the first sequence is represented by i0 whose DFT is
represented by I0(k), and suppose that the second sampling
dataM are i(1) ∼ i(M ), the corresponding sequence is i1, and
the DFT is I1(k). The data processing is shown in Figure 3.

FIGURE 3. Schematic diagram of discrete data processing.

Apparently,

I1(k) = [I0(k)− i(0)]ej
2πk
M + i(M )e−j

2πk(M−1)
M

= [I0(k)− i(0)+ i(M )]ej
2πk
M (21)

Equation (21) is the SDFT algorithm which is suitable
for the digital implementation, and the specific harmonic
amplitude can be read by setting a specific k value.
The SDFT of the mth sequence is

Im(k) = [Im-1(k)− i(m− 1)+ i(m+M − 1)] ej
2πk
M (22)

where Im(k) is the k th harmonic component of the mth

sequence, in detail, referring to i(m) ∼ i(m+M -1) and
Im−1(k) is the k th harmonic component of the previous
(m-1)th sequence i(m-1) ∼ i(m+M -2).
In the time-domain, the k th harmonic of the mth sequence

can be written as

ik (m) =
1
M
Im(k)ej2π

km
M (23)

Supposing that the mth sequence is the input signal and the
extracted k th harmonic component is the output signal, the
transfer function in z-domain is as follows

Gk (z) =
Z [ 1

M Im(k)e
j2π km

M ]

Z [i(k)]

= (1− z−M )

(
1

1− z−1ej2π
k
M

)
1
M
ej2π

k
M (24)

Set

Hc(z) = 1− z−M =
M−1∏
n=0

(1− ej2π
n
M z−1) (25)

There are three parts in the transfer function(equation (24),
as shown in Figure 4): Hc(z), for which equation (25)
shows that this part introduces M zero points centered on
ω = λω0, whereω0 = 2π/M , λ = 0, 1, . . . ,M -1, and evenly
distributed on the unit circle to achieve complete elimination
of the corresponding frequency harmonics. The second part
produces a pole. When ω = kω0, the poles and zeros cancel
each other, achieving zero attenuation and zero phase shift
of the k th harmonic and then extracting the k th harmonic.
The third part adjusts the amplitude of the k th harmonic [20].
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FIGURE 4. Structure diagram of the SDFT algorithm.

The corresponding pole-zero diagram forM = 24 and k = 5
is shown in Figure 5.

FIGURE 5. Pole-zero diagram of the SDFT algorithm (M=24 and k=5).

Apparently, the Hc(z) part is very important, mainly in
two ways:1) Hc(z) determines which harmonic components
are completely filtered out. In equation (25), Hc(z) intro-
duces zeros at all the integer multiples of the fundamental
frequency, e.g.. ω = λω0 (λ = 0, 1, . . . ,M -1); there-
fore, all the integer harmonics can be completely filtered
out, which might cause zero redundancy for the harmonic
conditions studied in this paper. 2) Hc(z) determines the
dynamic response performance of the harmonic extraction.
Introducing M zero points means M delay links and results
in unnecessary time delay, which is a drawback of the SDFT
algorithm.

To improve the response performance, the generalized slid-
ing discrete Fourier transform (GSDFT) is studied here by
redesigning Hc(z). Considering that, the harmonic orders to
be eliminated in this paper can be represented as k = 6h ±
1(h = 1, 2, 3, . . .), Hc(z) in equation (25) can be redesigned
as z = z1/6e−j2π/6M ; in detail, Hc(z) is redesigned as

Hc(z)= (1− z−
M
6 ej

2π
6 )(1− z−

M
6 e−j

2π
6 )

=

N−1∏
n=0

(1− ej2π
6k+1
6M z−

1
6 )

N−1∏
n=0

(1− ej2π
6k−1
6M z−

1
6 ) (26)

The transfer function of GSDFT can be rewritten as

GkS (z) = (1− z−
M
6 ej

2π
6 )(1− z−

M
6 e−j

2π
6 )

×

(
1

1− z−1ej2π
k
M

)
1
M
ej2π

k
M (27)

The zero center of the GSDFT algorithm becomes
ω = (6h ± 1)ω0, and the number of system zero points
becomes M/6 + M/6 = M/3. Compared with SDFT,
the number of zeros is one third that of the original, which
means the delay time of GSDFT is also reduced to one third
that of SDFT. The corresponding structure diagram of the
GSDFT algorithm is shown in Figure 6, and the correspond-
ing pole-zero diagram when M = 24 and k = 5 is shown in
Figure7.

FIGURE 6. Structure diagram of the GSDFT algorithm.

FIGURE 7. Pole-zero diagram of the GSDFT algorithm (M=24 and k=5).

C. HARMONIC COMPENSATION
After the extraction of the harmonic current components, the
corresponding compensation voltage can then be calculated
based on the motor mathematical models.

FIGURE 8. Harmonic coordinates system.
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First, a harmonic coordinate system is established as shown
in Figure 8 (here, only dealing with the 5th and 7th com-
ponents), and the harmonic current components in rotating
coordinates (dq coordinates) are represented as{

id = id1 + I5 cos(−6ωet + θ5)+ I7 cos(6ωet + θ7)
iq = iq1 + I5 sin(−6ωet + θ5)+ I7 sin(6ωet + θ7)

(28)

where id and iq are the stator currents in dq coordinates and
id1 and iq1 are the fundamental current components. I5 and I7
are the amplitudes of the fundamental, 5th and 7th harmonic
currents, respectively; θ5 and θ7 are initial phase angles of
the fundamental, 5th and 7th harmonic currents respectively.
In addition, the angular frequencies of the 5th and 7th are -6ωe
and 6ωe respectively, in dq coordinates.

For the ideal case, the voltage equations of SPMSM in the
dq coordinates are as follows

u∗d = Rid1 − ωeLqiq1 + Ldpid1
u∗q = Riq1 + ωeLdid1 + Lqpiq1 + ωeψf (29)

While with the consideration of the harmonic components,
the actual voltage equations can be written as

ud=R [id1+I5 cos(−6ωet+θ5)+I7 cos(6ωet+θ7)]
−ωeLq

[
iq1+I5 sin(−6ωet+θ5)+I7 sin(6ωet+θ7)

]
+Ld [pid1+6ωeI5 sin(−6ωet+θ5)−6ωeI7 sin(6ωet+θ7)]
uq=R

[
iq1+I5 sin(−6ωet+θ5)+I7 sin(6ωet+θ7)

]
+ωeLd [id1+I5 cos(−6ωet+θ5)+I7 cos(6ωet+θ7)]
+Lq

[
piq1−6ωeI5 cos(−6ωet+θ5)+6ωeI7 cos(6ωet+θ7)

]
+ωeψf

(30)

In which Ld and Lq are the direct and quadrature induc-
tances, respectively.

Therefore, the voltage deviations to be compensated are

1ud=u∗d − ud
=−R [I5 cos(−6ωet + θ5)+ I7 cos(6ωet + θ7)]
+ωeLq [I5 sin(−6ωet + θ5)+ I7 sin(6ωet + θ7)]
−Ld [6ωeI5 sin(−6ωet + θ5)− 6ωeI7 sin(6ωet + θ7)]
1uq=u∗q − uq
=−R [I5 sin(−6ωet + θ5)+ I7 sin(6ωet + θ7)]
−ωeLd [I5 cos(−6ωet + θ5)+ I7 cos(6ωet + θ7)]
−Lq [−6ωeI5 cos(−6ωet + θ5)+ 6ωeI7 cos(6ωet + θ7)]

(31)

It is hard to obtain these time-dependent quantities
equation (31), e.g., 6ωet , which can be solved based on the
harmonic coordinates, as shown in Figure 8, and the transfor-
mation matrixes are as follows

Cdq→dq5 =

[
cos(−6ωet) sin(−6ωet)
− sin(−6ωet) cos(−6ωet)

]
(32)

Cdq→dq7 =

[
cos(6ωet) sin(6ωet)
− sin(6ωet) cos(6ωet)

]
(33)

Then, the voltage deviations in equation (31) can be trans-
formed as equations (34) and (35), in which Ls = Ld = Lq.

1ud5 = −R [I5 cos θ5 + I7 cos(12ωet + θ7)]
+ωeLs [I5 sin θ5 + I7 sin(12ωet + θ7)]
−Ls [6ωeI5 sin θ5 − 6ωeI7 sin(12ωet + θ7)]
1uq5 = −R [I5 sin θ5 + I7 sin(12ωet + θ7)]
−ωeLs [I5 cos θ5 + I7 cos(12ωet + θ7)]
+Ls [6ωeI5 cos θ5 − 6ωeI7 cos(12ωet + θ7)]

(34)



1ud7 = −R [I5 cos(−12ωet + θ5)+ I7 cos θ7]
+ωeLs [I5 sin(−12ωet + θ5)+ I7 sin θ7]
−Ls [6ωeI5 sin(−12ωet + θ5)− 6ωeI7 sin θ7]
1uq7 = −R [I5 sin(−12ωet + θ5)+ I7 sin θ7]
−ωeLs [I5 cos(−12ωet + θ5)+ I7 cos θ7]
+Ls [6ωeI5 cos(−12ωet + θ5)− 6ωeI7 cos θ7]

(35)

Obviously, both DC and AC (12ωet) components exist
in the compensation voltages. Considering that these AC
components are easily eliminated, the final compensation
voltages can be expressed as{

ucomd5 = −RI5 cos θ5 − 5ωeLsI5 sin θ5
ucomq5 = −RI5 sin θ5 + 5ωeLsI5 cos θ5

(36){
ucomd7 = −RI7 cos θ7 + 7ωeLsI7 sin θ7
ucomq7 = −RI7 sin θ7 − 7ωeLsI7 cos θ7

(37)

Thus, the whole control structure is shown in Figure 9.

FIGURE 9. Block diagram of the whole control structure.

IV. EXPERIMENTAL RESULTS
To verify the effectiveness of the proposed the low speed
sensorless control strategy, an experimental platform was
established, as displayed in Figure 10, whose detailed param-
eters are listed in Table 1.

A. COMPARISONS BETWEEN GSDFT AND SDFT
ALGORITHMS
1) DYNAMIC RESPONSE
With a static input signal iin = sin 500π t , the tracking
waveforms of GSDFT and SDFT are compared in Figure 11.
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FIGURE 10. Experimental platform.

TABLE 1. Detailed parameters for SPMSM.

FIGURE 11. Tracking waveforms with a static input.

Obviously, the tracking time of GSDFT is approximately
two cycles while being approximately five cycles for SDFT.
When t = 0.2s, the input amplitude is doubled(1A->2A),
and the dynamic tracking results are shown in Figure 12.

FIGURE 12. Dynamic voltage waveforms.

Similarly, for GSDFT, the dynamic response time is
approximately two cycles while being approximately five
cycles for SDFT.

For the GSDFT and SDFT algorithms, the execution times
of the extraction of 5th and 7th harmonic components are
compared in Table 2.

TABLE 2. Comparison of harmonic extraction times.

TABLE 3. Comparisons of the extraction results.

The GSDFT algorithm has an approximately 44.82% time
savings compared with SDFT.

2) HARMONIC EXTRACTION COMPARISONS
With the stator currents in Figure 2 as an example, the har-
monic extraction results from different methods are shown
in Table 3.

Apparently, the SDFT and GSDFT algorithms are identical
regarding harmonic extraction.

The conclusions of the above experimental resultscan be
summarized as

(1) This GSDFT method has the same steady extraction
performance as the normal SDFT method, which means the
steady stator current performances of the different methods
are the same.

(2) The dynamic response of the GSDFT is approximately
2-3 signal cycles faster than that of the SDFT, which is
conductive to the digital implementation.

B. STABILITY EXPERIMENTS ON NEW SMO AND
CONVENTIONAL SMO
1) SPEED MUTATION
The experiments are carried out according to the following
procedures to make verifications and comparisons.

(1) At t = 0s, the SPMSM has a full load starting from
0rpm to 10rpm;

(2) At t = 0.2s, the speed abruptly changes from 10rpm to
50rpm.

The estimation results with the conventional and new SMO
methods are shown in Figures 13 and 14.

According to Figure 13 and 14, when the rotor speed is
50 rpm, the estimation errors are within± 6 rpm and± 3 rpm
for the conventional and new SMOs while being± 4 rpm and
± 1.5 rpm for each when the rotor speed is 10rpm, which
proves the effectiveness of this new SMO.

2) LOAD MUTATION
The load mutation experiments are carried out according to
the following procedures.
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FIGURE 13. Estimation results of the conventional SMO.

FIGURE 14. Estimation results of the new SMO.

(1) First, SPMSM runs stably at the 10 rpm;
(2) At t = 0.2s, the load abruptly changes from 0N.m to

the rated value.
The estimation results from the conventional and newSMO

methods are shown in Figures 15 and 16.
According to Figures 15 and 16, when the load abruptly

changes from 0 N.m to the rated value, the dynamic response
times are 6.5 ms and 4.1 ms for the conventional and new
SMOs respectively, and for the estimation error, thi new SMO
has better performance than the conventional one.

3) CHATTERING COMPARISONS
When sliding surface ĩα = 0, the estimated stator value
is equal to the real value. Here, taking the estimated stator

FIGURE 15. Estimation results of the conventional SMO.

FIGURE 16. Estimation results of the new SMO.

FIGURE 17. Chattering comparison for the different SMO strategies.

current as the x-coordinate and the real value as the
y-coordinate, the trajectories of the sliding surface for the
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FIGURE 18. Results without nonlinearity compensation.

different SMO strategies can be compared in Figure 17. It can
be seen that the chattering is improved considerably by the
new SMO.

C. SENSORLESS CONTROL BASED ON NONLINEARITY
COMPENSATION AND THE IMPROVED SMO STRATEGY
1) GIVEN SPEED IS 10RPM
Without the nonlinearity compensation, the waveforms of the
speed, estimated back EMF/H , three-phase currents and the
FFT analysis are shown in Figure 18 while the correspond-
ing waveforms with nonlinearity compensation are given
in Figure 19.

FIGURE 19. Results with nonlinearity compensation.

2) GIVEN SPEED IS 50RPM
Similarly, without the nonlinearity compensation, the wave-
forms of the speed, three-phase currents and the FFT
analysis are shown in Figure 20 while the correspond-
ing waveforms with nonlinearity compensation are given
in Figure 21.

With the nonlinearity compensation being added to the
improved SMO, the harmonic components in the stator cur-
rents significantly decrease from approximately 8.06% to
6.01% (5th harmonic: 4.08% to 2.18%; 7th harmonic: 4.11%
to 2.61%) when the given speed is 10 rpm and from 7.03%
to 3.87% (5th harmonic: 4.62% to 1.71%; 7th harmonic:
4.36% to 1.77%) when the given speed is 50 rpm. The
estimation performances of the back EMF and the rotor
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FIGURE 20. Results without nonlinearity compensation.

position are also improved because of the better stator current
performance.

To further test the applicability of this proposed method,
different low-speed conditions (from 5 rpm to 50 rpm) are
also been tested, and the corresponding results are summa-
rized in TABLE 4.

It is obvious that lower speed means a lower back EMF
value and the estimation accuracy is apparently reduced, e.g.,
when the speed is 5 rpm, this proposed method still works;
however, the estimation accuracy reduces to 40%, while the
estimation accuracy is 6% at 50 rpm.

FIGURE 21. Results with nonlinearity compensation.

TABLE 4. Estimated results for different speeds.

V. CONCLUSION
In this paper, a novel sensorless control strategy was studied
for the SPMSM with low-speed conditions. Through the
introduction of an intermediate variable H , the estimation
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accuracy of the rotor position was improved at low speed as
the back EMF valuewas extended, and the inherent chattering
was also reduced through the redesign of the sliding switch-
ing function. In addition, with the newly designed harmonic
extraction method named GSDFT, a voltage compensation
link was added to compensate for the harmonic components
in the three-phase stator currents because of inverter nonlin-
earity. This nonlinearity compensation could not only reduce
the stator harmonic distortion but also improve the estimation
accuracy of the rotor position.

With this novel control strategy, the rotor estimation accu-
racy could be restricted within ± 3 rpm and ± 1.5 rpm, and
the THD of the stator current reduced from 7.03% to 3.87%
and 8.06% to 6.01% when the rotor speeds were 50 rpm and
10 rpm, respectively, and even when the rotor speed was as
low as 5 rpm, this novel method could also work, but the
accuracy reduced 40%. The execution time of this method
was much shorter than the SDFT compensation method.
In the future, research work on rotor position estimation at
zero speed/large torque or a very low speed should be carried
out in depth.
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