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ABSTRACT Transfer learning (TL) has grown popular in recent years. It is effective to improve the
classification accuracy in the target domain by using the training knowledge in the related domain (called
source domain). However, the classification of missing data (or incomplete data) is a challenging task for
TL because different strategies of imputation may have strong impacts on learning models. To address
this problem, we propose credal transfer learning (CTL) with multi-estimation for missing data based on
belief function theory by introducing uncertainty and imprecision in data imputation procedure. CTL mainly
consists of three steps: Firstly, the query patterns are reasonably mapped into multiple versions in source
domain to characterize the uncertainty caused by missing values. Afterwards, the multiple mapping patterns
are classified in the source domain to obtain the corresponding outputs with different discounting factors.
Finally, the discounted outputs, represented by the basic belief assignments (BBAs), are submitted to a new
belief-based fusion system to get the final classification result for the query patterns. Three comparative
experiments are given to illustrate the interests and potentials of CTL method.

INDEX TERMS Transfer learning, missing data, belief function, Credal classification, uncertainty.

I. INTRODUCTION
Traditional machine learning algorithms have already
achieved great success under the assumption that training
and test set are drawn from the same feature space and data
distributions [1]. In many real-world situations, however,
this assumption is not satisfied, which usually makes the
performance of traditional classifier unsatisfying. Recently,
a newmethod, called Transfer learning (TL) [1]–[3], has been
proposed, which can effectively solve the above problems
and is widely used in many fields, such as indoor WiFi
location [4], text classification [5], sentiment analysis [6], etc.
According to the availability of training patterns in the

target domain, TL methods are categorized into three types:
supervised TL [7]–[9], semi-supervised TL [10]–[12] and
unsupervised TL [13]–[15]. Supervised TL methods uti-
lize the labeled target domain patterns in addition to the
source domain patterns for training. For example, Transfer
Adaboost (TrAdaboost) method [7], which is quite typi-
cal, extends the Adaboost algorithm by adding a weighting
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mechanism corresponding to the the similarity of patterns
in source domain and target domain. In [8], a heteroge-
neous feature augmentation (HFA) method is proposed.
HFA transforms the patterns of two domains into a common
subspace to augment the mapping patterns. Semi-supervised
TL methods further use unlabeled target domain patterns
to help with classification. An extended version of HFA,
called semi-supervised heterogeneous feature augmentation
(SHFA) [10] addresses the heterogeneous situations with
sufficient labeled source patterns and limited target pat-
terns. Interestingly, a semi-supervised TL method based on
manifold regularization is proposed in [11], which exploits
similarity constraints in the target domain to improve per-
formance. Unsupervised TL is an interesting but challeng-
ing task, since it is applicable to the target domain without
labeled patterns. A representative work is transfer component
analysis (TCA) [13], which minimizes the distances between
two domain distributions by mapping the patterns of two
domains to a reproducing kernel Hilbert space. In [14], a joint
domain adaptation (JDA) strategy is presented to simulta-
neously adapt the margin and condition distribution differ-
ences between the labeled source domain and the unlabeled
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target domain. However, all these TL methods are designd on
complete patterns without considering the missing data situa-
tions. Unfortunately, missing data is a common issue in many
real-world data sets. For example, UCI, one of the standard
repository commonly used in machine learning algorithms,
contains 45% of the data sets with missing values [16]. Under
such circumstances, these classical TL classification methods
are no longer adaptable. Therefore, pre-process on the miss-
ing data before classification is necessary.

A number of methods [17], [18] have been developed
to deal with traditional classification problems with miss-
ing data. Generally, these methods respect one missing
randomness mechanism among three assumptions: missing
completely at random (MCAR), missing at random (MAR)
and not missing at random (NMAR). The simplest method
is to discarding incomplete patterns, which is acceptable
when the missing values only count for a small proportion
(less than 5%) of the whole data set. Imputation strat-
egy, in many situations, is a popular method for incom-
plete pattern classification [19]–[23], [25], [26]. For instance,
in mean imputation (MI) [19], the missing values are simply
replaced by the mean values of the complete attributes in
the same dimension. A commonly used K -nearest neighbor
imputation (KNNI) method [20], [21] uses K -nearest neigh-
bors (KNNs) of patterns to estimate missing values. In fuzzy
c-means imputation (FCMI) method [22], [23], the missing
values are filled with the clustering centers produced by fuzzy
c-means (FCM) [24] and the distances between the pattern
and the centers.

Particularly, linear local approximation (LLA) [25], uses
the KNNs with optimal weights obtained by local linear
reconstruction to estimate the missing values. Interestingly,
some recent research works have been dedicated to multiple
estimation or non-estimation of missing values [27]–[29].
These methods have achieved satisfying results in some way,
whereas they cannot be directly employed in TL because of
the inconsistency of feature space and distribution. In addi-
tion to missing values, knowledge transfer will also bring
uncertainty in TL, since the calculation error caused by trans-
fer rules will inevitably occur in the process of transfer. Thus,
how to reasonably characterize the transfer and classification
uncertainty caused by missing values is a very meaningful
work.

In this paper, we propose a credal transfer learning (CTL)
method for missing data, which introduces uncertainty and
imprecision while imputing missing values based on the
belief function theory. Belief function theory [30] has been
widely used in modeling and reasoning uncertain information
in application domains of pattern classification [31]–[34],
pattern clustering [35], [36] and information fusion [37], [38],
also conventionally called credal methods. In credal classifi-
cation methods, one pattern may belong to multiple classes
(i.e. particular dis-junction of several singleton classes),
named meta-classes, with different belief degree. Such rep-
resentation is able to characterize the imprecision of clas-
sification for uncertain patterns. There are some methods

developed for missing data based on belief function [31],
[32]. For instance, a prototype-based credal classifica-
tion (PCC) method is proposed in [31], where the missing
values are estimated respectively with the class prototypes
obtained by training patterns and they can be classified by
traditional classifiers. More recently, a new transfer classifi-
cationmethod, named evidence-based heterogeneous transfer
classification (EHTC) is proposed in [34] to deal with the
uncertainty in the process of feature mapping in heteroge-
neous domains. Nevertheless, there is no relevant literature(s)
on transfer learning of incomplete pattern based on belief
function theory.

CTL method applies belief function theory for the rep-
resentation of uncertainty information in transfer learning
on incomplete data. In CTL, we assume that patterns in
source domain are attributed with ground truth labels while
labels of patterns in target source are not observed. The
feature distributions of the two domains are different while
attributes of the patterns in the target domain are partially
missing. Specifically, CTL first uses observed attributes to
estimate multiple mapping patterns in the source domain
for each pattern with missing values in the target domain
based on KNNs techniques. Afterwards, a basic classifier
(such as K-NN [39], EK-NN [40], NB [41]) that handles
the complete pattern is selected. In this step, the labeled
patterns in the source domain are used to classify the multi
mapped versions of each query pattern. Finally, different
discounting factors ofmulti-classification results are obtained
depending on the distances between query patterns and cor-
responding KNNs. Final classification results are obtained
from multi-classification results. Non-conflicting classifica-
tion results are directly fused by discounted averagingmethod
while an adaptive fusion method is designed to aggregate
the remaining conflicting results. By conducting such step,
the patterns that are difficult to be classified are automati-
cally submitted to the reasonable meta-class, which is able
effectively reduce misclassification rate. The classification
of the uncertain patterns in meta-class can be eventually
identified (refined) using certain other (costly) techniques or
with extra information sources.

The contributions of this work mainly concern three
aspects.

1) A multi-estimation strategy in different distribution
domains is proposed. In this strategy, the unobserved
attributes of incomplete patterns are estimated based on
observed ones, with an uncertainty degree reasoned by the
belief function theory. The capability of uncertainty rea-
soning is one of the advantages over traditional imputation
methods.

2) A new adaptive global fusionmethod for decision-making
in classification is designed. Because of the uncertainty
reasoned by the belief function theory, CTL is able to make
the decision more cautiously by considering the imprecision
and uncertainty of learning results. Such decision making
method effectively reduces the error rate in practice, which
is justified by experiments on real world data.

VOLUME 8, 2020 70317



Z. Ma et al.: CTL With Multi-Estimation for Missing Data

3) Evidential theory (belief function theory) is orig-
inally introduced in transfer learning, with effectiveness
of classification application justified on incomplete data
sets.

This paper is organized as follows. The preliminary infor-
mation of transfer learning and belief function theory is
shortly reviewed in section II, and the CTL method is intro-
duced in the Section III. The performance of CTL is tested
and compared with several other methods in Section IV. The
conclusion of this paper is finally given in Section V.

II. PRELIMINARIES
In this section, brief introduction of transfer learning (TL)
and belief function theory is given as well as corresponding
notations.

A. TRANSFER LEARNING
In TL, the representation of patterns are transferred between
different domains. A domain D is constituted of two compo-
nents: feature space X and marginal probability distribution
P(X ). Formally, D = {X ,P(X )}, X = {x1, . . . , xn} ∈ X ,
where xi is the i-th pattern ofD. For a given domainD, a task
T is composed of two elements: label space Y and decision
function f (·), Formally, T = {Y, f (·)}, Y = {y1, . . . , yn} ∈
Y , where yi denotes the corresponding output label.

Given a source domain Ds with a corresponding a source
task T s and a target domainDt with a corresponding a target
task T t , Ds

6= Dt or T s
6= T t . TL is the process of

improving the decision function ft (·) in the target domain Dt

by using relevant knowledge in source domainDs and source
task T s.

The existing TL methods can be divided into three
categories: supervised TL [7]–[9], semi-supervised
TL [10]–[12] and unsupervised TL [13]–[15]. supervised
TL requires training classifiers with sufficient labeled pat-
terns. Semi-supervised TL uses few labeled patterns but
vast unlabeled patterns to train the classifier. In this paper,
we mainly focuses on the unsupervised TL, where no labeled
patterns are available for training. More detailed introduction
and examples of TL are available in [1], [2] and [3].

B. BELIEF FUNCTION THEORY AND CREDAL PARTITION
Belief function theory, also known as Dempster-Shafer the-
ory (DST) or evidence theory [30], is originally proposed
by Dempster and formed by Shafer generalization. It is a
theoretical framework for reasoning with partial and unreli-
able information, notably the uncertain problems. It has been
successfully applied in many fields [31]–[38]. In this theory,
a set of finite mutually exclusive and complete elements� =
{ω1, ω2, · · · , ωc} is defined as the framework of discernment
of the problem under study, usually a decision problem.
The uncertainty is expressed on the power-set of �, denoted
as 2�, where the disjunctive elements imply information with
imprecision.

The basic belief assignment (BBA) m(·) on the framework
of discernment � is a function m : 2�→ [0, 1], such that

∑
A∈2�

m(A) = 1

m(∅) = 0
(1)

All the elements A ∈ 2� such that m(A) > 0 are called focal
elements of m(·).
A credal partition [35] is defined as the n-tuple M =

(m1, . . . ,mn), where mi is the BBA of the pattern xi ∈ X ,
i = 1, 2, . . . , n associated with the different elements of the
power-set 2�.
In classification problems, the output of each classifier can

be regarded as an evidence on all possible classes represented
by a BBA. The DS rule [30] is used in many applications to
combine multiple evidence of different independent sources
because of its commutative and associative properties. The
DS combination of evidence m1(·) and m2(·) from two inde-
pendent sources over a frame of discernment 2� is defined
by

mDS (A) =


0, A = ∅∑

B∩C=A
m1(B)m2(C)

1−
∑

B∩C=∅
m1(B)m2(C)

,A 6= ∅, ∀A ∈ 2�

(2)

In DS rule, all conflict belief mass
∑

B∩C=∅ m1(B)m2(C) is
proportionally redistributed back to the focus element. How-
ever, DS rules can also produce very unreasonable results in
high conflict situations and some special low conflict situa-
tions. Thus, a number of alternative combination rules have
emerged to overcome the limitations of DS rule, such as the
well-known Yager’s rule [42], Dubois-Prade (DP) rule [43],
and more recently the more complex Proportional Conflict
Redistributions (PCR) rules [44] are found.

III. CREDAL TRANSFER LEARNING
CTL method is developed for incomplete data classification
in transfer learning, where data is partially missing (or unob-
served). It consists of two steps.

Firstly, CTL estimates multiple mapping patterns in the
source domain for each pattern with missing values in the
target domain by assuming that there are a few number of par-
allel (one-to-one) patterns pairs. In this step, we assume that
some one-to-one pattern pairs are given to link two different
domains, whereas the labels of these patterns are unknown.
Afterwards, the mapping values for (incomplete) patterns
will be classified by the corresponding trained classifiers
to obtain multiple different classification results, which are
submitted to a new belief-based fusion system with different
weights (reliability) to get the final classification result for the
each pattern with missing values. In this step, multiple labels
may be assigned to one pattern, interpreted as imprecision.
Under such circumstances, these patterns are submitted to a
corresponding meta-class reasoning the imprecision. Finally,
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the classification of the uncertain patterns in meta-class can
be eventually identified using some cautious techniques or
with extra information sources. Therefore, CTL method is
able to prevent erroneous fatal decisions by cautiously par-
titioning the classification results when necessary.

A. MULTI-ESTIMATION AND CLASSIFICATION
Given a data set X̃ s with vast labeled complete patterns1

in source domain and a data set X̃ t in target domain with
unlabeled patterns partially observed, where the feature dis-
tribution of two domains are completely different but label
spaces identical, i.e., patterns in X̃ s and X̃ t are in the class
partition framework� = {ω1, . . . , ωc}. Here, we assume that
there are some one-to-one pattern pairs to build cross domain
connections in two domains, respectively denoted as X s =
{xs1, · · · , x

s
m} and X

t
= {xt1, · · · , x

t
m}. The labels of these

patterns are not available since there is no prior information
in target domain. For a query (incomplete) pattern x̃i in target
domain, K -nearest neighbors (KNNs) strategy2 is applied to
estimate multiple mapping patterns in source domain.

In the process of multi-estimation, the KNNs of the query
pattern x̃i are firstly searched with the observed attributes.
Hence the calculation of the distance between the incomplete
pattern in X̃ t and the complete pattern in X t is very critical.
In CTL, the distance between the pattern x̃i and complete
pattern xtk is given for x̃i ∈ X̃

t and xtk ∈ X
t by:

||x̃i, xtk || =

√√√√ p∑
∃s,s=1

(x̃is − x tks)
2 (3)

where || · || denotes the Euclidean distance, x̃is and x tks the
s-th attributes of the patterns, respectively. p is the number of
dimensions of observed attributes in x̃i.
Afterwards, the K minimum distances ||x̃i, xtk || (k =

1, . . . ,K) and corresponding complete patterns xtk ∈ X
(k = 1, . . . ,K) are obtained from these distances. Since xtk
and xsk are one-to-one pattern pairs that connecting target and
source domain called as bridge, for the pattern x̃i withmissing
values, K version mapping values in source domain can be
estimated for the pattern x̃i according to KNNs as follows.

x̃ki = xsk (4)

where xsk is the mapping value of xtk in source domain, and
k = 1, . . . ,K.

A simple example is given to illustrate the process of
estimating multiple mapping values in the source domain.
Example 1: Given a source domain with three attributes

and a target domain with four. The 2nd attribute of a
pattern x̃i is unobserved. We assume that three nearest neigh-
bors are found in X t according to the observed attributes

1in this paper, we focus on the classification of (incomplete) patterns in the
target domain. Thus, the labeled patterns in the source domain are assumed
to be complete.

2K -nearest neighbors (KNNs) strategy is a simple and rational method,
because it can provideK versions of possible estimations, which well reflects
the uncertain and imprecision of estimation.

of x̃i, denoted as follows.

xt1 = [x t11, x
t
12, x

t
13, x

t
14]

xt2 = [x t21, x
t
22, x

t
23, x

t
24]

xt3 = [x t31, x
t
32, x

t
33, x

t
34]

Thus, according to Eq. (4), three mapping patterns xsk ,
(k = 1, 2, 3) in source domain are estimated by xtk ,
(k = 1, 2, 3) of pattern x̃i.

x̃1i = [xs11, x
s
12, x

s
13]

x̃2i = [xs21, x
s
22, x

s
23]

x̃3i = [xs31, x
s
32, x

s
33]

For each mapping pattern x̃ki in source domain, any classi-
fiers adaptable for complete pattern is available. TheK pieces
of sub-classification results for x̃ki are given by

Pki = 0(x̃
k
i

∣∣∣X̃ s ) (5)

where 0(·) represents the chosen classifier. Pki is considered
as a Bayesian BBA if the chosen classifier works under prob-
ability framework (e.g., K-NN [39], NB [41]), or a regular
BBAwith ignorance� returned by the classifier works under
evidence theory (e.g., EK-NN [40]).

In the CTL method, we combine K pieces of classifica-
tion results to obtain the credal classification of incomplete
patterns. Since the distances between patterns and KNNs are
different, they are not equally weighted in the fusion process.
Thus, discounting techniques are required for K pieces of
classification results. The details are given in the next section.

B. DISCOUNTING CLASSIFICATION RESULTS
For one pattern, the weighting factors of K pieces of clas-
sification results correspond to the distances between the
pattern x̃i and its KNNs. In general, a larger distance from
the pattern to the neighbor implies a less reliable estimated
mapping value. i.e., a larger distance ||x̃i, xtk || corresponds
to a smaller discounting factor γ ki . An effective method is
adopted to define the relative discounting factor γ ki , formally:

γ ki =
wki
wmaxi

(6)

with

wki = e−||x̃i,x
t
k || (7)

where wmaxi = max{w1
i , . . . ,w

K
i }. The K pieces of clas-

sification results are discounted according to the discount
factor γ ki . Afterwards, a well known discounted rule intro-
duced by Shafer in [30] is applied here, more precisely,
discounted masses of belief are obtained as follows:{

mki (A) = γ
k
i P

k
i (A),A ⊂ �

mki (�) = 1− γ ki + γ
k
i P

k
i (�).

(8)

where mki (·) denotes the BBAs of different classes (focal ele-
ments) after discounting the classification results of mapping
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pattern x̃ki in the source domain by the discounting factor γ ki .
By doing this, one can obtainKmass functions (mki (·)) for the
pattern x̃i, and they will be fused by the global fusion method
we designed to obtain the final class information of x̃i.

C. GLOBAL FUSION OF DISCOUNTED CLASSIFICATION
RESULTS
After estimation and classification step, the highest supported
class of a pattern x̃i in one result is defined by:

ωkij = ωj|m
k
i (ωj) = argmax

ωj∈�

(mki (ωj)) (9)

where ωkij denotes the highest support class ωj of pattern x̃i
subjected to mki (ωj).
In the fusion process, we propose an adaptive fusion strat-

egy to distinguish the discounted K classification results into
two following situations. For one pattern, its classification
results with different k ∈ K may be either identical or
different.

In order to further introduce this adaptive fusion method,
we assume that the discountedK classification results highest
support ρ (1 ≤ ρ ≤ K, 1 ≤ ρ ≤ c) classes, and that ν
(1 ≤ ν ≤ ρ) classes of ρ are supported by ϕ (2 ≤ ϕ ≤

K) discounted classification results, that is, ρ − ν classes are
supported by only one discounted classification result.

The adaptive fusion strategy consists of two steps: fusion of
non-conflict discounted results and global fusion of conflict
discounted results.
Step 1: Fusion of non-conflict discounted results
Let’s consider that the ς (2 ≤ ς ≤ ϕ) classification results

of the pattern x̃i strongly support ωkij (j = 1, . . . , ρ, k =
1, . . . , ς ), indicating that the ς classification results are not
conflicting. Therefore, these results are directly fused with
the simple rule as follows. The fusion results of the BBAs are
given to a focal element A by

m̃1,...,ς
i (A) =

ς∏
k=1

mki (A), A ∈ � (10)

The fusion results obtained from Eq. (10) need to be nor-
malized for the convenience of credal classification. In order
to the convenience of computation, we use the classical nor-
malization given by

m1,...,ς
i (A) =

m̃1,...,ς
i (A)∑

A∈�
m̃1,...,ς
i (A)

(11)

The final fusion result can be obtained directly with this
rule if K discounted classification results of a pattern x̃i
strongly support a specific class (i.e., ς = K), which indi-
cates that the K discounted classification results are consis-
tent and non-conflicting. However, a more cautious method
is essential to model conflicts between different discounted
classification results for a pattern due to the invalidity of
this rule in dealing with conflict information if ς 6= K
(i.e., 2 ≤ ς < K), which is introduced in the next step.

Step 2: Global fusion of conflict (discounted) results
After non-conflict discounted fusion, ρ fused (discounted)

completely conflicting results for a pattern x̃i is obtained,
of which ν results are obtained from Step 1, and ρ−ν results
are the discounted classification results. It should be noted
that although the classes supported by ρ results are different,
their supports for the most likely classes are different, and
it is difficult to accurately classify into a small number of
classes (e.g. 2 or 3 classes) for a pattern in general. There-
fore, we should attribute priorities to obtain the most likely
meta-class composed of the highest supported and difficult-
divided-singleton classes the pattern belongs to, and generate
a new framework consisting of the meta-class and singleton
classes for the pattern. The most likely meta-class for a
pattern can be obtained by a threshold parameter ε, defined
as follows:

ψx̃i = {ωj ∪ . . . ∪ ωt |Z−Y ≤ε}, 1≤ j, t≤c, j 6= t (12)

in which {
Z = max{m(ωkij), . . . ,m(ω

k
it )}

Y = m(ωkij)
(13)

where ωkij(1 ≤ k ≤ ρ) denotes one of the highest supported
class ωj for the pattern x̃i in ρ results, and ψx̃i is the most
likely meta-class of the pattern x̃i, which is composed of
the highest supported and difficult divided singleton classes
(such as ωj, ωt , etc). For a specific pattern x̃i, the new global
fusion rule are defined as:

mi(A) =
1
K
·

∑
⋂ρ
i=1Bi 6=∅

m1
i (B1) . . .m

ρ
i (Bρ),

for |A| = 1, with A ∈ �

mi(A) =
1
K
·
∏

[m(ωkij) . . .m(ω
k
it )],

for |A| ≥ 2, with A = ψx̃i

(14)

subject to

K =
∑

B1∩...∩Bρ 6=∅

[m1
i (B1) . . .m

ρ
i (Bρ)]

+

∏
[m(ωkij) . . .m(ω

k
it )] (15)

where K is the normalization factor, |A| is the number of
singleton elements included in A. It is not difficult to find
Eq.(14) that the precision of classification of one pattern
(i.e. whether the pattern is classified into meta-class or not)
depends mainly on the parameter ε. Parameter ε is a conflict
measure factor, which essentially characterizes the degree of
conflict between different evidences (classification results).
ε effects the number of meta-classes in the fusion process,
in order to reduce the risk of misclassification, all subsets of
set ψx̃i are retained and the corresponding conflict informa-
tion is assigned to meta-classes. Here is the guideline given
for adjusting the parameter ε as follow.
1) Guideline for Choosing the Parameter ε: In practice,

the threshold ε is used for meta-classes selection in classi-
fication. A bigger ε value corresponds to a smaller number of
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TABLE 1. Credal Transfer Learning (CTL) Method.

are mis-classified patterns, as well as a more ambiguous clas-
sification result, i.e., more patterns belong to meta-classes.
A small ε value results in fewer patterns in the meta-classes,
but may cause more misclassifications for imprecise patterns.
Therefore, ε should be tuned according to the adapted impre-
cision degree. In this paper, a proper interval ε ∈ [0, 0.3] is
recommended, and ε = 0.1 is regarded as a default value in
most situations.

For the convenience of implementation, the CTL method
is outlined in Algorithm 1.

IV. EXPERIMENT APPLICATIONS
In this section, we test and evaluate CTL method through
extensive experiments on twelve real data sets from UCI
repository [16] and five public high dimensional data sets
(i.e., MNIST + USPS, COIL20 and Office + Caltech).
In order to fully justify the CTL method, we consider the
different ways of combining the classical missing value esti-
mation methods and with the traditional transfer learning
methods. The imputationmethods and transfer learningmeth-
ods used in the comparison methods are listed as follows.
• Imputation Methods:
1) Mean Imputation (MI) [19]: In MI, the missing values

are replaced using the mean value of the same attribute of the
data set in the target domain.

2) K -Nearest Neighbor Imputation (KNNI) [20], [21]: In
KNNI, the missing values are estimated by KNNs of the
patterns in the target domain.

3) Locally Linear Approximation (LLA) [25]: In LLA,
the missing values are estimated using KNNs with optimal
weights obtained by the locally linear reconstruction.
• Transfer Learning Methods: 1) Single Value

Mapping-Based Transfer Learning (SVMTL) [34]: In
SVMTL, only one mapping value is found for each incom-
plete pattern with estimation in the target domain, which
means that when we find the nearest neighbor of a pattern, its
corresponding pattern in the source domain is directly taken
as the mapping value.

TABLE 2. Basic information of the used data sets.

2) Weighted Mapping-Based Transfer Learning (WMTL)
[34]: In WMTL, KNNs are found for each incomplete pat-
tern with estimation in the target domain, then the KNNs
corresponding patterns in the source domain are weighted to
synthesize a new pattern as the mapping value according to
the distance between pattern and KNNs.

3) Transfer Component Analysis (TCA) [13]: In TCA,
patterns in the source domain are mapped to patterns in the
target domain in the reproducing kernel Hilbert space, where
common latent features of similar marginal distribution are
defined on the two domains.

4) Joint distribution adaptation (JDA) [14]: In JDA,
Maximum Mean Discrepancy (MMD) is applied to measure
the difference between marginal and conditional distribu-
tions, and a new feature representation is constructed to train
classifiers.

In experiments, the performance of CTL method is com-
pared with twelve different combination methods, i.e., MI +
SVMTL (MSTL), KNNI + SVMTL (KSTL), LLA +
SVMTL (LSTL), MI +WMTL (MWTL), KNNI +WMTL
(KWTL), LLA + WMTL (LWTL), MI + TCA (MTCA),
KNNI + TCA (KTCA), LLA + TCA (LTCA), MI + JDA
(MJDA), KNNI + JDA (KJDA) and LLA + JDA (LJDA).
In this paper, the K -Nearest Neighbor (K-NN) [39],

Evidence K -Nearest Neighbor (EK-NN) [40], Naive
Bayesian (NB) and Adaboost [41], [45] classifier are
employed as basic classifiers respectively. K = 5 is default
in KNNs, K-NN and EK-NN, and the parameters of EK-NN
are automatically optimized by the method introduced
in [40].

In our simulations, the misclassification is declared
(counted) for one pattern truly originated from ωi if it is
classified into A with ωi ∩A = ∅. If ωi ∩A 6= ∅ and A 6= ωi
then it will be considered as an imprecise classification. The
error rate denoted by Re is calculated by Re = Ue/N ,where
Ue is number of misclassification errors, and N is the number
of patterns in target domain. The imprecision rate denoted by
Ri is calculated byRi = Ui/N , whereUi is number of patterns
committed to the meta-classes. The experiment is conducted
with Matlab software.
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TABLE 3. Classification results of different methods with different ε values (In %).

A. EXPERIMENT 1
Twelve well-known UCI data sets are used to test the perfor-
mance of CTL, and The basic information of the used data
sets including number of classes (#Class.), attributes (#Attr.)
and instances (#Inst.) are shown in Table 2. We divide the
attributes of each data set into two parts corresponding to the
source domain and target domain, to fit our transfer learning
scenario. For instance, if a data set has 15 attributes, and we
take 7 attributes as the source domain attributes, while the rest
8 attributes are regarded as target domain. We segment each
data set into three partitions by the following steps.

1) In the two domains, 5% one-to-one corresponding pat-
terns pairs are selected as bridge.

2) The rest patterns in the source domain are labeled train-
ing patterns.

3) The remaining patterns in the target domain are the
test patterns with missing values, in which the test patterns
randomly lose n attributes.
Table 2 shows the number of attributes of source domain

and target domain, which are expressed as Ns and Nt respec-
tively. Our CTL method and other comparison methods are
used to classify test patterns with missing values in the target
domain. Here, ten sets of source and target domain are ran-
domly generated for the same data set, and the average values
of the evaluation index are reported.

In this experiment, K-NN is selected as basic classifier. The
average error rate Re and imprecision rate Ri (for CTL) of
the different methods with different meta-class threshold of ε
(i.e., ε = 0.05, 0.1, 0.15, 0.2), are given in Table 3.3

3The number of dimensions of each data set in target domain is shown
in Table 2, and the n value in Table 3 is the number of missing dimensions
in target domain

FIGURE 1. Classification results of different ε with K-NN classifier.

One can see from Table 3 that the CTL method gener-
ally yields lower error rate than other methods, but mean-
while some imprecision are appeared in the classification
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FIGURE 2. Classification results of different methods with K-NN classifier.

result due to bringing in meta-classes, which indicates that
some incomplete patterns are very difficult to classify due
to lack of attributes information. It is worth noting that the
increase of the number of missing values (i.e., n) in tar-
get domain generally results in the increase of error rate,
and the increment of imprecision in CTL, since the more
missing values cause the bigger uncertainty in classifica-
tion problem. So the credal classification fusion method,
which includes meta-classes in CTL, is very effective in
characterizing the imprecise degree, and helps to reduce
the rate of misclassification. In CTL, with the increases
of ε from ε = 0.05 to ε = 0.2, which causes the
decrease of error rate but meanwhile it brings the increase of
imprecision rate. The results show that the pattern attributes

used are not enough to accurately classify the patterns in
meta-class. If one wants to obtain more precise classification
results, some other source information with complementary
characteristics.

Figure 1 shows the effect of different ε on CTL clas-
sification results, where the x-axis denotes the meta-class
threshold ε, ranging from 0.05 to 0.25, and the y-axis rep-
resents the average of the classification results with scale
of [0,1]. One can intuitively find that with the meta-class
threshold ε increasing, the error rate of CTL method tends
to decrease, whereas the imprecision rate tends to increment,
which is consistent with the trend in Table 3. Figure 2 shows
the average classification error rate of CTL with respect
to other methods when the meta-class threshold ε = 0,
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TABLE 4. Classification results of different methods with EK-NN classifier (In %).

TABLE 5. Classification results of different methods with NB classifier (In %).

where the x-axis denotes the number of missing attributes and
the y-axis denotes the error rate. In this situation, the CTL
method only obtains a specific result. One can find that
the CTL method still has a significant effect on these data
sets. In real applications, the parameter ε should be tuned
according to the imprecision rate one can accept in the
classification. The CTL method allows the patterns that are
really difficult to be classified correctly to be assigned to
proper meta-class, and they should be cautiously treated in
applications.

B. EXPERIMENT 2
In this experiment, we use the twelve real data sets
in Table 2 to evaluate the performance of CTL with respect to
MSTL, KSTL, LSTL, MWTL, KWTL and LWTL. EK-NN,
Adaboost and NB4 are selected as basic classifiers and the
meta-class threshold ε = 0.1 is selected here. The average
error rate Re and imprecision rate Ri (for CTL) of different

4Naive Bayes is not applicable to Io and Seg data sets, because the
within-class class variance of several attributes is not positive.
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TABLE 6. Classification results of different methods with Adaboost classifier (In %).

methods with different basic classifiers (i.e., EK-NN [40],
NB [41], Adaboost [45]), are reported in Tables 4-6.

In Tables 4-6, we can see that error rates of CTL method
with EK-NN, Adaboost and NB classifiers are smaller than
the other appliedmethods inmost situations. In parallel, some
incomplete patterns that are very difficult to classify into a
specific class have been submitted to the meta-classes. With
the number of missing values n increases, it may cause the
increment of error rates in the classifiers, and the imprecision
rate generally becomes higher in CTL, which is reasonable.
In the process of credal transfer learning, meta-classes are
introduced to reasonably characterize the imprecision caused
by missing values, so the proposed method is able to effec-
tively reduce classification error. The average error rate and
imprecision rate denoted by Ave of different methods on
different data sets with the same classifier is given in the last
row of Tables 4-6 to express the general performance of the
corresponding method. It can be seen that CTL method has
good adaptability in three basic classifiers: EK-NN,Adaboost
andNB. In other words, CTLmethod has good robustness and
can be applied to various basic classifiers. However, in the
situation of large amount of data, we find that NB classifier
takes less time than EK-NN and Adaboost, because EK-NN
and Adaboost classifiers will bring heavy computational bur-
den.

C. EXPERIMENT 3
In this experiment, we adopted five public high dimen-
sional data sets: MNIST + USPS, COIL20 and Office +
Caltech. These data sets have been widely used in most
of the existing TL works. Table 7 shows the details of the
data sets. MNIST (M) and USPS (U) are two handwritten

TABLE 7. Basic information of the high dimensional data sets.

digits recognition data sets that follow very different distribu-
tions. MNIST includes 60000 training images and 10000 test
images, USPS contains 7291 training images and 2007 test
images. The Office-Caltech data set contains 10 classes of
images from four domains, and we select Amazon (A) and
Caltech (C) for testing. COIL20 (CO) contains 20 classes
and 1440 images, with 72 images in each class. Detailed
descriptions about these data sets can be found in [14]. Here,
we use A→ B to express the knowledge transfer from source
domain A to target domain B.

In experiment, we randomly select 10 patterns in each class
from both the source domain and the target domain as one-
to-one corresponding pattern pairs. Then, the rest patterns
in the source domain are considered as labeled training set,
and the patterns in the target domain as test set, in which
each pattern randomly loses n attributes. EK-NN is selected
as basic classifier, and the parameter ε = 0.1 is selected
here. In order to fully prove the validity of CTL method
for high dimensional data, we also use two other classic TL
methods (i.e., TCA [13] and JDA [14]) for complete patterns.
In TCA and JDA, we choose RBF kernel uniformly, and the
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TABLE 8. Classification results of different methods with high dimensional data sets (In %).

FIGURE 3. Classification results of different methods with different K
values.

implementation details of TCA and JDA follow [14]. The
average error rate Re and imprecision rate Ri (for CTL)of
different methods is given in Table 8.

From Table 8, we observe that CTL has better performance
than the rest of methods in high dimensional applications.
The average classification error rate of CTL on these data
sets is 34.82%, which is 5.26% lower than best baseline
method KSTL. This proves that CTL can construct a more

effective representation for the task of cross domain incom-
plete pattern classification.

Figure 3 shows more clearly and intuitively the influence
of different K values in EK-NN classifier on classification
results. The x-axis corresponds to the K value, ranging from
3 to 13, and the y-axis the average error rate in different
methods, in interval of [0, 1]. SVMTL, WMTL, TCA and
JDA respectively denote the average results under three impu-
tation methods. We can observe that the error rate of CTL
is always lower than that of other methods, and different K
values has little impact on the classification results in CTL.
This shows that CTL method has strong robustness for K
values selection, which is a good feature for CTL method in
practical classification applications.

V. CONCLUSION
In this paper, A new credal transfer learning (CTL) method,
based on the belief function theory, is proposed to classify
missing data. CTL method is able to effectively address
the classification problem of missing values, which training
and test sets come from different distribution domains. CTL
uses observed attributes to search for K -nearest neighbors
(KNNs), and estimates K versions of mapping patterns in
the source domain for incomplete patterns the target domain
according to some given one-to-one pattern pairs, which can
effectively represent the uncertainty of estimation caused by
missing values. The K pieces of classification results then
are discounted by the discounting (reliable) factors depend-
ing on the distance between the corresponding KNNs and
the (incomplete) pattern, and they are adaptively fused by
a originally proposed method under the framework of belief
function theory. The non classifiable patterns are reasonably
submitted to the relative meta-class regarded as the union of
some specific classes, representing classification with impre-
cision. The reasoning of imprecision is able to reduce the risk
of error and characterize the uncertainly due to the lack of
attributes information. Further technique (possibly costly) or
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extra informative sources can be used if more precise results
are required. Finally, CTL the effectiveness of CTL is justi-
fied by three experiments, in which comparison with other
methods is executed on real data sets. The results show that
CTL is able to reduce mis-classification rates, and captures
and represents well the imprecision of classification caused
by missing values.

In this work, we assume that some one-to-one pattern pairs
are given. In some situations, however, the pattern pairs may
not be available. Therefore, in the future, we will consider
a more general TL method instead of using pattern pairs.
In parallel, we will further study the problem of cross domain
incomplete pattern classification from the perspective of deep
learning and data-driven methods [46], [47].
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