IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received March 6, 2020, accepted March 22, 2020, date of publication March 25, 2020, date of current version April 8, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2983308

Run-Time Reconfigurable MPSoC-Based
On-Board Processor for Vision-Based

Space Navigation

ARTURO PEREZ"”1, ALFONSO RODRIGUEZ"1, (Student Member, IEEE),
ANDRES OTERO', (Member, IEEE), DAVID GONZALEZ ARJONAZ,

ALVARO JIMENEZ-PERALO2, MIGUEL ANGEL VERDUGO?,

AND EDUARDO DE LA TORRE !

I Centro de Electrénica Industrial, Universidad Politécnica de Madrid, 28006 Madrid, Spain
2GMV Aerospace and Defence SAU, 28760 Madrid, Spain

Corresponding author: Eduardo De La Torre (eduardo.delatorre @upm.es)

This work was supported in part by the ENABLE-S3 Project through the ECSEL Joint Undertaking under Grant 692455, and in part by the
European Union’s Horizon 2020 Research and Innovation Program and Austria, Denmark, Germany, Finland, Czech Republic, Italy,
Spain, Portugal, Poland, Ireland, Belgium, France, The Netherlands, U.K., Slovakia, and Norway.

ABSTRACT This paper describes a reconfigurable architecture for an on-board processor to be used in
space exploration critical systems. It relies on, a dynamically reconfigurable multi-accelerator hardware
architecture that provides transparent reconfiguration and scalable performance, dependability, and power
consumption, at run-time. The architecture is integrated under an RTEMS operating system, which manages
reconfiguration and fault mitigation in a fully-compatible way with space requirements. In this work,
the proposed processor is used to implement a vision-based navigation system, providing fully autonomous
adaptation to different phases of a space mission timeline or events that the spacecraft may encounter
during its lifespan. Results show that reconfigurability enables the practical usage of Commercial Off-The-
Shelf (COTS) Multiprocessor Systems-on-Chips (MPSoCs) in real scenarios.

INDEX TERMS Vision-based navigation, reconfigurable on-board processor, high performance embedded

computing, real-time operating systems.

I. INTRODUCTION
Small bodies, including asteroids and comets, have been and
will continue being targets of different in-situ exploration and
sample-return space missions since they constitute an unri-
valed source of information about the history of the Solar Sys-
tem. A significant example is Rosetta, which was designed
and managed by the European Space Agency (ESA), having
Comet 67P/Churyumov-Gerasimenko as its destination [1].
Reaching and landing on an asteroid requires that tight
orbital and descent specifications are followed. This goal
is only possible with extremely accurate Guidance, Navi-
gation, and Control (GNC) systems. The accuracy required
not to compromise the success of the mission cannot be
guaranteed using only inertial units. Inertial measurements
diverge quickly, and thus, they have to be fused periodically

The associate editor coordinating the review of this manuscript and

approving it for publication was Venkata Ratnam Devanaboyina

VOLUME 8, 2020

with absolute references. The use of cameras is the only
solution to provide the absolute reference since, in the far
and medium distance ranges from the spacecraft to the target,
it is not possible to relay on altimeter sensors. The extrac-
tion of navigation data from images is called Vision-Based
Navigation (VBN).

VBN algorithms must necessarily run autonomously on
board the spacecraft since the communication delay with
the ground control center would prevent remote processing.
Taking the NASA InSight mission to Mars as an example,
the Entry, Descent, and Landing (EDL) phase until reaching
the surface of Mars lasted six minutes [2], while a one-
way communication from Earth to the spacecraft required
about ten minutes, in best cases scenarios. However, on-board
VBN constitutes a challenge, since it involves the execution
of complex image processing algorithms at a frame rate
high enough to guarantee the convergence of the naviga-
tion Kalman filters used for multi-sensor data fusion [3].

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 59891

https://orcid.org/0000-0002-6629-1002
https://orcid.org/0000-0001-6326-743X
https://orcid.org/0000-0001-5697-0573
https://orcid.org/0000-0003-2222-2117

IEEE Access

A. Pérez et al.: Run-Time Reconfigurable MPSoC-Based On-Board Processor for Vision-Based Space Navigation

These requirements surpass the performance space-qualified
processors, such as PowerPC-FT or LEON-based cores, can
provide, forcing the use of ad-hoc hardware-accelerated solu-
tions, typically in the form of ASICs [4]. For these reasons,
VBN has been identified as one of the applications requir-
ing high-performance embedded computing in space. From
this perspective, Lentaris et al. provide in [5] an extensive
evaluation of multiple computing platforms specific for VBN
systems, concluding that new-generation space-grade CPUs
are still one order of magnitude slower than what is needed
for reliable autonomous VBN.

In the last years, we are witnessing a paradigm change in
the space industry. The NewSpace approach is making agen-
cies and companies to be interested in cost-effective solu-
tions, as described in [6]. Thus, FPGAs are increasingly used
in space to substitute the unaffordable development of ASICs.
Different rad-hard FPGA devices are now accepted and
widely used in commercial missions. Most of these rad-hard
devices are based on One-Time Programmable (OTP) or flash
technologies for the device configuration memory, such as the
Microsemi RTG4, which hinders the exploitation of in-flight
reconfiguration. Moreover, their performance is much lower
than Commercial Off-the-Shelf (COTS) counterparts [4],
which makes them unsuitable for VBN. Only the SRAM-
based rad-hard Xilinx Virtex-5QV FPGA or the emerging
BRAVE FPGAs from Nanoexplore can provide the high-
performance and the number of logic resources required by
these applications but at a cost much higher than COTS non-
radiation-hardened versions.

Besides combining low cost with state-of-the-art process-
ing performance, commercial SRAM-based reconfigurable
devices offer the possibility of adapting the device logic at
run-time depending on the different stages the mission may
encounter during its lifetime. This way, a single process-
ing unit can be reused for multiple non-concurrent payload
processing tasks, reducing mass, volume, and energy, which
in the end also translates into cost reduction and simpli-
fies overall avionics system design. In spite of these clear
benefits, COTS SRAM-based FPGAs are more susceptible
to radiation-induced faults in their configuration memory,
so they require the application of specific hardening tech-
niques to protect not only the application logic but also the
configuration memory. Going one step forward FPGAs, state-
of-the-art Multiprocessor Systems-on-Chips (MPSoCs) with
programmable logic allow combining the benefits of both
software multiprocessing and reconfigurable hardware in a
single device.

The main contribution of this paper is to provide a new
cost-efficient software/hardware On-Board Processor (OBP)
architecture that effectively exploits Dynamic and Partial
Reconfiguration (DPR) on COTS reconfigurable MPSoCs in
space applications. This proposal is based on the ARTICo?
multi-accelerator architecture [7], which provides transparent
reconfiguration for performance scalability and dependabil-
ity, at run-time. The adaptability provided by the architec-
ture is not only functional, but it has also been extended

59892

to contribute to the system fault-tolerance. Besides the
architecture, ARTICo3-based solutions provide a run-time
software library to manage the reconfigurable accelerators.
In this work, the ARTICo® runtime has been integrated with
RTEMS, a real-time operating system certified and compliant
with space requirements. Application-independent support
tasks in charge of providing system-level reconfiguration and
Fault Detection, Isolation, and Recovery (FDIR) features,
have also been integrated into this scheme, together with
application-specific mission tasks. The proposed mixed soft-
ware/hardware architecture has been tested for VBN appli-
cations, allocating three different vision-based processing
algorithms that could not otherwise fit in one single device.
Each algorithm will be used at a different stage depending on
the distance to the target and the mission phase. The proposed
architecture has been implemented and evaluated on a Zynq
UltraScale4+ MPSoC device.

The rest of the paper is organized as follows. In Section II,
the envisaged mission scenario is provided as motivation.
In Section III, the state-of-the-art in the use of reconfig-
urable FPGAs for space applications is summarized. A back-
ground with the most significant technologies for this work
is included in Section I'V. The proposed system architecture,
the hardware subsystem management, and fault-mitigation
techniques are described in Sections V, VI, and VII. The
mapping of the vision-based navigation application on the
proposed platform is discussed in VIII. Finally, experimental
results are offered in Section IX, and conclusions and future
work are summarized in Section X.

Il. USE CASE SCENARIO

The scenario envisaged as the use case for the proposed
on-board processor entails a spacecraft lander carrying on
a rover to be deployed on an astronomical body. Depend-
ing on the relative size of the target under the vision of
the spacecraft camera, different magnitudes can be extracted
from the images. Therefore, the most appropriate navigation
algorithms for each particular time depend on the distance
from the lander to the target.

During the navigation phase to the celestial body,
the spacecraft lander makes use of the camera installed in
the rover for the descent and landing part using an absolute
navigation image processing interchanged by fast hardware
reconfiguration with a relative navigation image process-
ing implementation in the FPGA. The absolute navigation
technique relies on surface features detection and matching
of a priori extracted landmarks. This technique is slower
than relative navigation techniques, and for that reason, it is
devoted to execution at higher altitudes right before the final
descent.

During the final descent, the technique utilized is the
relative navigation based on surface feature detection and
tracking among consecutive frames. This technique is imple-
mented for fast execution in order to avoid measurement
dispersion, to accommodate the fast dynamics of the space-
craft and the quick reaction capabilities needed to control the

VOLUME 8, 2020

A. Pérez et al.: Run-Time Reconfigurable MPSoC-Based On-Board Processor for Vision-Based Space Navigation

IEEE Access

safe landing. After landing, once that the spacecraft probe
is on the ground, the FPGA is once again reconfigured for
surface operations to host a solution based on stereo vision
disparity Semi-Global Matching (SGM) in the same FPGA.

Therefore, there is a need for adapting the navigation
algorithm at run-time, depending on the operational stage
the spacecraft is. In the current exploration and landing mis-
sions, computing architectures with at least three FPGAs
would be needed to allocate these three algorithms. The
proposal of this work shows an avionics architecture that
allows reconfiguring a single FPGA device, simplifying the
implementation and reducing mass and power, while provid-
ing a common platform that may be used over the different
phases of the mission. Absolute, relative, and stereo-vision
navigation algorithms can be interchanged using fast hard-
ware reconfiguration. This way, the spacecraft lander will use
the same FPGA for the different navigation algorithms. Since
these are critical safety operations, the re-programming time
in which the FPGA is not operative constitutes an essential
factor and one of the performance indicators.

Ill. RELATED WORK

A selection of relevant works in the state-of-the-art showing
the usage of rad-hard FPGAs in space and, in particular,
COTS-based solutions relying on dynamic and partial recon-
figuration, are described in the three following sections.

A. RAD-HARD SRAM-BASED FPGAs IN SPACE MISSIONS
Different space missions have been launched since the begin-
ning of the century, relying on SRAM-based FPGAs as the
leading processing technology.

The Cibola Flight Experiment (CFE) [8], developed by
Los Alamos National Laboratory and launched in 2007,
is one of the most relevant examples. Its goal was actually
to evaluate the feasibility of using SRAM-based FPGAs for
on-board processing. The payload was managed by a rad-
hard processor, while three reconfigurable computer modules
were used for experimentation. Each module was composed
of three Xilinx Virtex XQVRI1000 for data processing and
one radiation-tolerant Actel RT54SX32S, providing watch-
dog monitoring and a configuration interface to the FPGAs.
Several experiments were carried on the CFE, ranging from
the characterization of how FPGAs are affected by radiation
to the evaluation of different mitigation techniques for radia-
tion effects.

SRAM-based FPGAs have also been employed for crit-
ical functions in exploration missions. One example is the
lander used to deploy the Spirit and Discovery rovers on
the Mars surface, promoted by the Jet Propulsion Labo-
ratory [9]. In these missions, Xilinx XQR4062XL FPGAs
were in charge of controlling the descending and landing
operations. Triple Modular Redundancy at design level and
redundant FPGAs at component level were employed, cou-
pled with full FPGA reconfiguration (i.e., scrubbing), as fault
mitigation techniques. Component redundancy is a robust

VOLUME 8, 2020

approach, but it suffers from high costs in terms of weight,
price, and energy.

Another interesting example is the Fraunhofer On-Board
Processor (FOBP) [10], proposed by the Fraunhofer Institute
for Integrated Circuits, as a flexible communication pay-
load for satellite-based digital signal processing applications.
This development will be part of the scientific payload of
the Heinrich Hertz communication satellite planned to be
launched in 2021. The FOBP consists of two radiation-
hardened Virtex-5QV FPGAs that can be entirely reconfig-
ured from the ground station. That way, the processor can
be adapted to new communication standards and to changing
environmental conditions at any time while in orbit. Thus,
the FOBP can perform signal processing at the physical
layer (including re-modulation or re-encoding), usually not
performed on board, since the lack of flexibility of existing
non-reconfigurable satellite communication systems would
prevent the adoption of new standards [11]. Authors in [12]
report an evolution of the FOBP. This work raises the pos-
sibility of using non-hardened devices, such as the Kintex-
UltraScale XCKUO040 or Zynqg-UltraScale+ ZU19EG, as part
of the FOBP for commercial Low Earth Orbit (LEO) commu-
nication applications.

B. COTS MPSoCs IN SPACE MISSIONS
In the field of reconfigurable devices, special attention is
being paid on reconfigurable MPSoCs. These devices embed
in the same integrated circuit multiprocessors, SRAM-based
FPGAs, and dedicated peripherals. The flexibility offered
by MPSoCs cannot be found in other devices due to the
combination of the inherent flexibility of software and the
one achievable with reconfigurable circuits. This heterogene-
ity can be further exploited to harden the system against
radiation thanks to the diversity provided by pairing both
architectures on a single die. These considerations were
taken into account to develop the CHREC Space Com-
puter (CSP) [13], an onboard computer implemented mixing
radiation-hardened and COTS components. This computer
has high computing capabilities due to being based on a
Zynq platform from Xilinx. Software and hardware hard-
ened techniques have been employed to maximize the global
design reliability, which has been validated with in-flight data
obtained in the context of the STP-HS5 mission. The CSP
can be hardened with a DPR-compatible scrubber based on
updating the golden copy when a new configuration is loaded
into the FPGA [14]. Similar to the CSP, the APEX-SoC
solution [15] leverages the resources offered by a single
Zynq device to implement instrument data acquisition and
processing stages. They applied several hardening techniques
to protect the logic of the design implemented in the FPGA,
the application data, and the processors. The hardening meth-
ods are mainly based on redundancy, watchdogs, ECC codes,
and scrubbers.

The benefits of reconfigurable MPSoCs have also attracted
the attention of ESA, which is developing the OPS-SAT
program [16]. The main goal of this initiative is to develop

59893

IEEE Access

A. Pérez et al.: Run-Time Reconfigurable MPSoC-Based On-Board Processor for Vision-Based Space Navigation

a satellite using COTS wherever possible, avoiding new
developments. An ALTERA Cyclone V device will be the
primary computing platform employed in the payload, so it
is flexible enough to allow the replacement of applications
while in flight.

The NINANO platform (Numeric Intensive Node
for Applications mono-module adaptation for nanosatel-
lites) [17] is an OBP based on a Xilinx Zyng-7030. This
on-board processor will be used in at least two scientific
missions: the EYE-SAT [18] and the SERB-SAT [19]. The
EYE-SAT mission has two main scientific objectives: to
study the intensity and polarization of the zodiacal light over
a vast portion of the sky, as well as to provide a 360° colored
picture of the Milky Way. SERB-SAT will be used to measure
the total solar irradiance to understand how this magnitude
affects climate.

C. DYNAMIC AND PARTIAL RECONFIGURATION

IN SPACE APPLICATIONS

The use of in-flight reconfigurable devices in avionics is
gaining the attention of companies and space agencies. First
in-flight reconfiguration was reported by [20] in the context
of the FedSat mission [21]. More recently, in the already men-
tioned Cibola flight experiment, reconfiguration was used for
correcting Single Event Upsets (SEU), as well as to adapt
the functionality in the FPGA to the requirements of different
experiments. Exploiting this dual-purpose reconfiguration is
common when applying this technique in radiation prone
environments.

Regarding fault mitigation, it must be mentioned the work
done in [22], where authors combine the built-in features
for SEU mitigation embedded in Xilinx Zynq MPSoCs with
a readback scrubber. With this approach, a global mitiga-
tion strategy is designed taking advantage of the fast detec-
tion and correction capabilities of information redundancy
coding based scrubbers, complemented with readback-based
scrubbers. This allows repairing any fault detected in the
configuration memory. Another interesting work is the one
presented in [23], where authors combine DPR with configu-
ration memory scrubbing. They propose a solution based on
a golden copy. Periodically, redundancy codes are computed
and compared from parts of both the configuration memory
and the golden copy. To perform DPR, first, they modify the
appropriate section of the golden copy with the new config-
uration data. When the scrubbing process passes through the
new data of the configuration memory and detects differences
between it and the golden copy, the corrected configuration
is reloaded in the system. Contrary to this approach and the
previously mentioned from [14], we present in this paper a
DPR-aware compatible scrubber that does not require to gen-
erate or modify the golden copy every time a reconfiguration
is performed.

The work developed by ESA in [24] is very remark-
able since it demonstrates the effectiveness of reconfigu-
ration in the new FPGA platform BRAVE, developed by
NanoExplore. Differently to previous works, BRAVE FPGAs

59894

are space-grade devices that count on a rad-hard fabric.
Another relevant feature of this platform is the possibility of
using a SpaceWire interface for modifying the configuration
memory. This new approach was evaluated in [25], where
the authors compare the reconfiguration times when either
SpaceWire or JTAG interfaces are employed.

IV. BACKGROUND INFORMATION

Before providing details on the proposed reconfigurable
architecture, relevant context information is provided in this
section.

A. ZYNQ UltraScale+ MPSoC ARCHITECTURE

Zynq UltraScale+ is the latest generation of Xilinx MPSoCs.
It is manufactured in TSMC FinFET 16nm technology, and
it features an ARM-based processing system. It has been
selected as the technology underneath in this work due to
the experience Xilinx has on SRAM-based reconfigurable
devices, which results in sophisticated tools and IPs. Xilinx
also accumulates a relevant flight experience with the space-
grade Virtex-5QV, while their non-hardened devices are also
attracting the interest of the space industry. It must also be
mentioned the device characterization effort carried out by
the Xilinx Radiation Test Consortium (XRTC) that, together
with other industrial and academic partners, is carrying out
the first experiments on the SEU characterization of the
Zynq UltraScale+ [26], [27]. Moreover, different initiatives
have been carried out by the industry to provide radiation-
hardened versions of the ARM processors included in the
Zynq Ultrascale+ [28], [29]. Therefore, the proposals devel-
oped in this work could be implemented in the future using
full rad-hard devices.

The Zynq UltraScale+ platform offers two different hard-
wired processor fabrics: the Application Processing Unit
(APU) and the Real-Time Processing Unit (RPU). The
APU is composed of up to four application-oriented Cortex-
AS53 processors, running up to 1.3 GHz, while the RPU con-
sist of two real-time oriented Cortex-R5 processors, working
up to 533 MHz. In some parts of the family portfolio, an ARM
Mali 400 Graphical Processing Unit (GPU) is also included.
As a whole, the APU and the RPU constitute the Processing
System (PS). The PS is combined with an FPGA. The FPGA
is the reconfigurable part of the chip and is known as the
Programmable Logic (PL). The circuitry implemented on
the PL can be (re-)configured from a processor in the PS
(using the PCAP interface), the FPGA itself (using the ICAP
interface), or an external device. Further details on the device
reconfiguration can be found in the Xilinx UltraScale Archi-
tecture Configuration User Guide [30].

B. ARTICo® ARCHITECTURE

The ARTICo? [7] is a hardware-based processing architecture

for high-performance embedded reconfigurable computing.
As shown in Figure 1, the hardware architecture in

ARTICO? is mainly divided into a static part (i.e., the infras-

tructure that delivers data to the different accelerators) and

VOLUME 8, 2020

A. Pérez et al.: Run-Time Reconfigurable MPSoC-Based On-Board Processor for Vision-Based Space Navigation

IEEE Access

SRAM-Based FPGA

[Control Bus (AXI4-Lite)

Core | e o | core
HF
RAM

Reconfiguration
Engine

H
; | Registers I
><<_ Shuffler [Accelerator
H Local Logic
El c Memory
H S
u =
B
< 5 Q | Registers I
4 g H g Accelerator
B 5 £ o= ° Tocal '
5- S5 o' S ocal Logic
8 3 o5 = Memory
o > o
g™ Z
- LI)
Flash [Reamers]
Accelerator
Performance Fault Local Logic
Monitor Monitor Memory

FIGURE 1. ARTICo? architecture, including the Host microprocessor,
the shuffler and the dynamically reconfigurable logic for the accelerators.

a dynamic part (the hardware accelerators). The ARTICo?
architecture features a DMA-capable datapath, whose inter-
nal structure can be configured at run-time to support differ-
ent processing profiles. The reconfigurable datapath belongs
to the static part, which is automatically loaded during the
system startup. The dynamic part is divided into several
reconfigurable partitions (or slots), where the hardware accel-
erators are loaded using DPR when the user requires it.

Using dynamic and partial reconfiguration as its techno-
logical foundation, ARTICo? allows a dynamic exploration
of the space of possible solutions, changing the working
trade-offs at run-time. Hence, performance-oriented or fault-
tolerant processing can be selected on-demand.

In performance-oriented operation points, multiple
instances of a given hardware accelerator are loaded in the
FPGA fabric. The ARTICo® datapath is then configured
to send different input data to each instance. The parallel
instances of the same hardware accelerator are then executed
simultaneously on different data, in a SIMD-like fashion.

From the perspective of dependability, ARTICo? provides
basic structures to support selectable fault tolerance and fault
detection. Fault-tolerant execution is achieved using the logic
that acts as a gateway between the static region and the recon-
figurable partitions. Thus, in fault-tolerant profiles, the dat-
apath is configured to send the same data simultaneously
to two or three accelerators and gathered through a config-
urable voting unit to implement Dual Modular Redundancy
(DMR) or Triple Modular Redundancy (TMR) execution
modes. Moreover, this fault-tolerant mechanism is performed
on a datum basis by taking advantage of the bus-based com-
munication infrastructure available in ARTICo® based sys-
tems. In turn, fault detection is supported by a lightweight
monitoring infrastructure, where each reconfigurable parti-
tion has an associated error counter. Control signals coming
from the configurable voting unit are in charge of increas-
ing the corresponding counters whenever different results

VOLUME 8, 2020

are obtained in one execution. The embedded monitoring
infrastructure in ARTICo® allows users to analyze system
performance and error rates.

C. VISION-BASED NAVIGATION ALGORITHMS

As motivated in Section II, three different space environment
scenarios have been identified: absolute navigation based
on landmark matching, relative navigation based on feature
tracking, and stereo vision algorithms for close operation.

Absolute navigation uses image processing techniques to
find relevant features corresponding to remote stellar bodies
in the image collected by the navigation camera. Features
are then mapped and compared with a database available on
board and previously generated. The mapping of multiple
features allows the navigation filter to derive an accurate
position estimation related to the target surface. Absolute
navigation requires an image processing algorithm that pro-
vides edges that are later post-processed to extract landmarks
of the surface. The algorithm selected in this work is the
widely known Canny edge detector.

In relative navigation, the image processing part of the
algorithm is responsible for the extraction of the landmark
points in the image and tracking them. However, it does not
rely on a thorough comparison with a known database, but
on the relative tracking of the displacement of the detected
features from one frame to the subsequent one. Following
the displacement of up to 100 distinct points observed in
the images, the navigation filter can accurately calculate the
position of the spacecraft. The Harris Corner and Minimum
Eigen Value corner algorithms are used to find corners, to be
used as useful features to track.

In turn, to obtain 3D information regarding the target body,
a stereo vision algorithm working on information from two
separate cameras is used. The system performs the extraction
of lines that are matched in the two stereo views; these
matches are then used to estimate pose. The selected algo-
rithm to be accelerated in hardware is the semi-global match-
ing algorithm [31].

Finally, the fusion of the data produced by inertial sensors
with the absolute references obtained by the three proposed
vision-based navigation algorithms is carried out by a stan-
dard Kalman Filter, similar to those reported in [3].

V. RECONFIGURABLE ON-BOARD

PROCESSOR ARCHITECTURE

This section describes the proposed hardware and soft-
ware architecture for the reconfigurable on-board processor,
including further details on platform adaptation and the pro-
posed templates for software tasks.

A. HARDWARE ARCHITECTURE

The hardware architecture proposed for the on-board proces-
sor is composed of three subcomponents: the Real-Time Pro-
cessing Unit, the ARTICo? infrastructure, and the Xilinx Soft
Error Mitigation (SEM) IP [32]. A simplified representation
of the proposed on-board processor is shown in Figure 2.

59895

IEEE Access

A. Pérez et al.: Run-Time Reconfigurable MPSoC-Based On-Board Processor for Vision-Based Space Navigation

Dynamically Scalable

Mission Memory Hardware

Processing System Programmable Logic

SRAM-Based MPSoC

; |
Real-time Data Bus (DMA-Enabled, AXIa-Full) [
Sched 1, I 2 Accelerator
\ S5 Local 1 Logic
ication Lockstep Mode B Memory ,
Tk 1 ¢
\
N Registers.
Reconfig. > RT I RT 1 5 e = Accelerator
- Local * i
Task | core Core I g s ol ! Logic
Fault 1 RTEMS
Detection RPU 2! - ‘e o o
- [0
:! 25
% @ £ Registers
<1 - [Fegmvers] Accelerator
w || O e
emory!
Core || Core 2 £2 Ll
g 3
4 | ' ARTIC03
uP uP °1 0
core || core |
SEM IP
APU 1
1
1
'

FIGURE 2. Block diagram of the baseline architecture of the proposed
Reconfigurable On-board Processor for space applications.

The RPU has been selected as the leading software comput-
ing unit since the Cortex-R5 processors that make up this unit
can run in lock-step mode. In other words, they can be config-
ured within a physical and temporal DMR scheme in which
the two processors are executing two exact copies of the same
application code, but with a delay of some clock cycles [33].
If a mismatch between the results they provide is detected,
the whole computation is canceled and repeated. The PCAP
and the ICAP are the interfaces for accessing the configura-
tion memory. They are used by the RPU and the SEM-IP,
respectively. The RPU uses the PCAP to adapt the set of
hardware accelerators to new mission stages, to alternate
between ARTICo? profiles (see section IV-B) and, to perform
active repairs using scrubbers. The SEM-IP [34] requires
the use of the ICAP and provides an Error Redundancy
Coding based scrubber that offers low detection time. The
information about the scrubbers implemented in the platform
is further explained in section VII. Data exchanges are done
via an AXI4-Full DMA-capable bus, while control opera-
tions (setting up registers for accelerators profile selection,
SEM-IP control) is performed via an AXI4-Lite bus.

Only the hardware accelerators loaded in the ARTICo?
architecture are dependent on the mission goals, while the rest
of the modules are application-independent. As a result, and
thanks to its hardware reconfiguration capabilities, the recon-
figurable on-board processor constitutes a generic solution
for space applications, providing mission independent hard-
ware and software elements that can be integrated with
mission-specific ARTICo? accelerators and software appli-
cation tasks.

When new applications have to be supported, hardware
accelerators must be made compliant with the ARTICo?
architecture. The ARTICo? toolchain provides architectural
templates for the interfaces, and automated scripts to pro-
duce the required FPGA configuration files (i.e., bitstreams).
These bitstreams can be used at run-time to change the hard-
ware accelerators available in each reconfigurable slot.

59896

B. SOFTWARE ARCHITECTURE

The use of a Real-Time Operating System (RTOS) is crucial
in on-board processors to guarantee they comply with the
requirements of the space domain. In this work, RTEMS
(Real-Time Executive for Multiprocessor Systems) has been
selected with this aim. RTEMS is a multi-threaded hard
real-time OS widely used in different NASA and ESA mis-
sions. A custom RTEMS Board Support Package (BSP) has
been developed in this work to make it compatible with the
Zynq UltraScale+ MPSoC board used in the experimental
setup. Key aspects addressed when porting RTEMS to this
platform have been the initialization of the memory protec-
tion unit of the processors, the development of the clock
driver, and the management of the booting stage. Further
low-level support was added to the BSP by re-using the
existing bare-metal drivers for the different peripherals on the
board.

The real-time OS is in charge of scheduling and coordinat-
ing the execution of software tasks while guaranteeing real-
time constraints and deterministic behavior. RTEMS is also in
charge of arbitrating access to shared resources in the device,
such as the reconfiguration port. Therefore, the RPU featured
with RTEMS constitutes the foundation upon which mission
applications and support tasks have been implemented. The
former includes the control-intensive sections of the mission-
specific navigation algorithms that are not susceptible to
being accelerated in hardware. The latter, on the other hand,
includes the FDIR functionalities, the reconfiguration func-
tions included in the ARTICo?® runtime, and the commu-
nication data-handling. All these tasks qualify as platform
support tasks since they allow applications to exploit the main
features offered by the on-board processor, as well as to solve
the problems associated with using reconfigurable devices
in radiation prone environments. Of particular interest is the
data handler task, which processes messages coming from an
external mission controller through the command and control
data-link. Those messages are capable of producing a change
in the phase of the mission, therefore triggering in-flight
reconfiguration.

The software runtime of the ARTICo? architecture, which
was initially provided as a Linux driver and the correspond-
ing user-space software library, was also ported to RTEMS
as part of this work. This was performed considering the
tight constraints real-time applications must comply with,
being determinism one of the main concerns. In the proposed
RTEMS-based implementation, the execution flow of each
kernel is controlled by a specific thread that must be created
by the user for this aim. These threads enter a sleep state after
commanding a DMA transaction to the accelerators or while
they are waiting for the hardware accelerators to finish a com-
putation. As a result, the processor is free for other threads to
execute. This feature, combined with the fact that all the API
routines are thread-safe, ensures that different kernels can be
used concurrently in a single application. Particular effort was
put to avoid potential data-race situations with coordinated
access to shared data.

VOLUME 8, 2020

A. Pérez et al.: Run-Time Reconfigurable MPSoC-Based On-Board Processor for Vision-Based Space Navigation

IEEE Access

TABLE 1. UC scenario modes and APs involved in each mode.

APs

Modes Data-Handling | Fault-Detection

Reconfiguration GNC

Relnav Relnav 2 Absnav Stereo-Vision

Coasting

Navigation Init

Absolute Navigation

Braking Phase Nav

Relative Navigation

Terminal Descent

PR R

Il R B T B Rl

Landing Operations

Repair Mode

I B I e T I I B I

Reconfiguration Mode

Mo

Algorithm 1 AP Template
thread AP_<NAME>_THREAD {
rtems_rate_monotonic_create(AP_<name>_period)
loop:
rtems_rate_monotonic_period(AP_<name>_period)
function AP_<name>_receive() {
if new_messages == TRUE then
parse_messages()
end if
end function
function AP_<name>_step() {
if state == AP_ < name > _ON_state then
perform_operations()
end if
end function
function AP_<name>_publish() {
if new_output_data == TRUE then
publish_data()
end if
end function
goto loop.

}
end thread

C. MISSION AND SUPPORT TASK TEMPLATES

A software task, referred to as Application Processing (AP),
accompanies each hardware kernel included in the on-board
processor. The AP includes the software partition of the
algorithm, the control of the execution of the correspond-
ing ARTICo® hardware accelerators, and the data supply
to these accelerators. The template proposed in this paper
for the APs is represented in Algorithm 1. This template
is not exclusive for the processing tasks requiring hardware
acceleration. Purely software tasks are also created according
to this structure, facilitating message passing among all the
tasks in the system.

All the APs are executed periodically using a rate mono-
tonic [35] scheduling under the RTEMS OS. As can be
seen in Algorithm 1, every time an AP is executed it does
three things: (i) parse new messages (if any), (ii) perform
operations (if the task is currently active), and (iii) deliver

VOLUME 8, 2020

output data (if any). New applications with hardware accel-
eration requirements can be ported to the on-board proces-
sor by adapting the hardware accelerators to the ARTICo?
accelerator template and developing the software counter-
parts following the standardized template and the ARTICo?
runtime APL

As has been already explained, support tasks also follow

the AP structure provided in Algorithm 1, and they constitute
the mission independent software elements of the OBP that is
always present in the system regardless of the mission of the
spacecraft. The specific support APs included in the platform
are the following:

o Data-Handling AP: Processes the messages from the
command and control data-link, which can trigger the
adaptation of the platform.

o Fault-Detection AP: Performs the platform fault detec-
tion, using error redundancy coding and readback
scrubbing techniques.

o Reconfiguration AP: Centralizes all the hardware recon-
figuration requests for both functional adaptation and
fault recovery.

All these support APs are described in detail in the next

sections.

D. MODE DEFINITION FOR PLATFORM ADAPTATION
Platform in-flight adaptability is achieved by the definition of
different execution modes, which differ in the set of enabled
tasks. Application-independent support modes for executing
the mode change as well as for fault repair are always present
in the platform.

The Reconfiguration Mode is the one in charge of execut-
ing the mode change, and thus, the platform always enters
this mode when switching between any other two modes.
An on-ground mission controller triggers the mode change,
using the command and control data-link. In turn, the system
enters the Repair Mode when the Fault-Detection AP detects
a system fault. In the Repair Mode, the DPR capabilities
of the MPSoC are used to recover the initial state of the
configuration memory.

Apart from support modes, many others can be defined
according to the application requirements. For the vision-
based application presented in this work, table 1 gathers

59897

IEEE Access

A. Pérez et al.: Run-Time Reconfigurable MPSoC-Based On-Board Processor for Vision-Based Space Navigation

all the implemented modes, as explained next. During the
coasting stage, the autonomous GNC function is under
hibernation, so neither the GNC software nor the FPGA
accelerators are activated. Before reaching the asteroid close
operations, there is a mode change entering in navigation
init where the GNC software is awakened for the initializa-
tion of units, the configuration of software functions, and
sensors. No FPGA accelerators are yet activated. At some
mission point, the Earth’s ground operations initialize the
on-board autonomous navigation, passing to the absolute
navigation mode. Between absolute and relative navigation
modes, an intermediate braking mode has been defined,
in which the spacecraft initiates descent operations. During
this phase, both absolute navigation and relative navigation
techniques co-exist in an interleaved manner to allow the
proper relative navigation initialization and a smooth mode
change. Afterward, the relative navigation technique is exe-
cuted until the very end of the landing over the surface.
Relative navigation is based on two image processing tech-
niques. First feature detection is carried out, followed by
feature tracking. Therefore there are two APs, named here
Relnav and Relnav_2, associated with this mode. Before
touch down, there is the last mode change to terminal descent,
where spacecraft follows a free fall with no spacecraft control
to avoid surface contamination due to thrusting. Finally, after
the landing, the rover vehicle starts the landing operations
over the celestial body surface, making use of the same
avionics, so the image processing technique of stereo vision
for terrain navigation is activated.

The next section provides further details on how the hard-
ware subsystem is managed on the platform.

VIi. HARDWARE SUBSYSTEM MANAGEMENT

This section focuses on the main elements involved in the
management of the hardware subsystem. First, the Recon-
figuration and the Data-Handling APs, which control mode
changes, are described. Then, the integration of ARTICo3
primitives in the mission-specific APs is detailed.

A. DATA-HANDLING AP AND RECONFIGURATION
AP FOR MODE CHANGES
The reconfiguration AP orchestrates all the tasks performed
in the on-board processor related to hardware reconfigura-
tion. Reconfiguration can be triggered either to repair SEUs
in the configuration memory of the FPGA or to execute a
mode change by reconfiguring the hardware accelerators in
the FPGA logic. Hence, this AP reacts to system demands
in the form of requests which can be triggered by the Fault-
Detection AP or by the Data-Handling AP. By using a cen-
tralized scheme, accesses to the PCAP configuration interface
are resolved by an arbitration entity. This section focuses on
functional adaptation. The use of reconfiguration for fault
tolerance is described in section VII.

The Data-Handling AP transforms the mode change
requests received from an external mission controller
into reconfiguration requests. Mode changes cannot be

59898

void AP_Data_Handling_step

{
// Some flag checks

if (current_mode != requested_mode) {
if (current_mode != on_mode_change_m) {
switch (requested_mode) {
mode A:

set_flag_reconfig_required(true);
artico_load_req("kernel A", 1,) ;
artico_load_reqg("kernel A", 2, ...);
artico_load_reqg("kernel A", 3,) 8
break;

mode B:
set_flag_reconfig_required(true);
artico_load_reqg("kernel B", 1, ...);
artico_load_req("kernel C", 2, ...);
break;

mode C:
set_flag_reconfig_required(false);

}

current_mode = on_mode_change_m;
} else { // current_mode == on_mode_change_mode
if (get_flag_reconfig required == false)

current_mode = requested_mode;

}

Code. 1. Mode changes implementation.

immediately performed because the APs using hardware
acceleration cannot be stopped abruptly, in the middle of
a data transaction to the hardware accelerators. In other
words, the PL. must be adapted to the next mode before
it starts. For this reason, the Data-Handling AP enqueues
reconfiguration requests into a buffer shared with the
reconfiguration AP. Requests are issued by calling the
artico3_load_req function. Code 1 shows the imple-
mentation scheme of the Data-Handling AP. Mode change
requests are stored in the variable requested_mode which
is compared with the current_mode variable when-
ever the Data-Handling AP is executed. If they differ,
the mode change is executed. If the next mode needs to adapt
the logic in the PL, the reconfig_required_flag
is set to one. The required reconfiguration requests are
then enqueued and when the system switches into a
on_mode_change_mode. Then, when the reconfigura-
tion AP sets the reconfig_required_flag to zero,
it means that the reconfigurations requested have been solved
and the system enters in the requested mode. Once the PL
has been adapted (i.e., reconfigured), the mode change is
performed by updating the current_mode variable.

B. ARTICo® PRIMITIVES IN THE MISSION APs

The APs related to a given application must follow the formal-

ized scheme showed in Algorithm 1, which has been extended

with the invocation of ARTICo® functions in Algorithm 2.
The config command is sent to all APs once the

artico3_init and artico3_kernel_create

ARTICo? initialization functions are executed during the

VOLUME 8, 2020

A. Pérez et al.: Run-Time Reconfigurable MPSoC-Based On-Board Processor for Vision-Based Space Navigation

IEEE Access

Algorithm 2 ARTICo? Runtime Calls in Application APs
thread AP_<NAME>_THREAD {
rtems_rate_monotonic_create(AP_<name>_period):
loop:

rtems_rate_monotonic_period(AP_<name>_period)
function AP_<name>_receive() {
if new_messages == TRUE then
if new_message == config_message then
artico3_alloc (“port_A")
artico3_alloc (“port_B")

artico3_alloc(“...”)

end if

if new_message == close_message then
close_flag_ = true

end if

end if
end function
function AP_<name>_step() {
if close_flag_ == false then
Initialize data buffers
artico3_execute (“kernel A")
Store results
else
artico3_free (“port_A")
artico3_free (“port_B")
artico3_free(™..."”)
end if
end function
function AP_<name>_publish() {
if new_output _data == TRUE then
publish_data()
end if
end function
goto loop.

}
end thread

RTEMS initialization. When an application AP receives this
message, it initializes all the ARTICo® ports used by the
kernel associated with that AP. When the message received is
the close command, a flag is triggered to signal that the AP is
not going to be used anymore in the mission, and therefore it
can free the memory associated with the ARTICo? ports when
all data transactions to hardware accelerators have already
finished.

If the system is working on a mode in which the AP
is enabled, it performs the required computations using the
hardware accelerators. In this situation, the ARTICo? input
buffers (i.e., the allocated ARTICo? ports) must be initial-
ized. Data is sent, processed, and received by invoking the
artico3_execute function. Then, the AP must store
the results of the computation. If the workload exceeds
the processing capabilities of the hardware accelerators in

VOLUME 8, 2020

a single round, several transactions are transparently issued
and managed by the ARTICo? runtime library.

VII. FAULT-MITIGATION TECHNIQUES

This section describes the FDIR techniques integrated into the
on-board processor to ensure the survival of the COTS device
along the whole mission time. These include accelerator-level
hardware redundancy, device primitives capable of detecting
SEUs in the configuration memory, and a custom scrubber
specifically designed for reconfigurable systems.

Firstly, the ARTICo? framework provides inherent fault
tolerance in the reconfigurable partitions through accelerator-
level redundancy. As explained in section IV-B, the ARTICo?
voter masks and detects faults by comparing the outputs
provided by all the replicated accelerators. However, this is
not a repair mechanism, so it is not enough for really harsh
environments such as outer space, in which too much cumu-
lative faults would eventually make all the accelerators to fail.
Moreover, this protection excludes the ARTICo? static infras-
tructure and any other application-specific circuitry included
in the PL.

In turn, Zynq UltraScale+ devices have dedicated logic
primitives to detect and correct SEUs using error redundancy
codings. In particular, each configuration frame is protected
by an Error Correction Code (ECC) that supports the correc-
tion of configuration memory with up to 4-bit errors, whereas
a Cyclic Redundancy Check (CRC) assesses the integrity
of the whole configuration memory [32]. To adopt these
features, the SEM-IP core, which performs all the operations
needed to locate errors, has to be instantiated in the design.
Beyond locating them, the SEM-IP can directly repair most
faults by using the ECC mentioned above. However, in the
case of multiple-bit upsets distributed with some particular
patterns, the SEM-IP only reports the position of the affected
frames, but it is not capable of correcting them. Moreover,
some combinations of faults can only be detected by the CRC
and not by the ECC, and so even the positions of the damaged
frames are unknown.

Finally, a reconfiguration-aware scrubber has been imple-
mented to identify the position of the faults detected but
not located by the SEM-IP. This scrubber reads back the
content of the configuration memory and compares the read
data with a golden copy stored in external memory. A set of
mask files (generated during the synthesis of the platform)
is used to identify the bitstream positions truly controlling
the circuit configuration. Since the system can be adapted at
run-time, the golden copy to be used also varies with time.
The proposed scrubber uses a table that reflects the modules
already loaded in the reconfigurable regions. This table is
updated every time an accelerator is reconfigured.

All those fault mitigation techniques are supported from
the on-board software perspective by two APs: on the one
hand, the Fault-Detection AP, which monitors the output of
the SEM-IP and the ARTICo? error monitors; on the other
hand, the Reconfiguration AP, in which configuration mem-
ory is returned to its original state when the SEM-IP reports

59899

IEEE Access

A. Pérez et al.: Run-Time Reconfigurable MPSoC-Based On-Board Processor for Vision-Based Space Navigation

a non-reparable (or even not located) fault. The Fault-
Detection AP triggers a mode change to enter in Repair Mode
when needed. In this mode, the area of the FPGA affected by
the error is reconfigured to fix the possible faults. In the case
of non-located faults, the Reconfiguration AP first executes
the reconfiguration-aware scrubber, to know which is the
affected region.

The FDIR tasks have been allocated in the real-time pro-
cessors. The lockstep mode of operation, together with the
use of RTEMS, makes it an increased reliability fabric in the
Zynq UltraScale+ device. As discussed in [36], the Zynq
UltraScale+ also includes a PMU, a fault-tolerant triple-
redundant processor, which could also be used as a reliable
fabric to run the scrubbers. However, no RTEMS support is
available for the PMU, making it incompatible with space
scenarios.

VIIl. VBN APPLICATION MAPPING IN THE

ON-BOARD PROCESSOR

This section describes how the VBN application has been
integrated into the proposed OBP reconfigurable architec-
ture. The proposed VBN implementation exploits the het-
erogeneous nature of the reconfigurable on-board processor,
resulting in a software/hardware solution. The most com-
putationally demanding tasks are implemented as ARTICo?
reconfigurable hardware accelerators in the PL.

Figure 3 shows the floorplanning of the reconfigurable
OBP, including the ARTICo® reconfigurable slots and the
SEM-IP. Six reconfigurable slots have been included in the
PL, two large ones (named a3_slot_0 and a3_slot_3), and
four small ones (named a3_slot_1, a3_slot_2, a3_slot_4 and
a3_slot_)5).

Four different accelerators have been implemented for the
application. Two of them (AbsNav_sI and AbsNav_s2) are
dedicated to the image processing required by the absolute
navigation mode. Due to data dependencies, these accel-
erators are invoked sequentially, one after the other, dur-
ing each navigation iteration. This approach provides better
results in terms of hardware resource utilization, showing
the benefits of dynamic and partial reconfiguration technique
for in-flight silicon reuse. For this reason, the accelerators
are reconfigured at run-time during each navigation period,
so both share a single slot. Considering the amount of logic
required by these accelerators, they are configured in any of
the small slots available in the FPGA. The process begins
filling input data memories of AbsNav_sI; then, the corre-
sponding kernel execution is done in the FPGA. The results
are written in output data memories and collected from it.
At this point, an intermediate DPR takes place replacing the
AbsNav_sl implemented with AbsNav_s2. Once the FPGA
is ready, the second phase begins, filling AbsNav_s2 input
memories with the results obtained in the first stage. The next
steps are execution and final results data collection. To finish
the process, a new reconfiguration is needed to implement
AbsNav_sl in the FPGA to be ready for the next burst.
The first part of Absolute Navigation computes the image

59900

aBLblon Bl Lkl Bslor 0] |
a Bl 5|0 ¢ OFLl
aBLBlot bl | LN BBLSIPE 2

[a)
TIT
=
|

\J

FIGURE 3. Reconfigurable OBP floorplan.

filtering convolutions to extract the initial image of edges.
The second state iterates over these edges to refine the
solution, searching for circular shapes to be recognized as
craters.

In turn, the relative navigation mode requires of the
Relnav_s1 and the Relnav_s2 accelerators. Both are executed
in parallel to improve performance, so they are configured in
two different ARTICo? slots. They are configured in the large
slots of the device. To process one complete 512 x 512 pixels
image, 128 cycles need to be carried out. In turn, 512 cycles
are needed for 1024 x 1024 pixel images. Each cycle involves
filling input memories, FPGA execution, and collecting data
from output memories. Finally, the Kalman filter in charge
of the fusion of the navigation data produced by the vision
algorithms and the measurements produced by external iner-
tial sensors is carried out by the GNC AP, which is enabled in
all the modes of the application requiring navigation.

Since a large MPSoC has been selected for the implemen-
tation of the reconfigurable OBP, the application does not
occupy all the slots available in the device. Free slots can
be used within the proposed architecture to other applica-
tions to be included on-board, such as earth observation or
communications.

VOLUME 8, 2020

A. Pérez et al.: Run-Time Reconfigurable MPSoC-Based On-Board Processor for Vision-Based Space Navigation

IEEE Access

The time consumed in the reconfiguration is a primary
constraint due to the space mission characteristics as the
systems are built as hard real-time, so the image processor
shall deliver the processes data within a defined period.

IX. IMPLEMENTATION RESULTS

Experimental results have been carried out to evaluate the
proposed reconfigurable on-board processor in the VBN use
case. The parameters selected to measure the overhead intro-
duced by the DPR technique with the ARTICo® architec-
ture are the number of unused resources by using fixed-size
slots and the reconfiguration time per accelerator. Moreover,
the CPU occupancy required by the FDIR techniques used to
protect the COST device is reported.

A. RESOURCE OCCUPANCY

Table 2 shows the total logic resources available per recon-
figurable slot in the platform, together with the sizes of the
associated configuration bitstreams. It can be seen that the
large slots (a3_slot_0 and a3_slot_3) have approximately
double resources than the small ones. As expected, the size
of the partial bitstreams is proportional to the number of
resources existing in the reconfigurable region.

TABLE 2. Resource occupancy per slot.

Slot LUTs FFs BRAMI18s DSPs Bitstream Size [MB]
a3_slot_0 108480 86400 576 384 4.2
a3_slot_1 54240 43200 288 192 2.1
a3_slot_2 54240 43200 288 192 2.1
a3_slot_3 109440 86400 576 432 3.8
a3_slot_4 54720 43200 288 216 1.9
a3_slot_5 54720 43200 288 216 1.9

TABLE 3. Resource occupancy per kernel.

1P LUTs FFs BRAM18s DSPs
RelNav 22707 19235 87 16
RelNav_2 2721 2975 72 19
AbsNav_sl 1285 5557 62 99
AbsNav_s2 4390 4633 76 6
Stereo-Vision 8063 7286 66 0

In turn, table 3 shows the logic resources occupied by
each kernel in the VBN application. It is worth noting
the high number of resources required to implement the
relnav_detection algorithm compare to the others. The large
slots in the platform have been defined considering the
requirements of this accelerator, which produces underuse of
resources when these slots allocate the other accelerators.

The relative usage of resources, when mapping the algo-
rithms into ARTICo® slots, is shown in table 4. The
results have been grouped per accelerator and slot type
(large or small). As a simplification, only the (a3_slot_0 and
a3_slot_I) have been used to obtain the presented values for

VOLUME 8, 2020

TABLE 4. Relative resource occupancy per kernel.

kernel slot % LUTs % FFs % BRAM18s % DSPs
RN G Gk aesy 3021 833
RN 2 G S 630 2500 9%
AbsNav_sl :iﬁlel ;ég 162%836 ;(1):;2 §?§§
AosNav 2 G 00 1072 363 313
Stereo-Vision ;iﬁiﬁ 17;1837]8;837 ;;gg 8

the large and small slots, respectively. Given these results,
it is necessary to mention that the limitation preventing the
allocation of the relnav_sI accelerator in the small slots does
not come from a lack of resources, but from the impossibility
shown by the vendor CAD tools to route the accelerator netlist
under a high occupancy in the slot.

B. RECONFIGURATION TIME

The time required to load an accelerator in the ARTICo3
architecture only depends on the size of the slot, regardless
it is fully occupied or not. Therefore, table 5 shows the time
required for the reconfiguration of each slot in the proposed
platform. Apart from the time needed for downloading the
bitstream in the device configuration memory (shown in
the DPR column in the table), whenever a new accelerator
is downloaded in ARTICo?, the table maintained by the
reconfiguration-aware scrubber must be updated. The time
needed to update this table is shown in the Update GCs. The
total time required for updating an accelerator is, therefore,
the sum of the DPR and Update GCs columns. All these tests
have been carried out with the PCAP working at 187.5MHz,
the maximum achievable frequency with the default PLL
assigned to this interface.

TABLE 5. Reconfiguration times.

Slot Update GCs [ms] DPR[ms] Total Time [ms]
a3_slot_0 18.59 9.26 27.85
a3_slot_1 1.60 4.64 6.24
a3_slot_2 1.62 4.65 6.27
a3_slot_3 23.65 8.52 32.17
a3_slot_4 3.29 4.26 7.55
a3_slot_5 1.73 4.26 5.99

C. VBN NAVIGATION PERFORMANCE

The corresponding execution time parameters of the
mission-dependent APs can be seen in table 6, which have
been measured exhaustively in the application. The hardware
accelerators associated to RelNav, RelNav_2, AbsNav and
Stereo-Vision APs have being simplified for the frame of this
work in order to fit in the designed ARTICo® slots and the

59901

IEEE Access

A. Pérez et al.: Run-Time Reconfigurable MPSoC-Based On-Board Processor for Vision-Based Space Navigation

TABLE 6. Mission-dependent APs execution times.

AP mean time [s] BCET [s] WCET [s]
Relnav 0.336 0.264 0.363
Relnav 2 0.402 0.07 0.486
Absnav 5.2 4.6 59
Stereo-Vision 0.325 0.293 0.374

overall MPSoC architecture, that includes data transmission
from memory between the accelerators and software tasks.

D. FAULT DETECTION AND REPAIR CAPABILITIES

The use of COTS devices, beyond the clear benefit offered
in terms of performance, adaptability and cost, has an impact
in the form of CPU occupancy due to the FDIR techniques
required to guarantee the survivability of the system. This
overhead is measured and analyzed in this subsection.

In the case of the proposed platform, the fault detection
time heavily depends on the time required by the SEM-IP
to detect a fault. The value provided by the Xilinx Prod-
uct Guide [32] to detect a fault by ECC is 28ms when
using the configuration memory interface employed by the
SEM-IP (ICAP) at its maximum operating frequency, which
corresponds to 200MHz. Moreover, the worst-case corre-
sponds to the CRC non-locatable faults, which is twice the
time to detect a fault using ECC, so it is 112ms (WCsgyper)
in the present solution, where the ICAP works at 100 MHz.
However, the proposed system will not react until the Fault-
Detection AP checks the output of this peripheral. As the
errors can appear in the configuration memory just after the
execution of the Fault-Detection AP, the system would not
detect the faults until the next execution of this task. Hence,
the WCET of the Fault-Detection AP (WCrpap) and its exe-
cution period (Trpap) must be taken into account, which is
expressed in the following equation:

WCper = WCsemper + WCrDAP + TrDAP (D

where WCp,, refers to the worst case for the fault detection
time. Hence, the time needed to react to a fault occurrence,
considering the hardware and software systems involved.

TABLE 7. Repair times.

Err type mean time [ms] BCET [ms] WCET [ms]
Repair per frame 0.228 0.048 0.355
Readback 1778.87 1775.74 1785.24

Regarding fault correction, the time required to repair the
device actively is shown in table 7. These metrics correspond
to the repair actions that the Reconfiguration AP can perform
when multiple-bit upsets, non-reparable by the SEM-IP, are
detected in the configuration memory. On the one hand,
if the faults are located but not repaired by the SEM-IP,
the Reconfiguration AP corrects the affected frame, which
takes 0.355 ms in the worst case, as shown in table 7.

59902

On the other hand, if the SEM-IP cannot even locate the
fault, it is necessary to trigger the readback scrubbing of the
whole configuration memory, as explained in section VII.
This operation takes 1785.24 ms, in the worst case (WCrcap)-

Likewise to the fault detection, in the case of fault correc-
tion, the period of the Reconfiguration AP (Trcap) together
with its WCET (WCgcap) must be considered to obtain the
worst case for the correction time (WCc,,,). This metric can
be obtained with the following expression:

WCcorr = WCrcaP + TrcaP 2)

The maximum periods that can be assigned to the FDIR
tasks (Trcap and Trpap) depend on the satellite orbit where
it will operate, which will impact on the expected failure
rate, combined with the device sensitivity metric to single
event effects. The shortest are these periods, the lower will
be the CPU time available for the application-dependent
threads. Considering the assumptions of the classical rate
monotonic scheduling algorithm [35], where it is formulated
that the execution time of every thread must be considered
constant, the CPU utilization percentage for the FDIR tasks,
can be determined using the periods assigned to both the
Fault-Detection and Reconfiguration APs, together with their
WCET, as expressed in the following equation:

WCrpap WCrcap

Urpir = + (3)
Trpap Trcap

With these FDIR AP parameters, the overhead introduced
by the FDIR tasks can be computed in terms of CPU
utilization. Unless redundancy is applied to the accelerators,
the occurrence of SEUs during the computation of an accel-
erator will produce discarding its execution results. In partic-
ular, the worst-case conditions will happen when:

« Faults are detected just before the end of an execution of
the VBN task, so the whole computation time (WCypy)
of the task will be useless.

« Faults occur just after the execution of the FDIR tasks,
so the whole period assigned to the FDIR task (7_FDIR)
has to be waited.

On top of that, in the event of a fault, a correct com-
putation (with no errors) of the VBN algorithms would be
delayed the time spent in detecting and fixing the fault
(WCpet + WCcorr) in addition to the period assigned to
the VBN task (Typy). Considering these parameters and the
occurrence of a fault under the worst-case conditions, the time
expected to perform an error-free execution of the accelera-
tors (gFg) can be obtained with the following relationship:

terg > 2% WCypn + Tyvan + WCpet + WCeorr (4)

E. COMPARISON WITH PREVIOUS WORKS

IN THE STATE-OF-THE-ART

This subsection provides a comparison of the most relevant
features of the on-board processor architecture proposed in
this paper, with significant works in the state-of-the-art. The
platforms provided in [13] and [15] have been selected for

VOLUME 8, 2020

A. Pérez et al.: Run-Time Reconfigurable MPSoC-Based On-Board Processor for Vision-Based Space Navigation IEEEACC@SS

TABLE 8. Platform comparison.

Platform MPSoC Processors oS DPR usage HW Logic redundancy Scrubbers
Linux Adaptation . . .
CSP [13] Zyng-7020 ARM-A9 RTEMS compatible ~ Reparation Redundancy framework compatible Hybrid Scrubber Compatible
. i . . . DMR on processing pipelines Blind Full FPGA
APEX-SoC [15] Zyng-7100 ARM-A9 Linux Reparation Low-level redundancy on critical parts ECC-CRC
Proposed platform ZU9EG ARM-RS5-lockstep RTEMS ﬁg;g;zggz Dynamic, at accelerator level Readt];agl((:_ccfl%é% ware

this comparison, since they also include mission and fault
mitigation techniques, all integrated. These three platforms
have been developed as baseline architectures to be reused in
different missions, and they are all based on MPSoCs. Other
works have been discarded because they do not present a
similar level of integration or they have used other types of
devices (i.e., radiation-hardened FPGAs). Table 8 gathers the
main features of the selected works and the one presented in
this paper.

Differently to the reference platforms, the proposal
described in this paper is implemented on a Zynq Ultrascale+
device in which the R5 processors are used as the primary
computing engine, working in lock-step mode. Regarding
the OS support, authors in [13] claim their platform is
RTEMS-compatible, but this is not detailed in any specific
implementation. Differently, in our proposal, we have fully
described the porting of RTEMS to the Zynq Ultrascale+
device. Moreover, we have included dynamically scalable
hardware accelerators, which also provide selectable fault
tolerance levels. Generic templates are also provided to ease
the deployment of mission-specific applications.

The proposed platform is also featured with a novel read-
back scrubber that is compatible with DPR. The proposed
scrubber does not require the reconstruction of the golden
copy, as happens in [14] or [23]. Instead, the scrubber selec-
tively accesses the full and different partial golden copies
when it needs to validate areas of the configuration mem-
ory that have been modified using more than one bitstream.
Regarding the performance of the proposed reconfiguration-
aware readback scrubber, the results presented in [22] can be
used as a reference. They have experimentally measured the
time required for detecting and correcting different types of
faults. With around 6.5 times smaller configuration memory,
the time required to detect bit upsets using ECC codes is
7 times smaller than in our work, so performance is roughly
equivalent. Regarding correction, the time needed to cor-
rect frames affected by multiple bit upsets non-reparable by
the SEM-IP is lower in our proposal, even when the repair
mechanism is aware of the current device configuration. This
improved performance includes the overhead in the recovery
mechanism of looking up the required bitstream to fetch
the frame to correct. In the case of CRC error, the full
FPGA memory is verified, which requires approximately
two seconds in both approaches. However, it must be noticed
that equivalent performance is better since the configuration
memory is 6.5 times bigger in our proposal.

VOLUME 8, 2020

X. CONCLUSIONS AND FUTURE WORK

This paper describes a novel architecture for a reconfig-
urable on-board processor for space applications that aims
to exploit the flexibility and cost benefits provided by
COTS SRAM-based MPSoCs. Dynamic reconfiguration is
used to provide in-flight adaptation and as a fault repair
mechanism. Reconfiguration is offered by the integrated
ARTICO? infrastructure, which provides transparent adapta-
tion of mission-specific hardware accelerators, as well as,
scalable performance and inherent fault tolerance in the
accelerators. A reconfiguration-aware scrubber has also been
included as a global FDIR technique, that can ultimately
guarantee the survival of the platform during the whole mis-
sion time. Besides the hardware setup, the RTEMS real-
time operating system has been integrated to schedule and
coordinate the deterministic execution of all the software
tasks. A portable template is also provided for each task
included in the system, which, together with the ARTICo?
toolchain, makes it easier to integrate and manage mission-
dependent and support tasks. The platform benefits are shown
for a visual-based navigation use-case, in which the platform
reconfiguration is used to adapt the navigation algorithms at
run-time, depending on the operational stage the spacecraft
is. Experimental results show how real-time support allows
adjusting the availability of the platform to the requirements
of the application, having the mission orbit, and the device
manufacture technology as design parameters. The implica-
tions of using the DPR technique have also been quantified,
in terms of internal fragmentation, reconfiguration time, and
repair times.

The future work will focus on providing a theoretical study
on the availability of the logic inside each particular accel-
erator, as well in using the device reconfiguration function
to carry out exhaustive fault-injection campaigns to validate
the models in the practice. More in-depth research will be
carried out on real-time scheduling algorithms to increase the
availability of the platform. In addition, new applications in
the space domain will be integrated in the platform, including
earth observation and communications, among others.

REFERENCES

[1] E.S. Agency. Rosetta Mission. Accessed: Nov. 20, 2019. [Online]. Avail-
able: https://www.esa.int/Our_Activities/Space_Science/Rosetta

[2] NASA. Mars Insight Mission. Accessed: Nov. 20, 2019. [Online].
Available: https://mars.nasa.gov/insight/timeline/landing/entry-descent-
landing/

[3] S.Y. Chen, “Kalman filter for robot vision: A survey,” IEEE Trans. Ind.
Electron., vol. 59, no. 11, pp. 4409-4420, Nov. 2012.

59903

IEEE Access

A. Pérez et al.: Run-Time Reconfigurable MPSoC-Based On-Board Processor for Vision-Based Space Navigation

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

T. M. Lovelly and A. D. George, ‘“Comparative analysis of present and
future space-grade processors with device metrics,” J. Aerosp. Inf. Syst.,
vol. 14, no. 3, pp. 184-197, Mar. 2017.

G. Lentaris, K. Maragos, 1. Stratakos, L. Papadopoulos, O. Papanikolaou,
D. Soudris, M. Lourakis, X. Zabulis, D. Gonzalez-Arjona, and G. Furano,
“High-performance embedded computing in space: Evaluation of plat-
forms for vision-based navigation,” J. Aerosp. Inf. Syst., vol. 15, no. 4,
pp. 178-192, Apr. 2018.

G. Martin, “Newspace: The emerging commercial space industry,” NASA
Ames Res. Center, Moffett Field, CA, USA, Tech. Rep. ARC-E-DAA-
TN20859, 2015.

A. Rodriguez, J. Valverde, J. Portilla, A. Otero, T. Riesgo, and
E. de la Torre, “FPGA-based high-performance embedded systems for
adaptive edge computing in cyber-physical systems: The ARTICo> frame-
work,” Sensors, vol. 18, no. 6, p. 1877, 2018.

H. Quinn, E. Johnson, J. Johnson, B. Pratt, N. Rollins, J. Krone,
D. Roussel-Dupre, M. Caffrey, P. Graham, M. Wirthlin, K. Morgan,
A. Salazar, T. Nelson, and W. Howes, “The cibola flight experiment,”
ACM Trans. Reconfigurable Technol. Syst., vol. 8, no. 1, pp.1-22,
Mar. 2015, doi: 10.1145/2629556.

D. Ratter, “FPGAs on mars,” Xcell J., vol. 50, pp. 8-11, Aug. 2004.

F. Rittner, R. Glein, T. Kolb, and B. Bernard, “Broadband FPGA payload
processing in a harsh radiation environment,” in Proc. NASA/ESA Conf.
Adapt. Hardw. Syst. (AHS), Jul. 2014, pp. 151-158.

Correct the Word Processo With Processor. Accessed: Nov. 28,
2019. [Online]. Available: https://www.iis.fraunhofer.de/en/ff/kom/
satkom/FOBP.html

A. Hofmann, R. Glein, L. Frank, R. Wansch, and A. Heuberger, ‘“Recon-
figurable on-board processing for flexible satellite communication sys-
tems using FPGAs,” in Proc. Topical Workshop Internet Space (TWIOS),
Jan. 2017, pp. 1-4.

C. Wilson and A. George, “CSP hybrid space computing,” J. Aerosp. Inf.
Syst., vol. 15, no. 4, pp. 215-227, Apr. 2018.

D. Rudolph, C. Wilson, J. Stewart, P. Gauvin, A. George, H. Lam, G. Crum,
M. Wirthlin, A. Wilson, and A. Stoddard, “CSP: A multifaceted hybrid
architecture for space computing,” NASA Goddard Space Flight Center,
Greenbelt, MD, USA, Tech. Rep. GSFC-E-DAA-TN15946, 2014.

X. Tturbe, D. Keymeulen, E. Ozer, P. Yiu, D. Berisford, K. Hand, and
R. Carlson, “An integrated SoC for science data processing in next-
generation space flight instruments avionics,” in Proc. IFIP/IEEE Int.
Conf. Very Large Scale Integr. (VLSI-SoC), Oct. 2015, pp. 134-141.
eoPortal Directory. Ops-Sat (Operations Nanosatellite). Accessed: Dec. 5,
2019. [Online]. Available: https://directory.eoportal.org/web/eoportal/
satellite-missions/o/ops-sat

F. Bezerra, D. Dangla, F. Manni, J. Mekki, D. Standarovski, R. G. Alia,
M. Brugger, and S. Danzeca, ‘“Evaluation of an alternative low
cost approach for SEE assessment of a SoC,” in Proc. 17th Eur.
Conf. Radiat. Its Effects Compon. Syst. (RADECS), Oct. 2017,
pp. 1-5.

eoPortal Directory. Eyesat 3u Cubesat Astronomy Mission to Study
Zodiacal Light. Accessed: Dec. 5, 2019. [Online]. Available:
https://directory.eoportal.org/web/eoportal/satellite-missions/o/ops-sat
M. Meftah, E. Bamas, P. Cambournac, P. Cherabier, R. Demarets, G. Denis,
A. Dion, R. Duroselle, F. Duveiller, and L. Eichner, “SERB, a nano-
satellite dedicated to the Earth-sun relationship,” Proc. SPIE Sensors Syst.
Space Appl. IX, vol. 9838, May 2016, Art. no. 98380T.

N. Montealegre, D. Merodio, A. Fernandez, and P. Armbruster, “In-flight
reconfigurable FPGA-based space systems,” in Proc. NASA/ESA Conf.
Adapt. Hardw. Syst. (AHS), Jun. 2015, pp. 1-8.

eoPortal Directory. Fedsat (Federation Satellite). Accessed: Dec. 5, 2019.
[Online]. Available: https://directory.eoportal.org/web/eoportal/satellite-
missions/o/ops-sat

A. Stoddard, A. Gruwell, P. Zabriskie, and M. J. Wirthlin, “A hybrid
approach to FPGA configuration scrubbing,” IEEE Trans. Nucl. Sci.,
vol. 64, no. 1, pp. 497-503, Jan. 2017.

J. Heiner, B. Sellers, M. Wirthlin, and J. Kalb, “FPGA partial reconfigura-
tion via configuration scrubbing,” in Proc. Int. Conf. Field Program. Log.
Appl., Aug. 2009, pp. 99-104.

K. Maragos, V. Leon, G. Lentaris, D. Soudris, D. Gonzalez-Arjona,
R. Domingo, A. Pastor, D. M. Codinachs, and I. Conway, “Eval-
uation methodology and reconfiguration tests on the new European
NG-MEDIUM FPGA,” in Proc. NASA/ESA Conf. Adapt. Hardw. Syst.
(AHS), Aug. 2018, pp. 127-134.

59904

(25]

[26]

[27]

[28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

K. Bravhar, V. Martins, L. Santos, and D. M. Codinachs, “BRAVE
NG-MEDIUM FPGA reconfiguration through space wire: Example use
case and performance analysis,” in Proc. NASA/ESA Conf. Adapt. Hardw.
Syst. (AHS), Aug. 2018, pp. 135-141.

D. M. Hiemstra, V. Kirischian, and J. Brelski, “Single event upset char-
acterization of the zynq UltraScale+ MPSoC using proton irradiation,” in
Proc. IEEE Radiat. Effects Data Workshop (REDW), Jul. 2017, pp. 1-4.
T. L. I. Technologies. Single Event Characterization of a Xilinx
Ultrascale+ MP-SOC FPGA. Accessed: Dec. 9,2019. [Online]. Available:
https://indico.esa.int/event/232/contributions/2162/

X. Tturbe, B. Venu, E. Ozer, and S. Das, “A triple core lock-step (TCLS)
ARM cortex-R5 processor for safety-critical and ultra-reliable applica-
tions,” in Proc. 46th Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw.
Workshop (DSN-W), Jun. 2016, pp. 246-249.

Microchip. Rad-Tolerant/Rad-Hard Integrated Cir-
cuits. Accessed: Jan. 14, 2020. [Online]. Available:
http://ww1.microchip.com/downloads/en/DeviceDoc/00002200C.pdf
Xilinx. Ultrascale Architecture Configuration—User Guide. Accessed:
Dec. 16, 2019. [Online]. Available: https://www.xilinx.com/
support/documentation/user_guides/ug570-ultrascale-configuration.pdf
H. Hirschmuller, “Accurate and efficient stereo processing by semi-global
matching and mutual information,” in Proc. IEEE Comput. Soc. Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2005, pp. 807-814.

Xilinx. Ultrascale Architecture Soft Error Mitigation Controller
V3.1—Product Guide. Accessed: Dec. 19, 2020. [Online]. Available:
https://www.xilinx.com/support/documentation/ip_documentation/sem_
ultra/v3_1/pg187-ultrascale-sem.pdf

R. Ginosar, “Survey of processors for space,” in Proc. Data Syst. Aerosp.
(DASIA), 2012, pp. 1-5.

Xilinx. Xilinx Sem-Ip. Accessed: Jan. 20, 2020. [Online]. Available:
https://www.xilinx.com/products/intellectual-property/sem.html

C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” J. ACM, vol. 20, no. 1, pp. 46-61,
1973.

A. Perez, A. Otero, and E. de la Torre, “Performance analysis of SEE
mitigation techniques on zynq ultrascale+hardened processing fabrics,” in
Proc. NASA/ESA Conf. Adapt. Hardw. Syst. (AHS), Aug. 2018, pp. 51-58.

ARTURO PEREZ received the B.Sc. degree in
industrial electronics and automation engineering
from the University Carlos III of Madrid (UC3M),
Spain, in 2015, and the M.Sc. degree in indus-
trial electronics from the Universidad Politéc-
nica de Madrid (UPM), in 2017, where he is
currently pursuing the Ph.D. degree. He joined
CEI, in 2016, as an Associated Researcher to
the ENABLES3 European Project. His current
research interests include reconfigurable com-

puting, embedded systems, real-time systems, and singleevent-effects
mitigation.

ALFONSO RODRIGUEZ (Student Member,
IEEE) received the B.Sc. degree in industrial
engineering and the M.Sc. degree in industrial
electronics from the Universidad Politécnica de
Madrid (UPM), Madrid, Spain, in 2012 and 2014,
respectively, where he is currently pursuing the
Ph.D. degree in industrial electronics with the
Centro de Electrénica Industrial. Under a HIPEAC
collaboration grant, he was a Visiting Researcher
with the Computer Engineering Group, Univer-

sitdt Paderborn, where he worked on operating systems for reconfigurable
computing. He is also a Teaching Assistant and a full-time Researcher of
industrial electronics with the Centro de Electrénica Industrial, UPM. His
current research interests include artificial intelligence, high-performance
embedded systems, and reconfigurable computing.

VOLUME 8, 2020

http://dx.doi.org/10.1145/2629556

A. Pérez et al.: Run-Time Reconfigurable MPSoC-Based On-Board Processor for Vision-Based Space Navigation

IEEE Access

ANDRES OTERO (Member, IEEE) received the
M.Sc. degree (Hons.) in telecommunication engi-
neering from the University of Vigo, in 2007,
and the master’s and Ph.D. degrees in industrial
electronics from the Universidad Politécnica de
Madrid (UPM), in 2009 and 2014, respectively.
He is currently an Assistant Professor of electron-
ics with UPM, and a Researcher with the Centro de
Electronica Industrial (CEI). His current research
interests include embedded system design, recon-
figurable systems on FPGAs, evolvable hardware, and embedded machine
learning. During the last years, he has been involved in different research
projects in these areas, and he is the author of more than 30 articles published
in international conferences and journals. He has served as a Program Com-
mittee Member of different international conferences in the field of recon-
figurable systems, such as ARC, ReConFig, DASIP, and ReCoSoC.

DAVID GONZALEZ ARJONA received the
M.Phil. degree in telecommunications engineering
and computer science and the M.S. degree in
computer science from the Autonoma University
of Madrid. He works with GMV Aerospace and
Defence SAU while in parallel works part-time as
an Associate Professor with the Autonoma Univer-
sity of Madrid. He has been specialized in Avionics
and On-Board SW for the Space Segments and
Robotics Business Unit of GMYV, since 2011. He is
currently the Head of the Microelectronics Section, leading as directly as
the Manager different ESA projects related to Autonomous Vision-Based
Navigation, Communication, Avionics Computers and participating in R&D
projects as ENABLE-S3 H2020 or Space-Based Surveillance Tracking on
Galileo Next Generation. He is also a part-time Associate Professor teaches
with the Department of Electronic and Telecommunication Technology
providing a state-of-the-art point of view from academic and researching
perspective.

ALVARO JIMENEZ-PERALO received the degree
in computers engineering from the Autonoma Uni-
versity of Madrid. He has been a Project Man-
ager at GMV Aerospace and Defence SAU on the
Avionics & On-Board SW for the Space Segments
and Robotics Business Unit of GMYV, since 2017.
He is working in projects involving development
of embedded SW for different on board applica-
4 ' ' tions as Exomars 2020, including UML design,
I “ unit testing and documentation as well as projects
with embedded SW and FPGA as LVDAC, where a development over a
Zynq board imply an AOCS running on processor and interacting with FPGA
IPs. He is leading as the Manager of the GMV participation in the project
Multispectral Navigation Camera with applicability to HERACLES LOP-G
rendezvous and docking. He is also working at the research projects for Euro-
pean H2020 as ENABLE-S3, where a fast validation and verification using
areconfigurable HW architecture is used to manage different redundancy of
HW accelerators.

VOLUME 8, 2020

MIGUEL ANGEL VERDUGO received the M.Sc.
degree in industrial engineering from the Tech-
nical University of Madrid (UPM), Spain. He is
currently an Engineer with the Space Segment
and Robotics Department assigned to different
projects related to microelectronics firmware and
embedded SW under ESA contracts. He has been
involved in several FPGA designs of firmware
IP-cores for on-board computers modules as for
the in-flight partial dynamic reconfiguration of

ENABLE-S3 project. He has experience working in the space sector, espe-
cially with FPGA technology, and a deep experience in VHDL. He was
involved in Mars Sample Return Project devoted to the HW-acceleration of
a shortrange image processing function for model-match of the OS canister
capture.

EDUARDO DE LA TORRE received the Ph.D.
degree in electrical engineering from the Universi-
dad Politécnica de Madrid (UPM), Spain, in 2000.
He is currently an Associate Professor of electron-
ics with the Centre of Industrial Electronics, UPM.
His main interests include FPGA design, embed-
ded systems design, HW acceleration, signal pro-
cessing and partial, and dynamic reconfiguration
of digital systems. He has participated in more than
40 projects, 11 of them being EU funded projects,
and overall, in nine funded projects related with reconfigurable systems.
He has been a Program Chair of ReConFig and a General Chair of ReCoSoC,
two conferences with strong interest in hardware reconfiguration.

59905

