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ABSTRACT This research devises a method to match marker-less surfaces for liver image registration.
Surgeons usually glean preoperative liver information, such as anatomy and the locations of liver tumors
or large intrahepatic vessels, from preoperative liver images that are obtained using Computed Tomography
(CT) scans, Magnetic Resonance Imaging (MRI) or ultrasound. During minimally invasive surgery, surgeons
use a laparoscope to obtain information about the intraoperative liver surface and identify an intraoperative
liver tumor or the locations of vessels using the preoperative information. However, the liver can be lifted,
shifted, flipped, squeezed or turned over during surgery. These manual operations can lead to severe
deformation, so it is difficult to identify the location of intraoperative liver tumors or vessels. It is also
difficult to accurately remove a liver tumor while avoiding injury to large intrahepatic vessels. This research
proposes a method to determine the location of intraoperative vessels or tumors. The proposed method uses
CT scans to construct a preoperative biomechanical volumemodel and uses a novel surface matchingmethod
to determine the relationship between the preoperative and intraoperative surfaces. The preoperative volume
model is deformed by the finite element model in terms of the relationship that is defined by the proposed
surface matching method, so that it aligns with the intraoperative surface model and shows the location
of intraoperative vessels and tumors. The method of target registration error is measured for an ex vivo
porcine liver to validate the proposed method. The results show that the error in the internal marker (which
represents the location of the tumor and the vessel) is 4.54 ± 3.55 mm and the error in the surface marker is
2.98 ± 1.09 mm, which demonstrates the feasibility and high degree of accuracy of the proposed method.

INDEX TERMS Finite element model, liver deformation, minimally invasive surgery, deformable image
registration, surface matching.

I. INTRODUCTION
Laparoscopic surgery brings many advantages such as less
patient trauma, shorter recovery time and lower the risk of
complication while comparing to open surgery. However,
the surgeon must manually control the camera and tools
within a narrow field of view. It is difficult to identify the
intraoperative information such as vessels and tumors. Image
registration is applied to resolve the problem. A preopera-
tive organ image (surface plus internal information of the
organ) is registered to an intraoperative organ image (partial
surface or low resolution of 3D information) to produce the
intraoperative information. Intraoperative information allows
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the surgeon to identify critical locations during surgery. The
technique is called image registration. Image registration
researches try to resolve the problem in many perspective,
such as image capture, image modeling, surface matching
and image deformation algorithms, in either simulations or
experiments. Surveys [1]–[4] show that current challenges are
(1) real-time operation, (2) accuracy and (3) clinical trials. In
terms of real-time computation, [5] shows that real-time com-
putation is feasible using a parallel GPU architecture. Server
processors, such as the Intel Xeon and the AMDEPYC, allow
increased computing performance, so does NVIDIA GPU.
Server processors and GPU will eventually allow real-time
computation for image registration techniques. Accuracy has
been improved using simulations or experiments that use a
phantom, ex vivo organ or via clinical trials of improved
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image registration methods, but the process is still not suf-
ficiently accurate. The target accuracy for clinical trials is
within 5 mm [1], which is a challenge for current image
registration techniques.

For researches that register the preoperative image to the
intraoperative image to predict the intraoperative locations of
tumors or vessels, the image source that is used to construct
the preoperative model and the intraoperative model must be
selected. Commonly CT and MRI are used to capture pre-
operative images because these techniques offer high image
resolution and low noise. They can also be captured from
outside the operating room. The preoperative image is used to
create an intervention plan and to construct the preoperative
volume model. The volume model includes the surface and
critical locations of tumors and vessels. During laparoscopic
surgery, the intraoperative image is captured using an optical
or non-optical method. A laparoscopic stereo camera, one of
optical ways, captures partial images of the organ surface and
gives no information about the location of tumors or vessels
and the intraoperative image must be reconstructed before
image registration.

Non-optical methods include ultrasound, cone-beam com-
puted tomography (CBCT) [6] or open MR scanners [7].
These are used in a hybrid operating room to capture the
intraoperative image. The slices of images form a complete
3D image of the organ. however, these methods feature low
resolution or high noise, so image registration must occur
after the intraoperative model is constructed. Then the loca-
tion of the tumor or vessel is clearly identified. Thus, existing
optical and non-optical methods require image registration to
produce clear intraoperative information.

The preoperative and intraoperative models use different
imaging modalities or coordinate systems so pre-registration,
which is also called initial registration, is necessary to ensure
that both modalities align. This usually involves rigid trans-
formation using a fast algorithm.

The Iterative Closest Point (ICP) method aligns two
point clouds rigidly by iteratively establishing the relation-
ship between points to reduce the target registration error.
There are many extended ICP methods. A modified ICP
method, called Deformation-Identifying Rigid Registration
(DIRR) [8], automatically rigidly registers an image so there
is no need to manually set the initial condition. Another
modified ICP [9] recursively minimize the registration error
until it is less than a fixed threshold value. Convergent
ICP [10] involves an improved ICP algorithm that increases
accuracy when there is partial surface registration. Shape
feature descriptors [11] uses a shape-based initial registration
method that calculates the similarity of feature descriptors
and uses the similarity and spatial correspondence to align
both surfaces. All of the initial registration methods rigidly
align the preoperative and the intraoperative images to allow
a faster image registration process.

There are two parts in image registration techniques: sur-
face matching and image deformation. Surface matching
determines the relationship between the intraoperative and

FIGURE 1. Closest point [8] determines the relationship between surfaces
in the preoperative image and the intraoperative image using iterative,
incremental normal vectors of minimal distance.

preoperative surfaces. Image deformation uses the relation-
ship between surfaces that is identified during surface match-
ing to deform the preoperative volume model. The internal
tissue in the deformed volume model, such as tumors or
vessels, is used to determine the location of intraoperative
tumors or vessels.

There are many existing surface matching methods. The
closest point [8] method is shown in FIGURE 1 and is a
point-wise method that determines the relationship between
surface points using normal-tangential space. It iteratively
determines the surface displacement that is required to align
both surfaces. The displacement of the preoperative sur-
face points is the incremental normal vector of the mini-
mum distance between the preoperative and intraoperative
models. Hybrid similarity computation [12] determines the
displacement using a weighted average of the similarity in
the shape, the pose and the gas-pressure. Gaussian curva-
ture [13] scores curvature on the organ surface and uses
a set of cameras to determine the relationship between
two surfaces.

The deformation model uses the result of surface match-
ing to deform the preoperative volume model. Energy-error
minimization [14] uses the biomechanical internal energy
and the tracking energy. The registration is optimal if the
internal forces equal the tracking forces. B-splines [15] and
Thin-Plat Splines (TPS) [16] are common surface registra-
tion methods. Although neither method considers the biome-
chanical properties, they are still sufficiently accurate [17].
Finite Element (FE) [8], [14] regards the displacement of
surface points as a boundary condition to deform the preop-
erative volume model. It calculates the internal energy and
the external energy and achieves equilibrium to produce a
deformed volume model. Another common method is the
elastic method [18].

Section 2 of this research details the proposed method of
image registration, especially the novel surface matching to
determine the relationship between the preoperative surface
and the intraoperative surface to reduce the image registration
error. Section 3 shows and discusses the results for an exper-
iment that use an ex vivo porcine liver. Section 4 concludes
the proposed method.
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II. PROPOSED IMAGE REGISTRATION METHOD
This research proposes a novel surface matching method that
aims at reducing image registration error. Accurate surface
matching is essential because inaccurately aligned surfaces
give a worse deformation result. The locational accuracy of
internal tissue, such as vessel or tumor location, is important.
The liver is one of organs that deforms dramatically during
surgery. So this research uses the liver for image registration
experiment. This research assumes that the intraoperative
surface is reconstructed using optical methods or captured
using non-optical methods. The reconstruction of the intra-
operative partial surface is not discussed. The preoperative
liver volumemodel (which includes the entire surface, vessels
and tumor locations) and the intraoperative surface model
(which includes a 3D image of the liver surface) are used
for image registration. Image registration involves surface
matching and image deformation. Surface matching deter-
mines the relationship between the preoperative surface and
the intraoperative surface and image deformation uses this
relationship to deform the preoperative volume model. The
deformedmodel is a volumemodel and the location of vessels
and tumors are inferred as intraoperative locations. The next
time frame features the next 3D surface model and the pre-
vious deformed volume model becomes the new 3D volume
model for image registration. The scope of this research is
shown in FIGURE 2.

FIGURE 2. In this research, the 3D volume model is deformed to align
with the 3D surface model by using featured surface matching method.
The internal tissue in the 3D deformed volume model, such as tumors or
vessels, is used to infer the location of intraoperative tumors or vessels.

The proposed method has two stages. The first stage
involves image pre-registration, whereby the coordinate
systems of the preoperative 3D volume model and the
intraoperative 3D surface model are aligned using a rigid
transformation. The second stage involves non-rigid image
registration, whereby both surfaces are aligned using a Fea-
tured Surface Matching (FSM) method. This method uses
curvature variation to create a leading point histogram as a
local surface feature. A neighbor voting scheme is then based
on local surface features to determine how the preoperative
surface points be moved to align both surfaces. This displace-
ment of points uses the Dirichlet boundary condition for finite
element analysis to calculate the internal deformation of the
preoperative 3D volume model. The location of vessels or

tumors in the deformed model then mimic the location of
intraoperative vessels or tumors.

A. PRE-REGISTRATION
The preoperative model and the intraoperative model use
different coordinate systems so a weighted Iterative Clos-
est Point (weighted-ICP) method is used to pre-register an
image to ensure that both models use the same coordinate
system. The cost function is calculated by rotating and trans-
lating the preoperativemodel with regard to the intraoperative
model using weights. The optimal rigid transformation that
aligns the preoperative model with the intraoperative model
is obtained by minimizing the cost function:

E =
∑N

i=1
wi
∣∣∣(R⇀S i + T)− ⇀

T j
∣∣∣2 (1)

where
⇀

S i and
⇀

T j are the preoperative model and the intraoper-
ative model, respectively and R and T are rotation and trans-
lation matrices, respectively. The initialized rotation matrix is
an identity matrix and the translation matrix is a zero matrix.
The weight wi is dependent on the distance between a point
in the intraoperative model

⇀

T i and its centroid
⇀

C .

wi =


0, if d

(
⇀

T i,
⇀

C
)
≥k ·mean

(
d
(
⇀

T i,
⇀

C
))

1

d
(
⇀

T i,
⇀

C
) , else

(2)

where k is manually-adjusted parameter for different scenar-
ios and experiments. The weighted-ICP uses a K-D tree and
is iterated around 1,000 times to ensure that the root mean
square error is minimized.

B. FEATURED SURFACE MATCHING METHOD
The FSM method measures the similarity of local surface
features in the preoperative model and the intraoperative
model and uses a neighbor voting scheme to determine the
surface displacement. The surface displacement ensures that
the preoperative model aligns with the surface of the intraop-
erative model.

The FSM method uses the curvature variation to build a
local surface feature. 30% of points with a high curvature
variation become the leading points. All of the curvature
variations for the leading point and its neighbor points form
a leading point histogram. The leading point histogram is
a local surface feature. The preoperative leading point his-
tograms and intraoperative leading point histograms are mea-
sured to determine high similarity points that feature leading
point displacement. A neighbor voting scheme is used to
determine the leading point displacement and to ensure that
the displacement is in almost the same direction and distance
as the neighbor leading points. The remainder of the points
are trailing points. The trailing point displacement is the inter-
polation of the displacement of the neighbor leading points.
Following subsections introduces FSM method in detail.
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1) CURVATURE VARIATION
The curvature variation is used to obtain local surface features
at points on a liver surface. A surface S is described as an
implicit function, so for f : R3

→ R

S =
{
x ∈ R3

| f (x) = 0
}

(3)

A curvature tensorC (x, s) for a surface S at each point x ∈ S
is calculated as (4).

f : C (x, s) =
∂2f (x)
∂s2

(4)

where s is the direction of the tangent at x. A curvature tensor
is fully described by a 3×3matrix of second order derivatives
at point x0 as:

∂2f (x0)
∂s2

= sTHs (5)

whereH is a covariancematrix, which is also known as aHes-
sian matrix, of a surface function f , and can be expressed by:

H =



∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂z

∂2f
∂y∂x

∂2f
∂y2

∂2f
∂y∂z

∂2f
∂z∂x

∂2f
∂z∂y

∂2f
∂z2

 (6)

A curvature tensor is fully described by a 3 × 3 matrix of
second order derivatives. α is the angle that s makes with
the local coordinate axis at a fixed point x0 on the surface S,
curvature tensor (as function of α) is extreme when:

∂C (x, s)
∂α

=
∂

∂α

∂2f
∂s2
= 0 (7)

The non-trivial solution is

det (H − λI ) = 0 (8)

Solving this second order equation in λ yields three eigen-
values for curvature tensors, λ1, λ2, λ3 and the respective
eigenvectors for the curvature tensor are s1, s2, s3, where
λ1 > λ2 > λ3.
The principal directions and values for the 3× 3 curvature

tensor can be calculated. The directions are those in which
tensor has extreme values (max or min). These eigenvectors
are orthogonal to each other. The values are the actual mini-
mum and maximum values. That is,

λ1, s1 major eigenvalue and eigenvector

λ2, s2 medium eigenvalue and eigenvector

λ3, s3 minor eigenvalue and eigenvector

the curvature variation is defined as (9):

κ =
λ3

λ1 + λ2 + λ3
(9)

where the interval of curvature variation is κ ∈
[
0, 13

]
the

curvature variation is 1
3 if λ1 = λ2 = λ3, the local surface

is rugged, and not flat. If λ1 = λ2 > λ3, λ1 > λ2 = λ3 or
λ1 > λ2 > λ3, some directions may be flat. The greater the
curvature variation, the more representative is the surface.

2) LEADING POINT DISPLACEMENT
Leading point is an outstanding point, and its curvature vari-
ation is top 30% of all surface points. The curvature variation
of leading point and its neighbors can form a leading point
histogram, which is used as a local surface feature. It is uti-
lized to identify the surface point displacement from the pre-
operative model to the intraoperative model. The histogram
plots the normalized number of neighbor points against cur-
vature variation and is shown in FIGURE 3. The curvature
variation is divided into several intervals with different bin
sizes: [0.00, 0.02), [0.02, 0.05), [0.05, 0.10), [0.10, 0.16),
[0.16, 1/3]. The curvature variation for the leading point and
its neighbors that fall into each of the bins is normalized.

FIGURE 3. Leading point histogram to describe a local surface feature.

Curvature variation can change significantly on the liver
surface, especially if a lobe is squeezed, flipped, or turned
over. Using an iterative tracking process, the hypothe-
sized local curvature variation does not change quickly
between two iterations. The preoperative leading point his-
togram hist (S) and the intraoperative leading point histogram
hist (T ) have a high correlation coefficient ρ.

ρ=

∑
i
[
hist (Si)− hist (S)

] [
hist (Ti)− hist (T )

]√∑
i
[
hist (Si)−hist (S)

]2∑
i
[
hist (Ti)− hist (T )

]2
(10)

where

hist (S) =
1
NS

∑
i
hist (Si) (11)

and

hist (T) =
1
NT

∑
i
hist (Ti) (12)

whereNS andNT are the total respective number of histogram
bins in the preoperative model and the intraoperative model.

The similarity measurement determines leading point his-
tograms in the preoperative and intraoperative models that are
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similar using the correlation coefficient for the leading point
histogram and the distance:

$ = ρ ∗

(
1−

d (S,T )
dmax

)
(13)

where $ denotes the similarity between both leading point
histograms, ρ is the correlation coefficient for both lead-
ing point histograms, d (S,T ) is the distance between both
leading points and dmax is the maximum distance between
the preoperative leading point and the intraoperative leading
point. The ten most similar histograms are used as leading
point displacement candidates and the remainder are ignored.
The ten most similar histograms are normalized as:

$normalized,k =
$k∑
i$i

(14)

If local points on the liver surface have almost the same
displacement between two iterations of the physical liver
deformation, the neighbor voting scheme gives the displace-
ment of the preoperative leading points using the normalized
similarity and neighbor voting.

If the displacement of the leading point for a neighbor is
almost the same as that for the preoperative leading points,
the neighbor votes for the displacement using its normalized
similarity, $ij. The displacement of the leading point is then
the maximum value of the similarity measure for the dis-
placement candidate, according to the sum of the neighbor’s
voting.

M∗ = argmax
k
$normalized,k ∗

(∑
ni$ij

)
(15)

whereM∗ is the displacement of leading point using a neigh-
bor voting scheme. If ni is 1, the neighbor votes for the
displacement and if ni is 0, the neighbor does not vote.

3) FEATURED SURFACE MATCHING
The other points that are not leading points are called trailing
points. The trailing points are in a flat region where it is
difficult to infer the displacement based on local surface
features. Trailing points assumed have the same displacement
as leading points so the displacement of the trailing point,

⇀

T ,
is defined as the interpolation of displacement of the leading
point displacement

⇀

L i.
⇀

T =
1∑

i∈neighbor
1

dist i

∑
i∈neighbor

1
dist i

⇀

L i (16)

where dist i is the distance between leading point and trailing
point, for the leading point which is the neighbor of trailing
point.

In order to ensure that both surfaces are matched, trailing
point displacements are fine-tuned by morphological erosion
or dilation of the minimal distance using the approaching
factor is proposed in (17):

M = α ∗ Dmin (17)

whereM is the fine-tuned displacement of a trailing point,α is
an approaching factor that is predefined as 0.1 and is adjusted

FIGURE 4. Trailing points are fine-tuned by iteratively morphological
erosion or dilation of the minimal distance with an approaching factor.

for different scenarios and Dmin is the minimum distance on
normal vector between the preoperative trailing points and
the intraoperative points. Experience shows that this fine-
tuning calculation requires around 5∼30 iterations to yield
the optimal surface matching result.

The proposed FSMmethod aligns the preoperative surface
with the intraoperative surface by dividing surface points
into leading points and trailing points. The leading point
displacement is defined using a neighbor voting scheme with
similarity measures and the trailing point displacement is
the interpolation of the leading point displacements with a
fine-tuning scheme. The leading point displacements and the
trailing point displacements form a group of preoperative
surface displacements that allow the preoperative surface to
align with the intraoperative surface.

C. CALCULATING THE LIVER DEFORMATION
This research uses the finite element model to calculate the
liver deformation. The liver, tumors and vessels are for-
mulated using a biomechanical model and the deformation
calculation is solved using partial differential equations. The
local control points and 3D volume deformation have biome-
chanical parameters. (18) is the strong form of the boundary
condition problem:

∇ · σ = B (18)

where σ represents the stress tensor and B denotes the exter-
nal forces that act on the object. The liver is assumed to
feature a linear relationship between stress (σ ) and strain (ε),
as (19):

σ = Cε (19)

where the stiffness matrix C and Young’s modulus (E) and
Poisson’s ratio (υ) are dependent. The strain tensor ε is
calculated as (20):

ε =
1
2

(
(∇u)T +∇u

)
= Bu (20)

where u is the displacement field. Substituting (18) and (19)
into (20) gives the displacement vector (u) as (21):

E
2 (1+ υ)

∇
2u+

E
2 (1+ υ) (1− 2υ)

∇ (∇ · u) = B (21)

Gallerkin weighted residuals and a linear basis function are
used to solve (21). This system equation solves the Cartesian
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FIGURE 5. The finite element mechanism that is used for geometric
transformation.

displacement u at every node in the tetrahedral mesh as:

[K ] {u} = {B} (22)

where {u} is the three-dimensional displacement for each
node. To simulate soft-tissue deformation, the equation is
solved by obtaining known displacement values for some
nodes.

The FSM method calculates the optimal surface displace-
ments that allow the preoperative model to align with the
intraoperative model. The featured surface displacements are
the inputs for the Dirichlet boundary condition for the finite
element model computation. The output from the finite ele-
ment model is the deformed volume model, for which the
surface and the locations of tumors or vessels are the same
as those for the intraoperative model.

III. EXPERIMENT ON AN EX VIVO PORCINE LIVER
The proposed method is validated using an experiment on an
ex vivo porcine liver. FIGURE 6(a) shows the preoperative
ex vivo porcine liver. FIGURE 6(b) is the intraoperative ex
vivo porcine liver, which is obtained by manual operations on
the preoperative ex vivo porcine liver. There are three differ-
ent combinations of manual operations: shifting, lifting and
shifting and lifting. In the left lobe, the edge of liver is pulled
25 mm using a fishing-line to create a shift deformation. In
the middle lobe, the liver is lifted 60 mm using a pad, which
causes severe deformation. In the right lobe, the liver is first
shifted 10 mm and then lifted 18 mm using a pad. Manual
operations involving lifting and shifting are performed on the
liver lobes to mimic surgical operations that use in minimally
invasive surgery. Note that the left lobe is on the right-hand
side of the figure and the right lobe is on the left side in
FIGURE 6(a) and (b).

5 pinned markers, 10 surface markers and 26 internal
markers are fixed on or inserted into the ex vivo porcine liver.
0.5mm nails are inserted close to the hepatic portal vein as
pinned markers to mimic large blood vessels and are used
to measure the accuracy of the pre-registration. 5mm plastic
pearls are sewn on the surface of the ex vivo porcine liver
as surface markers and are used to measure the accuracy of
surface matching. 3mm metal balls are inserted into the ex
vivo porcine liver as internal markers (by cutting, stuffing,
and sewing) to mimic the locations of vessels and tumors and
are used to measure the accuracy of the overall registration
algorithm.

FIGURE 6. The experiment to validate the proposed method: (a) the
preoperative ex vivo porcine liver includes 26 surface markers, 10 internal
markers and 5 pinned markers, (b) the intraoperative ex vivo porcine liver
is constructed using manual operations on the preoperative ex vivo
porcine liver by lifting the right lobe 18 mm and shifting it 10 mm, lifting
the middle lobes 60 mm and shifting the left lobe 25 mm, (c) the
preoperative volume model is constructed using CT scans of the
preoperative ex vivo porcine liver, (d) the intraoperative surface model is
the surface part of the intraoperative volume model, (e) the intraoperative
volume model is constructed using CT scans of the intraoperative ex vivo
porcine liver and is a ground truth and (f) the deformed volume model is
the output of the proposed method when the preoperative volume model
is deformed with respect to the intraoperative surface model.

The preoperative volume model is shown in FIGURE 6(c)
as a biomechanical model that is constructed from CT scans
of the preoperative ex vivo porcine liver. A 3D marching
cube algorithm [19] is used to create 3D mesh points for the
entire contour of the preoperative ex vivo porcine liver, in
order to create a surfacemesh. A ten-node tetrahedral element
(C3D10) is used to construct the internal mechanism for the
liver, tumors and vessels. The mesh grid points are seeded
in the liver, tumors and vessels to generate meshes. The
element edges for the model are less than 1mm to increase
accuracy and to decrease the possibility of distortion. The
tissue properties for the liver, tumors and vessels are defined
separately. An elastic finite elementmodel often usesYoung’s
modulus and Poisson’s ratio to represent tissue properties.
The parameters for Young’s modulus and Poisson’s ratio are
given in [20], [21], Young’s modulus and Poisson’s ratio
for the liver and tumor are 27KPa and 0.45, respectively.
Young’s modulus for a vessel is 0.62MPa and Poisson’s
ratio is 0.45. A biomechanical model is constructed using
these parameters. Manually constructing the biomechanical
model requires ∼65 seconds (Intel Xeon CPU E5-1630 v3
@3.7GHz; DDR4 64.0 GB).
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During minimally invasive surgery, only a part of the
intraoperative surface is visible if a stereo camera is used.
This research assumes that this partial surface is well recon-
structed. This research skip the reconstruction problem. So
the intraoperative surface model in FIGURE 6(d) shows the
entire surface that is constructed using CT scans of the intra-
operative ex vivo porcine liver.

The ground truth that is used to measure the accuracy of
image registration must include both the liver surface and
the locations of the three types of markers. The ground truth
is obtained from biomechanical models of CT scans of the
intraoperative ex vivo porcine liver. The parameters for the
construction of the biomechanical model and the biomechan-
ical parameters are the same as those that are used to model
the preoperative ex vivo porcine liver.

Both the preoperative volume model and the intraoperative
surface model are inputs for the proposed method. The output
is the deformed volume model that is compared with the
intraoperative ground truth usingmarker locations tomeasure
the accuracy, as shown in FIGURE 6(f).

The results show that the computation time is ∼270 sec
(Intel Xeon CPUE5-1630 v3@3.7GHz; DDR4 64.0 GB), the
pinned marker error is 1.05 ± 0.85 mm, the surface marker
error is 2.98 ± 1.09 mm (initial error is 12.18 ± 5.49 mm)
and the internal marker error is 4.54 ± 3.55 mm (initial error
is 12.08 ± 4.27 mm).

The pinned marker error of 1.05 ± 0.85 mm shows that
weighted-ICP is highly accurate for pre-registration. The sur-
face marker error and the internal marker error feature two
regions with large errors in the left lobe and in the middle
lobe. The left lobe is shifted in two opposite directions.
However, the liver was placed on Styrofoam and the friction
between the liver and the Styrofoam inhibits the displacement
of some portions. The FSM method regards flat bottom part
as trailing points. The displacement of the trailing point (flat
part) is the interpolation of the displacement of the neigh-
boring leading points (curved part) so the FSM method does
not account for friction. This produces large errors for the
left lobes. In the middle lobe, the weight of heavy internal
markers causes them to sink in different directions so error
are large and the height of internal markers is lower than the
computed result.

To determine registration errors in each lobe, FIGURE 9
shows the internal marker errors for all and each of the ex
vivo porcine liver lobes. All registration errors are reduced
from an initial error (IE) of 12.08 ± 4.27 mm to the target
registration error (TRE) of 4.54 ± 3.55 mm, where IE is
the error between the preoperative (after pre-registration)
and the ground truth internal markers and TRE is the target
registration error between the deformed internal markers and
the ground truth internal markers. The left lobe (to verify shift
operation) has an IE value of 10.39 ± 3.26 mm and this is
reduced to a TRE of 4.73 ± 3.22 mm. The middle lobes (to
verify lift operation) have an IE value of 14.09 ± 4.66 mm
and this is reduced to a TRE of 4.51 ± 4.11 mm. The
right lobe (to verify shift and lift operation) has an IE

FIGURE 7. The distribution of the error for 26 internal markers: each error
is annotated next to a marker.

FIGURE 8. The distribution of the error for 5 pinned markers and 10
surface markers: each error is annotated next to a marker.

value of 9.70 ± 2.25 mm and this is reduced to a TRE of
4.41 ± 3.18 mm.
FIGURE 10 shows the IE value for each internal marker

compare to the TRE. Almost all errors are reduced, except
those for some markers that experience an opposite frictional
force or the internal marker sinks in different directions.
Markers that experience an opposite frictional force have an
IE of 10.07 ± 4.20 mm, and this is reduced to a TRE of
8.25 ± 2.74 mm using the proposed method. For markers
that sink in different directions, the errors are reduced from
18.34 ± 5.31 mm to 8.90 ± 3.31 mm using the proposed
method. The proposed method can reduces both types of
errors but it is not ideal. When both problems are skipped,
the FSM method reduce an IE of 10.86 ± 1.76 mm to a TRE
of 2.84± 2.19 mm and obtains high quality registration. This
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FIGURE 9. These box plots compare the IE and TRE for different areas:
the left lobe with shift operations, the middle lobe with lift operations
and the right lobe with both shift and lift operations.

FIGURE 10. A comparison of the IE and TRE for the error for 26 internal
markers: the error is reduced using the proposed method and image
deformation.

TABLE 1. Units for magnetic properties.

shows friction and heavy marker sinks are challenges for the
proposed method.

Table 1 compares the results for the FSM method and the
closest point [8] method for the same dataset, pre-registration
method and deformation calculation. The FSM performs
better for the surface and internal TRE. The FSM method
performs better for middle lobes that have severe deforma-
tions. An improved surface TRE means that fewer errors
accumulate from the surface to the internal region, so the
internal TRE is better.

IV. CONCLUSION
This research proposes a marker-less featured surface match-
ing (FSM) method, which determines the relationship
between surface points on two surfaces of an organ. It is
a point-wise, feature based method in Euclidean coordinate
system. It uses a non-iterative image registration scheme that
increases the accuracy of surface matching and decreases
computation time.

The preoperative volume model is constructed using the
preoperative organ image, it includes surface, tumors and
vessels of the organ. The intraoperative surface model uses
the intraoperative organ image, it usually a partial surface or
low resolution of 3D information. This research assumes the
intraoperative surface model is a reconstructed entire surface
of the organ. The FSM method determines the relationship
between surface points and the finite element model is used
to establish the relationship between surface points as a
Dirichlet boundary condition and to propagate the surface dis-
placement into internal elements. This produces a deformed
volume model that contains the locations of tumors and large
blood vessels. The location information is helpful for the
surgeon during minimally invasive surgery.

The proposed method is validated by an experiment that
uses an ex vivo porcine liver. Using the proposed method
for an ex vivo porcine liver experiment requires a com-
putation time of ∼270 sec and there is a low surface
marker error of 2.98 ± 1.09 mm while the initial error is
12.18 ± 5.49 mm. The internal marker error is
4.54 ± 3.55 mm while the initial error is 12.08 ± 4.27 mm.
The validation result shows the feasibility of the proposed
method, which is highly accurate and features a fast compu-
tation speed.
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