
Received February 17, 2020, accepted March 17, 2020, date of publication March 25, 2020, date of current version April 13, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2983276

FPGA Implementation of Fuzzy
Interpreted Petri Net
ZBIGNIEW HAJDUK 1 AND JOLANTA WOJTOWICZ 2
1Faculty of Electrical and Computer Engineering, Rzeszów University of Technology, 35-959 Rzeszow, Poland
2Computer Science Department, Polytechnical Institute, State Higher Vocational School Stanislaus Pigonia in Krosno, 38-400 Krosno, Poland

Corresponding author: Zbigniew Hajduk (zhajduk@kia.prz.edu.pl)

ABSTRACT The paper introduces new implementation methods of the fuzzy interpreted Petri net (FIPN)
on FPGAs. The realization of FIPN is based on fast array multipliers and multipliers utilizing DSP blocks
available on FPGA systems. The paper contains descriptions of particular network components’ architectures
and results of simulations of these components. In the paper a real control system is designed, which is used
to show properties of FIPN. A few slightly different implementations of the example control system as well
as their comparison in terms of FPGA resources requirement and calculations speed are also featured. The
conducted experiments revealed that the proposed FPGA implementation is many times faster than software
realizations of the same control system exercising typical microprocessors and microcontrollers.

INDEX TERMS Fuzzy interpreted Petri net, intelligent control systems modeling and analysis, FPGA
implementation.

I. INTRODUCTION
High demands are placed on modern solutions for control
systems modeling of practical industrial processes regarding
their abilities to deal with complex problems while opti-
mizing the performance of these approaches in terms of the
use of hardware resources. The application of FPGA chips
in these solutions allows the design and implementation of
dedicated architecture, which can be adapted to the current
needs of the modeled industrial process. FPGA systems are
used with success in real-life models, which require imple-
mentation of neural networks [1], [2], fuzzy logic algorithms
[3], [4] or Petri nets [5], [6].

Nowadays, two main directions of Petri nets development
can be distinguished. The first of them is concerned with
high-level Petri nets, which embrace higher-level concepts
such as the use of complex structured data as tokens and
employ algebraic expressions to annotate net elements. Vari-
ous colored Petri nets with different extensions belong to this
category [7]. The second direction focuses on low-level Petri
nets, which main applications are centered around program-
ming of industrial controllers or reconfigurable hardware.
This group consists mainly of various types of interpreted
Petri nets [8].

The associate editor coordinating the review of this manuscript and

approving it for publication was Giovanni Pau .

An essential point in development of complex control sys-
tems is evaluation of their performance. For this task stochas-
tic Petri nets can be applied. In [9] a Generalized Stochas-
tic Petri net is used to evaluate performance of distributed
systems. Generalized Stochastic Petri Net carries out perfor-
mance evaluation through means of simulation and numer-
ical methods. In [10] a software solution called GreatSPN
is described, which implements GSPN algorithm. Mobius
Framework is a programming solution, which implements
stochastic Petri nets and allows the use of multiple modeling
formalisms [11]. SIMTHES [12], is another tool supporting
modular approach andmulti-formalismmodeling. SIMTHES
provides means to apply product-form solution theory to
multi-formalism compositional modeling techniques.

An interesting and efficient tool, combining Petri nets and
fuzzy logic and allowing for effective analysis of modeled
systems in terms of their performance and structure, is Fuzzy
Interpreted Petri Net (FIPN) introduced in [13]. For this
net, transitions have conditions assigned to them and their
fulfillment is reliant on variables of the simulated system.
A truth degree function defines degrees of fulfillment for
conditions associated with transitions on the basis of signals’
values. In many real engineering scenarios possible signals’
values are within a specific interval. These signals can be
regarded on the basis of fuzzy logic as events having degrees
of truth in the interval [0, 1]. This interpretation is convenient
with regards to signals originating from sensors, actuators and

61442 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-1375-7219
https://orcid.org/0000-0002-3895-3929
https://orcid.org/0000-0002-5798-398X


Z. Hajduk, J. Wojtowicz: FPGA Implementation of FIPN

other control system components. Thus FIPN makes it possi-
ble to use both analogue and binary signals for the control
of processes. It also allows for modeling of the resources’
quantitative changes to bemodeled and convenient interpreta-
tion of fuzzy tokens’ positions. The graphic representation of
FIPN more accurately shows the net’s dynamics in compari-
son with discrete PN representation thanks to the possibility
of using analogue sensors. The aforementioned features are
unique to the FIPN and are not encountered in other existing
types of fuzzy Petri nets. Selected FIPN properties which can
be analyzed exercising the FIPN’s coverability graph have
also been portrayed in [14].

It is of note that despite the fact that many different vari-
eties of Petri nets were developed not many of them were
implemented in hardware. A popular platform for Petri nets
implementation constitutes programmable logic controllers
(PLCs) [15]–[24]. Taking advantage of FPGAs, a signifi-
cantly higher operation speed of Petri nets can be achieved,
which is pertaining to the feasibility of a parallel execution
of many operations. Other advantages of FPGA implementa-
tions of Petri nets in comparison with software solutions may
include lower power consumption and the reliability. Some
examples of FPGA implementations of binary and fuzzy Petri
nets can be found in [5] and [25].

An idea of hardware implementation of the Fuzzy Inter-
preted Petri Net has also been outlined in [13]. However,
the FIPN has actually not been implemented in FPGAs.
Instead, programmable controllers have been exercised as
the implementation platform [26], [27]. The proposed idea
of hardware implementation of the FIPN, coming from [13],
relies on the utilization of fuzzy RS flip-flops and fuzzy gates
based on sum and limited multiplication operations. How-
ever, these components are costly to implement in FPGAs,
have relatively high resources requirement and the overall
calculations speed of the FIPN is rather low.

In this paper a new implementation method of the
FIPN, suitable for FPGAs, is introduced. Contrary to [13],
the method does not require implementation costly compo-
nents, such as fuzzy flip-flops or fuzzy gates, and is highly
oriented on the reduction of FPGAs resources requirement
and maximization of calculations speed. The paper also
presents a few developed variations of the implementation
method and shows how slightly different approaches to the
design influence on the FPGA resources requirement, max-
imum clock frequency, number of clock cycles and overall
calculations time of the implemented digital circuit. Taking
advantage of the developed practical example of a control
system, a speed comparison between FPGA and software
implementations of the FIPN is also presented in the paper.

II. FORMAL DESCRIPTION OF FUZZY INTERPRETED
PETRI NETS
For the FIPN the transition t ∈ T is enabled under the
marking M : P→ [0, 1] from the moment in which [13]:

∀p ∈• t,M (p) ≥
W (p, t)
K (p)

(1)

and:

∀p ∈• t,M (p) ≤
K (p)−W (t, p)

K (p)
(2)

to the moment in which:

∃p′ ∈• t,M (p) = 0 (3)

or:

∃p′ ∈• t,M (p) = 1 (4)

where K (p) is the capacity of the p place,W (p, t) andW (t, p)
are the arcs’ weights connecting the p place with the t transi-
tion and vice versa, •t = p ∈ P|(p, t) ∈ R is the set of input
places for the t transition, •t = p ∈ P|(t, p) ∈ R is the set of
output places of the transition, p is a type I place (p′) or type
II place (p").

When the transition is enabled and the degree of the tran-
sition’s condition fulfillment 2(t) = ϑ ∈ [0, 1] increases by
the1ϑ value, the FIPN’s new marking can be determined by
the following formula:

M ′(p) =


M (p)−1ϑ

W (p, t)
K (p)

⇔ p ∈• t

M (p)+1ϑ
W (t, p)
K (p)

⇔ p ∈ t•

M (p)⇔ p 6∈• t ∪ t•

(5)

III. FPGA IMPLEMENTATION OF FIPN
The proposed implementation method of the FIPN relies on
the assignment of both type I and type II places. It also
requires implementation of a transition, dedicated digital
modules, which connected together in a specific way comply
with the dynamic equation and the firing conditions of the
FIPN. The method directly applies equations (1),(2),(3), (4),
(5) and does not require the usage of any fuzzy flip-flops, e.g.,
[25], which architectures are rather complicated and their
FPGA implementation consumes significant amount of logic
resources. The important goal of the design was to ensure a
high speed of the FIPN calculations and low logic resources
requirement.

According to the definition, all variables’ values belong to
the continuous interval [0, 1]. The proposed digital realiza-
tion of the FIPN is based on the fixed point arithmetic, which
implementation is simpler, requires reasonably less logic
resources and ensures higher throughput than the floating
point one. Therefore, the continuous interval [0, 1] must be
mapped to the discrete set 0, 1, . . . , 2Q − 1, where Q stands
for the required number of bits.

In the following subsectionswe shall describe architectures
of place and transition modules and a manner in which the
modules should be connected to realize a general fragment of
FIPN.

A. TYPE I PLACE MODULE
For FIPN type I places, the arcs’ weights must be equal to
1,W (p, t) = W (t, p) = 1 and the places’ capacities have to

VOLUME 8, 2020 61443



Z. Hajduk, J. Wojtowicz: FPGA Implementation of FIPN

FIGURE 1. The architecture of the type I place module.

be equal to 1,K (p) = 1, as well. Thus, the dynamic equation
(5), can be simplified to the following form:

M ′(p) =

M (p)−1ϑ ⇔ p ∈• t
M (p)+1ϑ ⇔ p ∈ t•

M (p)⇔ p 6∈• t ∪ t•
(6)

The digital module, which represents behavior of FIPN
type I place, must obey equation 5. The detailed architecture
of the type I place module is portrayed in Fig. 1. The bold
lines in the figure represent multi-bit buses. The module
consists of the two-input, K-bit multiplexer (MUX1), K-bit
adder/subtractor (ADD), set of Q flip-flops type D (DFF1),
two comparators (CMP1, CMP2), two binary multiplexers
(MUX2, MUX3), D flip-flop (DFF2) and two OR gates
(G1, G2). The ADD block performs the addition (F = 0)
or subtraction (F = 1) operation, depending on the value
on its F input. Both comparators determine if the value on
their A input is equal to the value on the B input (if so,
the Y output is set to the high state). Taking into consider-
ation the constant values on the second comparators’ input,
the CMP1 and CMP2 blocks inform whether the result of
the addition/subtraction operation reaches the two extreme
values: 2Q − 1 (which constitutes the discrete counterpart
of the 1.0 constant) and 0, respectively. The module has
two Q-bit inputs (DTI, DTO) corresponding to the increase
of the degree of the input and output transition’s condition
fulfillment (1ϑ), Q-bit output (M) storing the output marking
of the place, two module’s activation inputs (ENI, ENO) and
activation output (A). The PP point in the schematic from
Fig. 1 indicates the location where the additional pipe-line
registers can be inserted. The set of D flip-flops similar to the
DFF1 but without the clock enable (CE) input can be used
as the pipe-line registers. The pipe-line registers allow higher
clock frequency to be attained (however, at the expense of
the additional clock cycle which simultaneously increases the
overall calculations time).

The functioning of the type I place module can be
described by the following formulas:

M [n+ i] =

M [n]+ DTI ⇐⇒ ENI = 1
M [n]− DTO⇐⇒ ENO = 1
M [n], otherwise

(7)

FIGURE 2. The architecture of the type II place module.

A[n+ i] =

1⇐⇒ M [n] = 2Q − 1
0⇐⇒ M [n] = 0
A[n], otherwise

(8)

where n denotes the actual clock cycle, i = 1 or i = 2 for
the module’s version without or with the pipe-line registers,
respectively. As it can be seen later, the activation output
A facilitates the test of the transition’s firing condition for
the realization of a FIPN. The A output goes high from
the moment in which all bits of the M output are high (the
marking of the place achieves the maximum value), to the
moment in which all bits of theM output are low (themarking
of the place reaches the minimum value).

B. TYPE II PLACE MODULE
Since the FIPN’s place type II may have the capacity value
greater than one, as well as the arcs’ weights may also have
different values than one (W (p, t) ≥ 1,W (t, p) ≥ 1,K (p) ≥
1), the architecture of themodule implementing the place type
II is slightly more complicated (Fig. 2). In comparison with
the module type II it also contains additional two-input, Q-bit
multiplexer (MUX2), multiplier (MUL), and more complex
part of the circuit responsible for the determination of the two
activation outputs (AI and AO) values.

The important part of the circuit from Fig. 2 is the Q-bit
multiplier block. Two options for the implementation of the
MUL block, namely the usage of the FPGA embedded multi-
pliers as well as the application of the synchronous version of
the fast array multiplier, briefly described in [28], have been
considered. The fast array multiplier requires a considerable
amount of FPGA resources and needs a few pipe-line stages
(a few clock cycles to complete calculations) in order to
achieve a reasonable clock frequency. But it does not use
the FPGA embedded multipliers, which may be an advan-
tage in some cases (e.g., when the embedded multipliers are
not available). On account of the multiplication operation,
the number of bits of the module’s output (S) is higher than
the number of bits of the inputs (Q). The S value must be
properly chosen by the designer, taking into account the
values of the arcs’ weights (WPT, WTP).

61444 VOLUME 8, 2020



Z. Hajduk, J. Wojtowicz: FPGA Implementation of FIPN

FIGURE 3. The architecture of the transition module, basic version (a),
version for place modules with pipe-line registers (b).

The functioning of the type II place module can be
described as follows:

M [n+ i] =

M [n]+ DTI ·WTP⇐⇒ ENI = 1
M [n]− DTO ·WTP⇐⇒ ENO = 1
M [n], otherwise

(9)

A[n+ i] =

1⇐⇒ M [n] ≥ C1
0⇐⇒ M [n] = 0
A[n], otherwise

(10)

AO[n+ i] =

1⇐⇒ M [n] ≤ C2
0⇐⇒ M [n] = C3
AO[n], otherwise

(11)

where i = 1 or i = 2 are for the module’s version with-
out or with the pipe-line registers respectively, C1, C2 and
C3 are constants so that C1 = WPT ∗ (2Q − 1), C2 =

(K −WTP) ∗ (2Q − 1), C3 = K ∗ (2Q − 1),WTP = W (t, p),
WPT = W (p, t) are arcs’ weights, and K = K (p) denotes
the capacity of the place. It is of note that the constants C1,
C2 and C3 from equations (E), (F) directly correspond to
the values delivered to the second inputs of the comparators
CPM1, CMP3 and CMP4 from Fig. 2. It is also important
to note that the M module’s output value does not represent
the direct marking of a FIPN’s type II place, but the marking
multiplied by the value of the capacity of the place. This
considerably simplifies the hardware implementation of the
place (no division operation is needed).

C. TRANSITION MODULE
The transition module is responsible for the calculation of the
increase of the degree of a transition’s condition fulfillment.
Its architecture is presented in Fig. 3.

The basic version of the transition module (Fig. 3a) is
targeted for the place modules, which do not contain the
pipe-line registers. This version of the module is a purely
combinational circuit consisting of the Q-bit subtractor block

(SUB), multiplexer (MUX) with two Q-bit inputs, and two
logic gates. The notation Y[Q] from Fig. 2 stands for the bit
selection with the Q number of the Y bus/variable, whereas
the Y[Q−1:0] denotes a part selection of the Y bus comprised
of the bits from 0 to Q−1. The output of the SUB block
counts Q+1 bits. If the subtraction operation yields a negative
value then the most significant bit of the SUB block output
(Y[Q]) is set to 1, and on the account of the MUX block the
value existing on the DT output of the transition module is
0. The same idea also applies to the second version of the
transition module (Fig. 3b). The main difference between the
two version of the module is that the output of the second
version is registered by the set of D flip-flops (DFF1) and
the specific output value on the output is held only by a
single clock cycle. Additionally, the ENO output generates
single pulse (lasting one clock cycle) exactly one clock cycle
later after the moment in which the output DT is set. For the
basic version of the transition module the output ENO simply
follows the input EN. It is of note that the circuit from Fig. 3b
can only return to its initial state when the values on the inputs
TV and FB are the same.

The functioning of the transition module from Fig. 3b can
be described by the following equations:

DT [n+ i] =
{
TV−FB⇐⇒ TV ≥FB & EN = 1 & i = 1
0 , otherwise

(12)

ENO[n+ i] =
{
1⇐⇒ DT [n] 6= 0FB & EN = 1 & i = 1
0, otherwise

(13)

where n denotes the actual clock cycle and (i = 0, 1, 2, . . .).
Since the basic version of the transition module is a combi-

national circuit, the formulas simplify to the following form:

DT =
{
TV − FB⇐⇒ TV ≥ FB & EN = 1
0, otherwise

(14)

ENO = EN (15)

D. IMPLEMENTATION OF GENERAL FIPN FRAGMENT
Fig. 4 shows the general fragment of the FIPN and its
implementation exercising the previously described places
and transition modules. The FIPN’s fragment consists of two
input places p′1, p

′′

1 (type I and type II) and two output places
p′2, p

′′

2 (type I and type II as well) for the particular transition
t3. Each place and each transition has its own hardware
counterpart as portrayed in Fig. 4b.

Taking into account equations (8), (10), (11) and the con-
ditions given by the definition of the FINP it can be directly
inferred that the transition is enabled if the A activation output
of all place modules type I representing the input places is
high, and the A activation output of all type I place modules
representing the output places is low, and the AI activation
output of all type II place modules representing the input
places as well the AO output of all type II place modules
representing the output places are high. Thus, the output
of the G1 AND gate from Fig. 4b determines the enabling

VOLUME 8, 2020 61445



Z. Hajduk, J. Wojtowicz: FPGA Implementation of FIPN

FIGURE 4. General FIPN fragment (a) and its implementation (b).

conditions of the transition. It is of note that the FB input of
the transition module T is connected to the marking output of
the type I placemodule, representing the selected output place
of the transition. Taking into consideration the connections
from Fig. 4b as well as equations (7) and (14) and assuming
that TV ≥ FB for the transition module, we can determine
the marking of the p′2 place:

M ′2[n+ 1] = M ′2[n]+ TV − FB

= M ′2[n]+ TV −M
′

2[n] = TV (16)

Therefore, the difference value between the TV and FB
inputs of the transition module (which also constitutes the DT
output value of the transition module) is equal to the positive
increase of the degree of the transition’s condition fulfillment:

TV − FB = ϑ3 −M ′2[n] = 1ϑ3 (17)

Considering this fact and taking into account equations
(7) and (9) it is easy to notice that the circuit from Fig. 4b
complies with the dynamic equations of the FIPN.

IV. MODIFIED FIPN IMPLEMENTATION METHOD
The modification of the FIPN implementation method
involves some changes in the architectures of type I place
modules and transition modules. It allows the number of
required FPGA resources to be significantly reduced.

As equation (13) indicates, if the degree of the transition’s
condition fulfillment is higher than the marking value of an
output place of the transition, then the new marking of the
place is equal to the value of the degree of the transition’s
condition fulfillment. Analogously, considering equations (5)

FIGURE 5. Modified transition module.

and (17) we can determine the marking of the p′1 input place
of the transition from Fig. 4a:

M ′1[n+ 1] = M ′1[n]−1ϑ3 = M ′1[n]− TV +M
′

2[n] (18)

However, observing equation (5) for the type I places, it is
easy to note thatM (p′2) = 1−M (p′1) for the discrete version
M1

2 [n] = (2Q − 1)−M ′1[n], where Q denotes the number of
implementation bits and n is the actual clock cycle. Therefore,
equation (18) reduces to:

M ′1[n+ 1] = M ′1[n]− TV + (2Q − 1)−M ′1[n]

= (2Q − 1)− TV (19)

Equations (16) and (19) are valid for all of the output and
input places of a particular transition, respectively. It is also of
note that the digital realization of equation (19) is equivalent
to the inversion of all bits of the TV bus. Thus, the function
of the modified modules representing type I places may
only be the storage of the particular value (the degree of
the transition’s condition fulfillment or its inversion) and the
other necessary operations can be performed by the modified
transition modules.

The architecture of the modified transition module is
shown in Fig. 5. The DT output performs the same function as
for the module from Fig. 3a. Apart from the aforementioned
output the modified transition module also makes available
two other Q-bit outputs, namely the TR output simply fol-
lowing the input TV (it can be buffered which is not shown
in Fig. 5) and its inversion NTR, and two binary outputs. The
H output is set high when all bits of the TV input are in the
high state. The high state on the S output indicates, in turn,
that TV ≥ FB.
The modified architecture of the place module is portrayed

in Fig. 6. Apart from the set of Q flip-flops (DFF1), which
stores the TR or NTR input values, depending on the values
delivered to the ENO, SO, ENI and SI inputs, it integrates the
DFF2 flip-flops controlling the A activation output. The A

61446 VOLUME 8, 2020



Z. Hajduk, J. Wojtowicz: FPGA Implementation of FIPN

FIGURE 6. Architecture of the modified place module.

FIGURE 7. Implementation of the general FIPN’s fragment with the usage
of modified modules.

output is set depending on the HI, HO inputs which should be
connected to the particular outputs of the modified transition
module. The specific connections between the modified type
I place modules (PI) and modified transition module (T),
which implements the general fragment of the FIPN from
Fig. 4a, is shown in Fig. 7. The type II place modules (PII)
in Fig. 7 have the architecture shown in Fig. 2 (since the type
II places can have different capacity and the arcs can have
different weights as well, it means that the architecture of
type II places cannot be modified in the similar manner as the
architecture of type I places). Carrying out similar consider-
ations as in the previous paragraph, it can be proven that the
connections from Fig. 7 comply with the transition enabling
conditions as well as dynamic equations of the FIPN.

V. DESCRIPTION OF THE IMPLEMENTED CONTROL
SYSTEM
To demonstrate the properties of a fuzzy interpreted Petri net
a liquid mixing control system is considered. The operation
of the system allowing the mixing of three liquid components

FIGURE 8. Scheme of the control system.

may proceed in a variety of ways. Assuming sensor and
actuator labeling in accordance with Fig. 8, an exemplary
algorithm for mixing system operation can be realized as
follows. Three tanks, denoted as (Di, i = 1, 2, 3) and located
in the upper part of the diagram act as dispensers, whose
task is to measure appropriate portions of liquid components.
Analog sensors are used for determining the filling levels of
tanks. Themeasurements from these sensors are denoted as Li
and normalized to the interval of values [0, 1]. The dispensers
are filled independently of each other by opening Vi valves as
soon as they are emptied (Li = 0). When the dispensers D1
and D2 are full and the mixerM1 is empty, the filling process
starts using two portions of each of the chemical components.
The V4 and V5 dosing pumps are always switched on simul-
taneously, starting the process of transferring further portions
of ingredients.When two portions of each of the two chemical
components are already in the M1 mixer, the TMIN time ele-
ment is started, counting down the minimum T1 time required
for the cessation of chemical reactions initiated by combining
of these components. In the next step the reading from the
PH-meter is carried out and on its basis the number of solvent
portions to be fed from the D3 dispenser is determined.
The dilution process of the chemical obtained in the mixer

M1 is carried out in theM2 mixer. Initially, one portion of the
solvent is poured into this mixer, and then simultaneously the
chemical fromM1 mixer is poured into theM2 mixer together
with a certain number of additional portions of solvent, at the
same moment switching on theM stirrer. When the mixerM1
is empty, as indicated by the binary level sensorB1, the dosing
pump V7 is switched off and the refueling of the mixer starts
at the same time. Through the simultaneous realization of
these actions the device’s performance is increased. When
the entire chemical substance from the M1 mixer and the
appropriate number of solvent portions are transferred to the
M2 mixer, then the TM time element is activated, responsible

VOLUME 8, 2020 61447



Z. Hajduk, J. Wojtowicz: FPGA Implementation of FIPN

FIGURE 9. Petri net describing the control algorithm of the mixer system from Fig. 8.

for measuring the time for which these chemicals are to be
additionally mixed. After this period of time the solution is

ready, therefore the stirrer M is turned off and the mixer
M2 is emptied by switching on the pump V8. At the end of

61448 VOLUME 8, 2020



Z. Hajduk, J. Wojtowicz: FPGA Implementation of FIPN

FIGURE 10. Simulation waveforms for the basic version of the HIFPN from Fig. 9 implementation.

FIGURE 11. Simulation waveforms for the pipelined implementation version.

this operation, the V8 pump is turned off and one portion of
solvent from dispenserD3 is poured into theM2 mixer so that
another emptying process of theM1 mixer can start as soon as
possible. The algorithm describing the operation of the mixer
is shown in Fig. 9 in the form of a fuzzy interpreted Petri net.

The p′ type network places had control signals assigned,
which were marked as follows:
Vn - opening of the valve or activation of the dosing

pump Vn, n = 1, 2, 3, 4, 5, 6, 7, 8 (∼ Vn - closing of the
valve or switching off the dosing pump)
TMIN - starting the TMIN timer counting down the T1 time

for which the solution remains in the M1 mixer, (∼ TMIN -
turning off the TMIN timer)
TM - starting the TM timer counting down the T2 time of

mixing the solution in the M2 mixer (∼ TM - turning off the
TM timer)
M - starting of the mixer, (∼ M ) - turning off the mixer
PH test and determination of W value - weight calculation

W (t8, p′′4) = W (p′′5, t15) on the basis of PH-meter indication.
In practical realization these indications were replaced with
signals from the SM374 module.

Transitions t have been assigned signals from sensors and
time elements, assuming the following designations:
Li - filling of the dispenser Di, i = 1, 2, 3 - analog signal

(∼ Ln = 1− Ln)
Bk - emptying of the mixer Mk , k = 1, 2 - binary signal
T1 - expiration of the minimum period of time for the

solution to remain in the mixer M1
T2 - expiration of the time for mixing of the solution in the

M2 mixer

VI. SIMULATIONS AND IMPLEMENTATION RESULTS
The FIPN fromFig. 9 has been described in VerilogHardware
Description Language using methods presented in Section III
for the number of bits amounting to 12 (Q = 12). Figs.
10,11,12 show the simulation waveforms of the FIPN involv-
ing the p′1 p

′

5 and p′2 places, and realized with three slightly
different methods, namely the basic version introduced in
Section III (Fig. 10), the basic version with the pipeline
registers (Fig. 11) and the version with the fast array mul-
tiplier (Fig. 12). The simulation waveforms for the modified
implementation method, described in Section IV, are exactly
the same as for the basic version. Thus, they have not been
presented here.

Since the simulation results from Figs. 10,11,12 only vary
in the number of clock cycles needed to obtain the current
FIPN’s marking (1, 3, and 7 clock cycles are required for
the waveforms from Fig. 10,11 and 12, respectively), only
the waveform from Fig. 10 will be discussed in detail. The
simulation from Fig. 10 starts at the simulation time of 350ns
where the t4 transition value is equal to 0, no fuzzy marker is
present in the P1 type I place (M_p1 = 000h), the full fuzzy
marker is present in the P5 type I place (M_p5 = FFFh),
and 1 of 2 fuzzy markers exists in the P2 type II place
(M_pp2 = 0FFFh). The activation outputs for the P1 and
P5 type I places, as well as the activation outputs AI and
AO for the P2 type II place are reset and set, respectively
(A1 = 0, A5 = 1 as well as AI_pp2 = 0, AO_pp2 = 1).
The state of the activation outputs indicates that the transition
t4 is enabled. At the simulation time of 370ns the degree of
the t4 transition’s condition fulfillment changes from 000h

VOLUME 8, 2020 61449



Z. Hajduk, J. Wojtowicz: FPGA Implementation of FIPN

FIGURE 12. Simulation waveforms for the version with the fast array multiplier.

TABLE 1. FPGA resources utilization, maximum clock frequency, number of clock cycles and FIPN’s update time for the Xilinx Zynq FPGA.

to 064h, which immediately causes the change of the DT_t4
output of the t4 transition module (DT_t4 = 064h). The
DT_t4 output represents the increase of the degree of the
t4 transition’s condition fulfillment. For the waveforms from
Fig. 10, the change of the DT_t4 output is immediate since
this output is a combinational function of the transition value
and the M_p1 value (for the simulations from Fig.11 and
Fig. 12, the value of the DT_t4 output is not immediate - it is
delayed by a single clock cycle). During the nearest rising
edge of the clock signal, after the change of the t4 value,
the outputs of all place modules are updated. The marking
of output places for the t4 transition is increased by the value
existing on the DT output, whereas the marking of the input
place for the t4 transition is decreased by the same value.
Thus, M_p1 = 064h, M_p5 = f 9Bh and M_pp2 = 1063h.
It is of note that the DT_t4 output value changes back to the
0 value immediately after the update of the marking of the
place modules for the t4 transition.

An analogous change of the outputs values takes place at
the simulation time of 430ns, when the new value of 82Fh
emerges on the t4 transition (it causes the following changes:
DT_t4 = 7CBh and then M_p1 = 82Fh, M_p5 = 7D0h,
M_pp2 = 182Eh). An important event happens at the sim-
ulation time of 490ns, when the t4 transition value drops
from 82Fh to 447h. This does not cause the change of the
DT_t4 output (there is no increase of the degree of the t4
transition’s condition fulfillment) and subsequent changes of
the marking for the t4 transition’s places. This is an important
feature of the FIPN enabling the suppression of disturbances,
which may be present on the transitions’ inputs. When finally
the degree of the t4 transition’s condition is fully satisfied
(t4 = FFFh), which takes place at simulation time of 670ns,

no fuzzy marker is left in the P5 type I place (M_p5 = 000h),
the full fuzzy marker emerges in the P1 type I place (M_p1 =
FFFh) and two fuzzy markers are present in the P2 type II
place (M_pp2 = 1FFEh). Then, the activation outputs of
the place modules are updated as well (A1 = 1, A5 = 0,
AI_pp2 = 1, AO_pp2 = 0). It is of note that the described
behavior of the FIPN’s fragment, expressed by the simulation
waveforms from Figs. 10, 11, 12 satisfies the FIPN’s dynamic
equations 5 as well as the transition’s enabling conditions 1,
2, 3,4.

Apart from simulations, the FIPN from Fig. 9 has
also been implemented using the Xilinx Zynq FPGA (the
XC7Z020 from the Zedboard has been exercised). The imple-
mentation results, including the number of utilized look-up
tables (LUTs), FPGA’s slices, flip-flops (FFs) and embedded
digital signal processing (DSPs) blocks, as well as the max-
imum allowable clock frequency (FMAX), number of clock
cycles required for the update of a new FIPN’s marking and
overall FIPN’s update time, are presented in Table 1. The
overall FIPN’s update time is given under the assumption
that the FIPN’s implementation is clocked with the maximum
allowable clock frequency. The resources utilization in per-
centages, related to the accessible number of resources for the
chosen FPGA chip, has been given in the parenthesis. Four
implementation versions have been considered in Table 1,
namely: the basic version described in Section III (A), basic
version with pipe-line registers (B), modified implementation
version described in Section IV (C), and version with the fast
array multiplier (D). Similar to the simulations, the number of
bits has been set to 12 (Q=12). As Table 1 indicates, the least
FPGA logic resources (in terms of the number of LUTs and
FFs) is needed for the C version, whereas the most logic

61450 VOLUME 8, 2020



Z. Hajduk, J. Wojtowicz: FPGA Implementation of FIPN

TABLE 2. Calculations times of the FIPN from Fig. 9 implemented in software and speed factors.

resources is required by the D version. However, contrary
to the all other versions, the D version does not exercise
the FPGA embedded multipliers. The D version also allows
remarkable higher clock frequency. Yet, it is achieved at the
expense of a significantly higher number of clock cycles
needed to update the FIPN’s marking. Taking into considera-
tion themaximum allowable clock frequency and the required
number of clock cycles, the shortest FIPN’s update time is
provided by the A and C versions. Although the versions with
pipe-line registers (the B and D versions) enable higher clock
frequencies, they are characterized by almost twice longer
FIPN’s update time.

For the speed comparison purposes of the proposed FPGA
implementation methods, the FIPN from Fig. 9 has also been
realized in software (the C language has been used) exercis-
ing a few different hardware platforms. The FIPN’s calcu-
lations times for the PC computer, Raspberry Pi 2 module,
processing system part of the Xilinx Zynq (the bare metal
system implementation has been used) and Arduino MEGA
board, are presented in Table 2. The calculations times for
all of the platforms, with the exception of the Intel processor,
have been measured by the external universal counter. For
the PC platform, the calculations time has been obtained by
reading the system time before and after the calculations.
The speed factor from Table 2 informs how many times the
FPGA implementation of the FIPN (the C implementation
version from Table 1 has been taken as the reference) is faster
than the subsequent software implementations. The FIPN
from Fig. 9 has also been implemented exercising previously
developed FPGA-embedded multiprocessor programmable
controller [29] and the CPDev software environment (the ST
language has been used). Only single processor-core of the
controller has been applied. The attained calculations time
amounted to 40.92µs. Since it has been shown in [29] that the
controller is faster than typical PLCs, the calculations time of
the FIPN software implementation using industrial PLCsmay
be essentially longer.

It is of note that the software calculations time of the FIPN
strongly depends on the FIPN’s size (the number of places
and transitions). The higher the FIPN’s size, the longer the
FIPN’s software calculations time. This is a quite contrary to
the proposed FIPN’s hardware implementations, where the
FIPN’s size has no impact on the FIPN’s update time.

However it must be pointed out that the update time of the
FIPN hardware implementation may be affected by the num-
ber of implementation’s bits (the Q parameter). The higher

number of implementation’s bits entails an increase of the
update time. Nevertheless, this increase is rather small. The
number of implementation’s bits has also strong influence on
the FPGA resources requirement - more resources are needed
for higher number of implementation’s bits.

VII. CONCLUSIONS
It has been shown that the FIPN can be easily implemented
in FPGAs without the need of the expensive fuzzy hardware
components, such as fuzzy RS flip-flops and fuzzy gates.
Contrary to [13] the direct implementation methods, with a
few different versions, have been proposed. The developed
versions slightly differ in the FPGA resources requirement
and FIPN’s calculations time. It is worth to note that the appli-
cation of pipe-line registers, which is a common technique
allowing the increase of the maximum clock frequency in
synchronous systems, does not always lead to the decrease of
the overall calculations time (more clock cycles are needed
for a pipe-lined implementation which may not be compen-
sated by a higher maximum clock frequency).

As far as the speed comparison between FPGA and soft-
ware implementations of FIPNs is concerned, it is no surprise
that the FPGA implementations are remarkably faster than
their software counterparts (from 11 times faster for the 64-
bit PC platform up to 3702 times faster for 8-bit Arduino
platform). Therefore, FPGA implementations of FIPNs are
particularly well suited for, so called, fast control plants, e.g.,
mechatronic plants, and may also find applications in such
areas as space and defense systems.

The FPGA implementation of the FIPN can also be used
as the hardware function block for the previously developed
multiprocessor programmable controller [29], greatly con-
tributing to the shortening of the execution time of specific
control algorithms.

A kind of a disadvantage of the proposed implementation
method of the FIPN is the need of manual alteration of HDL
code and reimplementation of the whole FPGA project - in
case of the change of the FIPN structure. Therefore, future
work may include the development of a software tool which
would be able to automatically generate the complete HDL
code for the particular structure of the FIPN. It would also be
interesting to modify the proposed implementation method
in the way similar to [2], where the actual structure of the
neural network is stored in FPGA embedded Block RAM
memory, and the alteration of the net’s structure requires only
the change of the memory content.

VOLUME 8, 2020 61451



Z. Hajduk, J. Wojtowicz: FPGA Implementation of FIPN

REFERENCES
[1] X. Ju, B. Fang, R. Yan, X. Xu, and H. Tang, ‘‘An FPGA implementation

of deep spiking neural networks for low-power and fast classification,’’
Neural Comput., vol. 32, no. 1, pp. 182–204, Jan. 2020.

[2] Z. Hajduk, ‘‘Reconfigurable FPGA implementation of neural networks,’’
Neurocomputing, vol. 308, pp. 227–234, Sep. 2018.

[3] G. T. Tchendjou, E. Simeu, and R. Alhakim, ‘‘Fuzzy logic based objective
image quality assessment with FPGA implementation,’’ J. Syst. Archit.,
vol. 82, pp. 24–36, Jan. 2018.

[4] C. Chang, T. Jiang, Z. Zhou, and Y. Yuan, ‘‘Field programmable gate array
implementation of a single-input fuzzy proportional–integral–derivative
controller for DC–DC buck converters,’’ IET Power Electron., vol. 9, no. 6,
pp. 1259–1266, May 2016.

[5] A. Bukowiec and M. Adamski, ‘‘Transition based synthesis with code
markers of Petri nets into FPGAs,’’ IFAC Proc. Volumes, vol. 46, no. 28,
pp. 181–186, 2013.

[6] C.-K. Chen, ‘‘A Petri net design of FPGA-based controller for a class of
nuclear I&C systems,’’ Nucl. Eng. Design, vol. 241, no. 7, pp. 2597–2603,
Jul. 2011.

[7] K. Jensen, Coloured Petri Nets: Basic Concepts, Analysis Methods and
Practical Use. Berlin, Germany: Springer, 1997, doi: 10.1007/978-3-642-
60794-3.

[8] R. David and H. Alla, Discrete, Continuous, and Hybrid Petri Nets, 2nd
ed. Berlin, Germany: Springer, 2010, doi: 10.1007/978-3-642-10669-9.

[9] M. A. Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschi-
nis, ‘‘Modelling with generalized stochastic Petri nets,’’ ACM SIGMET-
RICS Perform. Eval. Rev., vol. 26, no. 2, p. 2, Aug. 1998, doi: 10.1145/
288197.581193.

[10] G. Chiola, G. Franceschinis, R. Gaeta, and M. Ribaudo, ‘‘Greatspn 1.7:
Graphical editor and analyzer for timed and stochastic Petri nets,’’Perform.
Eval., vol. 24, pp. 47–68, 1995, doi: 10.1016/0166-5316(95)00008-L.

[11] D. D. Deavours, G. Clark, T. Courtney, D. Daly, S. Derisavi, J. M. Doyle,
W. H. Sanders, and P. G. Webster, ‘‘The mobius framework and its
implementation,’’ IEEE Trans. Softw. Eng., vol. 28, no. 10, pp. 956–969,
Oct. 2002, doi: 10.1109/TSE.2002.1041052.

[12] E. Barbierato, G.-L. Dei Rossi, M. Gribaudo, M. Iacono, and A. Marin,
‘‘Exploiting product forms solution techniques in multiformalism model-
ing,’’ Electron. Notes Theor. Comput. Sci., vol. 296, pp. 61–77, Aug. 2013,
doi: 10.1016/j.entcs.2013.07.005.

[13] L. Gniewek, ‘‘Sequential control algorithm in the form of fuzzy inter-
preted Petri net,’’ IEEE Trans. Syst., Man, Cybern. Syst., vol. 43, no. 2,
pp. 451–459, Mar. 2013, doi: 10.1109/TSMCA.2012.2202107.

[14] L. Gniewek, ‘‘Coverability graph of fuzzy interpreted Petri net,’’ IEEE
Trans. Syst., Man, Cybern. Syst., vol. 44, no. 9, pp. 1272–1277, Sep. 2014,
doi: 10.1109/TSMC.2014.2298379.

[15] M. Uzam and A. Jones, ‘‘Discrete event control system design using
automation Petri nets and their ladder diagram implementation,’’ Int.
J. Adv. Manuf. Technol., vol. 14 , pp. 716–728, Jan. 1998, doi: 10.1109/
TAC.2012.2200372.

[16] G. Frey, ‘‘Automatic implementation of Petri net based control algo-
rithms on PLC,’’ in Proc. Amer. Control Conf. (ACC), Chicago, IL, USA,
Jun. 2000, pp. 2819–2823, doi: 10.1109/ACC.2000.878725.

[17] M. Minas and G. Frey, ‘‘Visual PLC-programming using signal inter-
preted Petri nets,’’ in Proc. Amer. Control Conf., Anchorage, AK, USA,
May 2002, pp. 5019–5024, doi: 10.1109/ACC.2002.1025461.

[18] S. Klein, G. Frey, and M. Minas, ‘‘PLC programming with signal inter-
preted Petri nets,’’ in Proc. 24th Int. Conf., Eindhoven, The Netherlands,
Jun. 2003, pp. 440–449, doi: 10.1007/3-540-44919-1_27.

[19] G. Lee, Z. Han, and J. S. Lee, ‘‘Automatic generation of ladder diagram
with control Petri net,’’ J. Intell. Manuf., vol. 15, pp. 245–252, Apr. 2004,
doi: 10.1023/B%3AJIMS.0000018036.84607.37.

[20] S. S. Peng and M. C. Zhou, ‘‘Ladder diagram and Petri-Net-Based
discrete-event control design methods,’’ IEEE Trans. Syst., Man, Cybern.
C, Appl. Rev., vol. 34, no. 4, pp. 523–531, Nov. 2004, doi: 10.1109/
TSMCC.2004.829286.

[21] D. F. Bender, B. Combemale, X. Crégut, J. Farines, B. Berthomieu,
and F. Vernadat, ‘‘Ladder metamodeling and PLC program validation
through time Petri nets,’’ in Proc. 4th Eur. Conf. Model Driven Archit.-
Found. Appl. (ECMDA-FA), Berlin, Germany, Jun. 2008, pp. 121–136,
doi: 10.1007/978-3-540-69100-6_9.

[22] S. Korotkin, G. Zaidner, B. Cohen, A. Ellenbogen, M. Arad, and Y. Cohen,
‘‘A Petri net formal design methodology for discrete-event control of
industrial automated systems,’’ in Proc. IEEE 26th Conv. Electr. Electron.
Eng., Nov. 2010, pp. 431–435, doi: 10.1109/EEEI.2010.5662187.

[23] M. Heiner and T. Menzel, ‘‘A Petri net semantics for the PIC language
instruction list,’’ Proc. IEE Workshop Discrete Event Syst. (WODES),
Jun. 1998, pp. 161–165.

[24] L. D. da Silva, L. P. de Assis Barbosa, K. Gorgonio, A. Perkusich, and
A. M. N. Lima, ‘‘On the automatic generation of timed automata mod-
els from function block diagrams for safety instrumented systems,’’ in
Proc. 34th Annu. Conf. IEEE Ind. Electron., Nov. 2008, pp. 291–296, doi:
10.1109/IECON.2008.4757968.

[25] J. Kluska and Z. Hajduk, ‘‘Digital implementation of fuzzy Petri net based
on asynchronous fuzzy RS flip-flop,’’ in Proc. 7th Int. Conf. Artif. Intell.
Soft Comput. (ICAISC), Zakopane, Poland, Jun. 2004, pp. 314–319, doi:
10.1007/978-3-540-24844-6_44.

[26] M. Markiewicz, L. Surdej, and L. Gniewek, ‘‘Transformation of a fuzzy
interpreted Petri net diagram into structured text code,’’ in Proc. 21st Int.
Conf. Methods Models Autom. Robot. (MMAR), Miedzyzdroje, Poland,
Aug. 2016, pp. 94–99, doi: 10.1109/MMAR.2016.7575114.

[27] M. Markiewicz and L. Gniewek, ‘‘A program model of fuzzy interpreted
Petri net to control discrete event systems,’’ Appl. Sci., vol. 7, no. 4, p. 422,
Apr. 2017, doi: 10.3390/app7040422.

[28] J. Kluska and Z. Hajduk, ‘‘Hardware implementation of P1-TS fuzzy rule-
based systems on FPGA,’’ inProc. 12th Int. Conf. Artif. Intell. Soft Comput.
(ICAISC), Zakopane, Poland, Jun. 2013, pp. 282–293, doi: 10.1007/978-3-
642-38658-9_26.

[29] Z. Hajduk, B. Trybus, and J. Sadolewski, ‘‘Architecture of FPGA embed-
ded multiprocessor programmable controller,’’ IEEE Trans. Ind. Electron.,
vol. 62, no. 5, pp. 2952–2961, May 2015.

ZBIGNIEW HAJDUK received the Ph.D. degree
in computer engineering from the University of
Zielona Góra, Poland, in 2006, and the D.Sc.
degree from the Czestochowa University of Tech-
nology, Poland, in 2019. He is currently an Asso-
ciate Professor with the Department of Computer
and Control Engineering, Rzeszów University of
Technology. His main area of interest includes
digital systems design with FPGAs.

JOLANTA WOJTOWICZ was born in Krosno,
Poland, in 1974. She received the B.S. and M.S.
degrees in computer science from the University
of Rzeszow, in 2000, and the Ph.D. degree in com-
puter science from the AGH University of Science
and Technology, Cracow, in 2007. Her research
interests include modeling of dynamic systems
and applications of machine learning methods in
control and simulation of processes.

61452 VOLUME 8, 2020

http://dx.doi.org/10.1007/978-3-642-60794-3
http://dx.doi.org/10.1007/978-3-642-60794-3
http://dx.doi.org/10.1007/978-3-642-10669-9
http://dx.doi.org/10.1145/288197.581193
http://dx.doi.org/10.1145/288197.581193
http://dx.doi.org/10.1016/0166-5316(95)00008-L
http://dx.doi.org/10.1109/TSE.2002.1041052
http://dx.doi.org/10.1016/j.entcs.2013.07.005
http://dx.doi.org/10.1109/TSMCA.2012.2202107
http://dx.doi.org/10.1109/TSMC.2014.2298379
http://dx.doi.org/10.1109/TAC.2012.2200372
http://dx.doi.org/10.1109/TAC.2012.2200372
http://dx.doi.org/10.1109/ACC.2000.878725
http://dx.doi.org/10.1109/ACC.2002.1025461
http://dx.doi.org/10.1007/3-540-44919-1_27
http://dx.doi.org/10.1023/B%3AJIMS.0000018036.84607.37
http://dx.doi.org/10.1109/TSMCC.2004.829286
http://dx.doi.org/10.1109/TSMCC.2004.829286
http://dx.doi.org/10.1007/978-3-540-69100-6_9
http://dx.doi.org/10.1109/EEEI.2010.5662187
http://dx.doi.org/10.1109/IECON.2008.4757968
http://dx.doi.org/10.1007/978-3-540-24844-6_44
http://dx.doi.org/10.1109/MMAR.2016.7575114
http://dx.doi.org/10.3390/app7040422
http://dx.doi.org/10.1007/978-3-642-38658-9_26
http://dx.doi.org/10.1007/978-3-642-38658-9_26

	INTRODUCTION
	FORMAL DESCRIPTION OF FUZZY INTERPRETED PETRI NETS
	FPGA IMPLEMENTATION OF FIPN
	TYPE I PLACE MODULE
	TYPE II PLACE MODULE
	TRANSITION MODULE
	IMPLEMENTATION OF GENERAL FIPN FRAGMENT

	MODIFIED FIPN IMPLEMENTATION METHOD
	DESCRIPTION OF THE IMPLEMENTED CONTROL SYSTEM
	SIMULATIONS AND IMPLEMENTATION RESULTS
	CONCLUSIONS
	REFERENCES
	Biographies
	ZBIGNIEW HAJDUK
	JOLANTA WOJTOWICZ


