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ABSTRACT In this paper, we give attention to the robustness of the Cyber-Physical System, which consists
of interdependent physical resources and computational resources. Numerous infrastructure systems can
evolve into the Cyber-Physical System, e.g., smart power grids, traffic control systems, and wireless sensor
and actuator networks. These networks depend on their interdependent networks, which provide information
or energy to function. In a Cyber-Physical System, a small failure could trigger serious cascading failures
within the entire interdependent networks. In this paper, we try to alleviate these cascading failures between
interdependent networks to reduce losses. We discuss the robustness of systems for random attacks by
calculating the size of functioning components in entire networks. We change the inter-links topology
of the coupled networks to enhance the reliability of the entire system. Then we get the most effective
swapping strategy in enhancing the robustness of the Cyber-Physical System compared to previous studies.
Different systems’ structures would influence the performance of swap inter links strategies on improving the
reliability of networks. Moreover, our work could guide how to optimize a Cyber-Physical System topology
by reducing the influence of cascading failures.

INDEX TERMS Cyber-physical system, interdependent networks, cascading failures, swap inter-links
strategy, robustness, giant component.

I. INTRODUCTION
With the rapid development of the economy and society,
the Internet has been widely used in our daily life and society.
Since the networks bring great convenience and economic
benefits, more and more companies and countries are focus-
ing on them. Meanwhile, the networks have further grown
from single small-scale to complex large-scale. The network
plays an increasingly important role in our everyday life.
Over the last decade, extensive research on complex networks
has been conducted. This research demonstrates that many
critical properties of the network’s organization, growth, and
robustness. More recently, research on network robustness
has been pushed further. Nodes organize networks, but the
network does not occur in isolation. These depend on the way
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in which nodes are interconnected and relatively independent
with each node [1]. More networks are interdependent to
function properly [1]–[10]. A representative interdependent
networks example is Cyber-Physical Systems(CPS).

Cyber-Physical Systems are designed to seamlessly
integrate computing components, networks, and physi-
cal devices into well-defined environments for specific
purposes [11]–[15]. It is deeply embedded in cyber capabil-
ities in the physical world to transform interactions with the
physical world [16], [17]. A CPS typically consists of phys-
ical elements, a communication network, and a computation
and control unit. The communication network can exchange
data with other systems. A control unit is necessary to interact
with the real world and process the data obtained [18]–[20].
Data exchange is the essential feature of the CPS since the
data can be linked and evaluated centrally. In other words,
the CPS is an embedded system that can send and receive data
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over networks [19]. More and more infrastructure systems
evolve into CPSs in daily life. For example, we usually regard
the smart grid system [12], [21]–[23] and radar system [24]
as a typical representative of a CPS. If a failure occurs in an
infrastructure system, it can cause property damage or even
loss of human life. Therefore, the reliability of CPS is one
of the leading indicators to be considered by designers and
maintainers. It is especially important to prevent large-scale
failures of a CPS and enhance its robustness. We have known
that a small fault in an interdependent network could easily
lead to severe failures in entire networks, which have shown
in previous research work [2]. In this way, understanding how
to improve the ability of a CPS to resist cascading failures
poses a significant challenge, which is vital for understanding
the resilience of natural systems [1].

In order to maintain a healthy daily life and promote
social development, many researchers pay more attention to
enhance the robustness of the CPS. In this paper, we abstract
the concrete CPS into an unweighted and undirected net-
work graph are made up of points and lines. We achieve
the enhancement of CPS system reliability by changing the
topology relationship of the dependent edges. The main con-
tributions of this paper are listed as following:
(i) First, we simulate a variety of system models and

attack proportions to get as comprehensive as possible
the effects of different strategies on changing system
reliability.

(ii) Second, we get the high eigenvector centrality
swapping inter-links strategy has the best effect on
enhancing network reliability in all our situations.
This strategy performs better than the interlinking of
nodes by their intralayer degrees in the monotonic
order, which is discussed in [25] in enhancing network
reliability.

The outline of this work is as follows: we introduce the
review literature in Section II. In Section III, we propose our
functional model for CPS and the different swapping strate-
gies. Section IV performs the results of the simulation and
analysis points. Conclusions and summarized in Section V.

II. LITERATURE REVIEW
A. RELATED WORK
Cyber-Physical Systems are becoming increasingly critical
for daily life. Maintaining the reliability of CPS has become
an important research direction.Many scholars have explored
this topic from the hardware direction [24], [26]–[29].
Pennekamp et al. [22] study that CPS will lead to a plethora
of new dataflows on the Internet of Production (IOP).
Zhang et al. [30] investigate the security implications of mul-
tistate channel implementation and symbol energy, consid-
ering their effect on the CPS acceptance threshold. Many
scholars are gradually applying machine learning to enhance
the reliability of CPS [24], [26]. There are some researches
on CPS reliability based on software [29], [31]. This method
aims at changing the system state through software to ensure
that the system is always in a safe state. In addition to

changing network reliability from hardware and software,
some scholars have also promoted research on CPS reliability
from the direction of assessing the security of CPS [32].
The above approaches are always considered the physical
device and the cyber components. Another direction of study-
ing the reliability of the CPS is to abstract a CPS sys-
tem into an interdependent network. This direction ignores
the differences between devices and treats all devices and
components as objects with similar functions. It pays atten-
tion to the point-to-point topological relationship between
the networks. Since the specifics of actuation and physical
world reaction, a unique CPS model is infeasible [33]. The
challenge of establishing this model is to identify common
ingredients and components of a CPS present in a variety
of scenarios, models, and investigate them. To resolve this
challenge, Zhang et al. [34] propose a classification for CPS.
In a Cyber-Physical System, physical devices such as bat-
teries and sensors seem to be physical components. The
cyber components include embedded computers and com-
munication networks. The interaction and relation between
physical components and cyber components are essential to
maintain the operation of the system. Thus, combining and
applying these components and ingredients to certain cate-
gories of CPS and corresponding concrete systems are other
challenges to building a CPS model. To model the intercon-
nection and interconnection between cyber components and
physical components, Wang et al. [35] and Derler et al. [36]
have proposed different algorithms for focusing on the above
interaction and related challenges.

Based on the above CPS models, researchers propose var-
ious theories to enhance the robustness of networks. The first
approach is to protect critical nodes [37], [38]. However,
Nguyen et al. [38] proved that finding critical nodes is an
NP-hard problem. The second approach is to make nodes
autonomous, which is concluded by Shao et al. [39]. How-
ever, this approach is likely to cost millions of dollars [40].
The third approach is to refigure the topology of the net-
work by rewiring [21], [41], [42]. However, it is difficult to
come true in a factual existing network. The fourth approach
is adding links in networks. Cui et al. [40], Ji et al. [43],
Jiang et al. [44], and Beygelzimer et al. [45] discussed the
effects on the robustness of interdependent networks after
different addition strategies. The approach described in [25]
and [46] is to adjust the dependency links allocation. This
approachmight not increase or even reduce costs. It takes into
account the structure of the existing networks for optimiza-
tion. This approach is feasible if we consider the topology of
existing networks and the costs of entire networks. In [43],
some adding intra-links strategies are proposed. Through
adding intra-links by different strategies, researchers find that
the interdependent networks can get the best reliability by
adding intra-links in the order of low IDD values.
Tu et al. [47] study the robustness of a single network with
different values of network centralities. They find the opti-
mal network topology to achieve the best network robust-
ness. They do not mention how to change the topological
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networkmetrics. However, they conclude that themetrics will
change when the network gets better robustness.
Changing the relationship of interdependent networks will
not influence the links in one single network. Thus, this
method has less impact on network topology. Based on
the above favorable factors, we think swapping dependency
links as a better method to improve interdependent networks
reliability.

B. INTERDEPENDENT NETWORKS
Complex networks have been investigated extensively since
the 1960s. Both of Erdös-Rényi networks(ER networks) and
scale-free networks(SF networks) are briefly described to
depict the real-world networks. The compositions and char-
acteristics of these networks have been well studied. In a
single network, intra-links of nodes satisfy a certain degree
distribution. For example, nodes follow binomial distribution
in ER networks while following power-law degree distri-
bution in SF networks. Every node in the ER network has
the same number of intra-links [33]. Therefore, all nodes in
the ER network have the same degree [48]. Different from
the ER network, the SF network is a network whose degree
distribution follows a power-law distribution. SF network is
a skewed degree distributed network [46], which means that
most nodes have a few intra-links, and a few of the nodes have
lots of intra-links.

Tomodel interdependent networks, Buldyrev et al. [2] pro-
posed a ‘one-to-one’ correspondence model, where two inter-
dependent networks A and B have the same number of nodes
which means that NA = NB. The inter-link represents an
interdependent relationship between the two nodes which
are in different networks. This model could reflect one kind
of corresponding relationship of real networks, and it has
been deeply studied. Different from Shao et al. [39] consider
real networks as mutually dependent networks. One node in
network A depends on more than one node in network B, and
vice versa. This is the ‘multiple-to-multiple’ correspondence
model. But the ‘multiple-to-multiple’ correspondence model
has some limitations which don’t have solutions yet [33].

C. CASCADING FAILURES
The cascading failures are always caused by a small failure
in one network. The failure can lead to fragmentation of
the entire interdependent networks. Percolation theory is a
useful method to explore the reliability of networks. The
giant component is the largest connected subnetwork in all
interdependent networks. Generally, it is thought to be the
normal working part of the networks [21], [42], [47]. Thus,
the giant component is usually used to reflect network reli-
ability when cascading failures stop. The giant component
is the most widely used and persuasive measure of network
robustness. One node in interdependent networks can operate
after cascading failures only if it satisfies two conditions:
(i) The node has at least one inter-link with a node that

functions;
(ii) It belongs to the giant component of its network.

We assume that the cascading failures are triggered by
randomly removing (1 − p) fraction of nodes in network A.
After removing (1 − p) · |NA| of nodes in network A, both
of intra-links and inter-links of these nodes are removed.
In the next stage, some nodes in network B are removed if
they lose inter-links from network A. Since nodes and links
are removed, network B fragments into several components.
As the conditions of nodes can operate, we have shown above,
except the giant component that can still operate, and the rest
is removed. This stage results in network B split-up and some
nodes in network A have no inter-links from network B. Then
network A breaks up again. The cascading failures recurse
between network A and B. These cascading failures processes
will not stop until the interdependent networks reach one of
the two stable states:
(i) All nodes in the two networks are completely failed;
(ii) The networks are divided into giant components with-

out further cascading failures.
Fig 1 gives an example of failure propagation in interde-

pendent networks. In the initial stage, there are seven nodes
in network A and B. Then, node A3 is attacked and triggers
cascading failures. When the cascading stops, only two nodes
remain functioning in the network A and B, respectively.

After cascading failures, the giant component might disap-
pear. The number of giant components N ′A and N ′B is 0. The
relative size of the giant component G is 0 too. If there exists
the giant component in interdependent networks, G could be
calculated by:

G =
N ′A + N

′
B

NA + NB
(1)

If (1− p) is big enough, G will decrease to 0.

III. METHODOLOGY
In this section, we briefly introduce our CPS models and
strategies of swapping inter-links. We construct CPS models
by the most popular network models in recent research. After
that, we use the ‘one-to-one’ correspondence model to
interact with physical components and cyber components
together. Then we sort nodes by three kinds of centralities
values: degree centrality, betweenness centrality, and eigen-
vector centrality. Based on the above centralities, seven kinds
of swapping links approaches are simulated in our models.

A. CPS MODELS
Previous studies show that the ER network and SF network
could accurately simulate certain characteristics of natural
networks. In this way, the simulation results will be more per-
suasive and real-world usable. Depending on this, we select
one or two from the ER network and SF network to build
interdependent networks to construct a CPS model. There
are four kinds of CPS structures: ER network couples ER
network(ER-ER), ER network couples SF network(ER-SF),
SF network couples ER network(SF-ER) and SF network
couples SF network(SF-SF).
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FIGURE 1. Cascading failures in interdependent networks. Initially, network A and B have seven nodes in their own network. The random attack upon
network A causes failure of node A3. In stage 1, we remove all intra-links and inter-links with node A3. Thus, A6 and A7 are disconnected from the giant
component in the network A. As a result, B2 is removed since it loses its inter-link from network A. In stage 2, A6, A7 and B2 are removed with their all
links. Consequently, three nodes of network B fail, while node B1 is excluded from giant component and B5 and B7 lose supporting links. Therefore,
in stage 3, all of the node B1, B5, B7, and their links are removed, network B fragments into components, while node B6 is disconnected from the giant
component, so fails. Node A1 fails as it doesn’t have a supporting link. In stage 4, A2 fails because it doesn’t connect to the giant component. In the
final stage, the remaining nodes of this interdependent network reach one stable situation without further cascading failures.

Considering the two connection models mentioned in
section II-B, we apply a more mature ‘one-to-one’ correspon-
dence as to the model of interdependence in our simulation
CPS models. We define NA and NB as the number of nodes
in network A and network B. Each node in network A has
function depending on exactly only one node in network B,
and vice versa. In other words, one node in networkA only has
one inter-link from network B. This also applies to network B.
We apply the ‘one-to-one’ correspondence model between
networks to link inter-links to represent the interdependent
relationships. To conform to this model, we presume the
coupled networks have the same number of nodes.

B. SORT NODES BY CENTRALITY 1: DEGREE CENTRALITY
The degree is the simplest but important centrality to estimate
the significance of nodes in a network. If one node locals in
the center of the network, it has a high value of degree and
be considered as a crucial node [43], [48]. When high degree
nodes are attacked, a large number of nodes will be affected.
In this way, the network has worse reliability than destroying
low degree nodes. In an undirected network, a node degree is
equal to the number of nodes’ intra-links [43]. Sorting single
network nodes by their degrees, there are an ascending order
and a descending order.

Low degree swapping links algorithm (LD) defines as
ranking the nodes of network A and B with their degrees
in ascending orders, respectively. We select nodes in the
top array of increasing orders that are nodes Ai and Bj.
Then we determine if there is an inter-link between the two
nodes which we selected. There are two situations about
connection:
(i) The first is that an inter-link does not link node

Ai and Bj;
(ii) The second is that node Ai and Bj have linked by an

inter-link.

When the second case occurs, we check whether the next
array nodes of the two orders connect with an inter-link. In the
first case, we have to change the inter-links in Ai and Bj.
Firstly, we find there are two inter-links between Ai and Bn
and Am and Bj in the interdependent networks. Thus, these
two nodes Ai and Bj do not link by one inter-link. Then,
we remove all inter-links between Ai, Bn, Am, and Bj. Finally,
we linkAi andBj and connectAm andBn with a new inter-link,
respectively. After that, we complete a onetime swapping
inter-link operation. This swapping procedure repeats until
the demanded number appears.

The other algorithm which is based on the degree values
is the high degree swapping links algorithm(HD). It sorts
nodes in a descending sequence of nodes degree values. The
swapping inter-link process takes place between the nodes
with the highest degrees values. In [25], Chattopadhyay et al.
simulate that linking nodes with inter-links in HD order leads
to maximal ‘one-to-one’ interdependent network robustness.

In the interdependent networks, inter-similarity could
effectively reflect the degree differences of connected nodes
in coupled networks. Inter degree-degree difference(IDD)
[43], [49] is to quantitatively evaluate the inter-similarity of
interdependent networks. IDD is defined as:

IDDAB(u, v) = kAu − k
B
v (2)

where IDDAB(u, v) is the degree difference between node u
in network A and its dependent node v in network B. kAu and
kBv are the degree of node u and v. To ensure the inter-links
distribution, we need to calculate all A nodes IDD for each
node in network B. When NA is the same as NB, we set |NA|2

times subtraction calculation to get all IDD values.
Low inter degree-degree difference swapping links algo-

rithm(LIDD) is to sort nodes in ascending order by IDD
values. Then we swap links that satisfy the first situation
which we described in LD. We do not swap links in high
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FIGURE 2. The fraction of function nodes in systems when fs = 30%. Figure (a), (b), (c), and (d) are the systems that are coupled by ER-ER, ER-SF,
SF-ER, and SF-SF, respectively. Seven exchange strategies are compared with original independent networks in different systems structures.
In (a) and (d), LEC and HEC are the best strategies in enhancing G and pc , which have similar advantages. The structures of (a) and (d) are coupled by
the same network. (b) and (c) show the results of random attack in ER-SF and SF-ER systems. HEC shows better performance to the other strategies.
There is an intersection between the LEC and NONE curves in (b) and (c). In four figures, LD yields the worst performance. LB and HB can be regarded
as equivalent.

inter degree-degree difference since it will be similar to HD.
As described in [43], if IDD > 0, swapping inter-links
with the values of high inter degree-degree is similar to the
high degree swapping links algorithm. We have measured the
robustness of networks by HD in the preceding. Thus, we take
LIDD as our swapping strategy. This swapping process will
be repeated a set number of times.

C. SORT NODES BY CENTRALITY CENTRALITY 2:
BETWEENNESS CENTRALITY
The betweenness centrality is a metric that reflects the routing
performance in one network. If one node sites in a large
number of the shortest paths in the network, the node is
more important than other nodes. Betweenness centrality is
defined as:

B(v) =
∑
i 6=j

σij(v)
σij

(3)

where σij is the number of shortest paths going from node
i to node j and σij(v) is the number of shortest paths going
from node i to node j through node v [43], [48]. We calculate
nodes betweenness centralities by Eq 3 and order nodes

in ascending order and descending order. Low between-
ness swapping links algorithm(LB) is swapping inter-links
between the value of the lowest betweenness centrality.

High betweenness swapping links algorithm(HB) is rank-
ing nodes in descending order. The process of swapping
link occurs between the nodes with the highest betweenness
values in their respective networks. If the nodes with high-
est betweenness values have connected with an inter-links,
we judge whether there are edges between the nodes with
the second highest degree. We swap inter-links between the
nodes which are not linked by an inter-link. The specific
swapping process we have explained in LD. This process of
HB and LB will be repeated a set number of times.

D. SORT NODES BY CENTRALITY CENTRALITY 3:
EIGENVECTOR CENTRALITY
The eigenvector centrality is an extension of degree cen-
trality [48]. In degree centrality, all nodes importances are
regarded as equivalent. But the importance of nodes is
affected by their neighbors. If neighbor nodes are important,
then this node will be considered important, too. This char-
acteristic has been found in many realistic networks.
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FIGURE 3. The fraction of function nodes in systems under fs = 50%. These four figures represent the systems we build, which are ER-ER, ER-SF,
SF-ER, and SF-SF, respectively. In (a) and (d), LEC and HEC are the best strategies in enhancing G and pc , which have similar results. pc increases to
0.63. The structures of (a) and (d) are coupled by the same network. (b) and (c) are systems established by the ER network and SF network. These two
figures perform the results after a random attack. HEC has the best results in improving robustness. When 1− p = 0.3, LEC and NONE have an
intersection in (b). The value of G in LEC is smaller than NONE as 1− p < 0.3. While 1− p > 0.3, LEC is better than NONE in (b). The intersection of
LEC and NONE appears at 1− p = 0.4 in (c). In all figures, LD yields the worst performance. LB and HB can be regarded as equivalent.

xi means the eigenvector centrality of node i. The initial
values of all xi are set to 1. This is not a useful measure
of network centrality. Thus we use xi to calculate a better
one x ′i , which we define to be the sum of the centralities of
i’s neighbors thus: [48]:

x ′i = κ
−1
1

∑
j

Aijxj (4)

where Aij is an element of the adjacency matrix. In one
network, all Aij can be written as a matrix notation A. κ1 is
the largest eigenvector value of A.

We calculate the eigenvector centrality of nodes in two
interdependent networks. Then we sort nodes by the values of
the eigenvector centrality in increasing order and descending
order separately. The high eigenvector centrality swapping
strategy (HEC) is that we choose the nodes with the highest
eigenvector centrality values in two networks. Low eigen-
vector centrality swapping strategy (LEC) is swapping links
between nodes that have the lowest value of eigenvector
centrality in the network A and B. The specific swapping
processes we have explained in LD. This process of HEC and
LEC will be repeated a set number of times.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
To simulate a CPS model, we adopt two types of popular
networks, which are Erdös-Rényi networks(ER networks)
and scale-free networks(SF networks) to couple an interde-
pendent system. ER network orders Poisson distribution and
SF network obey power-law degree distribution. In order to
comply with the generality, we construct the ER network
with the size of the network N = 1000 and the average
degree 〈k〉 = 4. In SF network, the parameter γ = 3,
the average degree 〈k〉 = 4 and network size is N = 1000.
After distributing two single networks, we randomly assign
‘one-to-one’ correspondence interdependencies between sin-
gle networks. All of the intra-links and inter-links are bidirec-
tional in our models. After the above setting, we have built a
CPS completely.

We randomly remove (1−p)NA nodes to represent random
failures in a CPS. Then we calculate the fraction of working
nodes G in every (1− p) with (1− p) increasing 0.05 in each
step. So we simulate one kind of swapping link strategies for
20 times in a specified model. To obtain an accurate result,
we simulate 100 times in each (1 − p). We use NONE as
a comparative strategy with other strategies, which means
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FIGURE 4. The fraction of function nodes in systems when fs = 70% and the systems are coupled by ER-ER, ER-SF, SF-ER, and SF-SF respectively
in figure (a), (b), (c) and (d). As shown in (a) and (d), it’s clearly finding that the best strategies are LEC and HEC to enhance not only G but also pc .
Especially in (d), the value of pc is increased to 0.8. (a) and (d) are systems that are the same network correspondence. According to the results shown
in (a) and (d), we easily concluded that when network A and B are in one type network, HEC and LEC are the best choices to swap inter-links to
improving robustness. (b) and (c) show the results of random attack in different coupled systems. HEC is the first selection to enhance reliability.
There is an intersection between the LEC and NONE curves in each figure. As 1− p = 0.25 and 1− p = 0.35, LEC and NONE have an intersection in
each figure. There is a negligible gap between LB and HB.

we do not change any inter-link. We assume the fraction of
swapping inter-links as fs:

fs = L ′/L (5)

where L ′ is the number of swapping inter-links, and L means
the total number of inter-links in one CPS. Since our systems
follow ‘one-to-one’ correspondence interdependent and the
inter-links are bidirectional, the number of inter-links should
be equal to the number of nodes NA(NB). Therefore, Eq 5
could be written as fs = L ′/1000.
In [25], scholars find that the interlinking of nodes by HD

to maximal network robustness. However, they only simu-
lated ER-ER interdependent networks to verify this conclu-
sion. Thus, we construct five different kinds of CPSmodels to
verify our proposed swapping inter-links strategies and com-
pare the results with the HD algorithm. To compare the effects
of different inter-links swapping strategies, we evaluate the
reliability of a CPS by G and pc. pc represents the maximum
tolerant ability against random failures. G and pc are bigger,
the reliability of CPS is better.

Here we compare different performances of the swapping
inter-links strategies shown in Section III when fs = 30%,

fs = 50% and fs = 70%. From Fig 2, Fig 3 and Fig 4,
we observe the following conclusions:
(i) Not all swapping strategies can enhanceCPS reliability.

In all of the above figures, we find that the network
reliability of using LD to change the connection rela-
tionship of inter-links is worse than that of the original
network.

(ii) Under the same experimental environment, the differ-
ence between HB and LB in enhancing the reliability of
CPS can be ignored. This finding can be concluded as
different betweenness centrally values have little effect
on system reliability.

(iii) Under one particular centrality, swapping nodes
inter-links with large values have a better influence on
improving network robustness than with small values.
The values of pc are not smaller in swapping nodes
inter-links with large values than with small values. For
example, in figure 4(a), the values of pc in LD and HD
are 0.45 and 0.5. In figure 4(c), the pc values of LEC
and HEC are 0.5 and 0.62.
When nodes have high centrality values linked by inter-
links, the giant components in two single networks
are huge. Although nodes are not operating since they
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lose inter-links, the other nodes in the giant compo-
nent which connect the above-failed nodes can operate.
This swapping inter-links operation will make a large
number of nodes that can still work after cascading
failure. In contrast, when we choose to swap inter-links
with low values of nodes, the nodes connect with failed
nodes with intra-links is easier to be apart from the
giant component after randomly attacking nodes. As a
result, the system is easier to collapse. This finding is
in agreement with the finding of [25].

(iv) For the same number of swapping inter-links, we find
that the LEC strategy has opposite results for enhancing
G at ER-SF and SF-ER interdependent networks for
different (1 − p) values. In ER-ER and SF-SF sys-
tems, LEC and HEC have a negligible difference in
improving G. Under the situation of fs = 30% and
ER network couples SF network situation, LEC has
worse performance than NONE in increasing G value
at (1 − p) < 0.25. This phenomenon is reversed
when (1 − p) > 0.25. The abscissa of the inter-
section of LEC and NONE in SF-ER interdependent
networks is 0.3. When the value of fs is fixed, the size
of G in LEC and NONE always have intersections in
ER-SF and SF-ER simulation diagrams. This shows
that different network structures and different attack
ratios play critical roles in choosing the swapping link
strategy.

(v) HEC has the best effect on enhancing network reliabil-
ity in all situations. It also performs a clear advantage
in increasing the value of pc. In figure 4(b), the value of
HEC is bigger than 0.6 and the other strategies pc values
are around 0.4. Compared with HEC and HD, both of
the values of G and pc have obvious advantages. In the
case of fs determination, the differences values of pc
between HEC and other strategies are most evident in
ER-SF and SF-ER interdependent networks. Besides,
HEC yields a clear advantage in relieving a sharply
dropping of G when p closes to pc. It means that the
system could be controlled to prevent the system from
completely collapsing.

Above all, the HEC strategy is the primary choice for
improving system robustness under a given number of swap-
ping inter-links. If we get one certain centrality value of
interdependent networks, we can swap inter-links with nodes
that have high centrality values. To ensure the best results in
enhancing system reliability, we need to figure out the system
structure and the fraction of attacks when determining the
swapping strategy. We considered three topological metrics
to quantify the location centrality of the nodes. When the
two nodes which are in the central position are connected,
there will be a large number of nodes in the central posi-
tion of the entire system. The giant component gets big-
ger and bigger. After the random attack, the number of the
giant component will also be relatively large. Based on the
above explanation, our experimental conclusions are easy to
understand.

V. CONCLUSION
To study the effect of cascading failures and robustness
in real social networks, we construct different CPS mod-
els which consist of interdependent physical-resources and
computational-resource networks. Meanwhile, we analyze
the reliability of an interdependent CPS by measuring the
value of the relative size of the giant component after cas-
cading failures. Based on three kinds of network centralities,
we design seven swapping inter-links strategies to change
the topology of interdependent CPS. By comparing the per-
formance of these strategies in a CPS, we find that it is
more advantageous to transform inter-links with high-values
centrality nodes than with low-values. At the same time,
the simulation results show that the high eigenvector cen-
trality swapping strategy is superior to the other strategies
in enhancing the reliability of a CPS. This finding can help
network builders to design a better network structure that can
survive random network attacks.

However, our proposed models have some limitations,
which could be our future work. In this study, we only con-
sider the ‘one-to-one’ correspondence as a relationship in
different networks. While some researchers build the ‘one-
to-multiple’ correspondence to represent inter-links topology
in a CPS [33], this paper still selects giant components as
the functional part. The small and isolated components could
also operate locally in reality. Furthermore, we will try to
find some schemes to maximize the number of the giant
component in forthcoming work.
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