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ABSTRACT Virtual network mapping is a hot issue over the past decade, which aims to map virtual
networks to the underlying network as required. This procedure is a NP-hard question, therefore many
previous algorithms just impose some constraints or use simple heuristic method to get the relative optimal
result. Traditional researches almost focus on two independent stages: node embedding and link mapping.
To address existing questions such as low acceptance ratio and high mapping time, we propose an efficient
and fast embedding algorithm, named as AEF(An Efficient and Fast embedding algorithm), which is a two
coordinated mapping stages algorithm. AEF uses some innovative strategies in two stages to improve the
mapping time and ensure high performance. It has great advantages in large-scale complex networks or
occasions with high real-time requirements because of faster mapping speed. Besides, it will also have more
practical value in actual scenarios due to higher acceptance ratio and more balanced link load. The worst time
complexity of our AEF is proved to be O(|N S

|
2
· |NV
| · (log(|N S

|)+|NV
|)). A large number of experimental

results show that our algorithm is faster than most other algorithms and ensures the overall better efficiency.

INDEX TERMS Virtual network mapping, high performance, fast embedding, heuristic algorithm.

I. INTRODUCTION
With the development of internet, more and more various
applications and traffic need to adapt to various service
providers [1]. Network virtualization, a most promising tech-
nology, emerges as the times require. It allows heterogeneous
virtual networks to coexist in the same shared underlying net-
work [2]. However there are some challenges, such as, how to
allocate resources efficiently and fast. It introduces the virtual
network mapping, which aims to map the virtual networks
to the underlying network as required. Nevertheless, virtual
network mapping is a NP-hard question [3], which means the
optima result is impossible to get in polynomial time.

Network virtualization attracts more and more researchers
to develop related solutions in the past ten years [4], [5].
Previous algorithms can be classified into two categories,
Uncoordinated VNE(virtual network embedding) and coordi-
nated VNE [1]. The former is consisted of two separated stags
[6]–[9], node embedding and link mapping. It finds substrate
nodes for virtual network by greedy strategy and searches
k-shortest paths, then picks the appropriate path that satisfies

The associate editor coordinating the review of this manuscript and

approving it for publication was Nabil Benamar .

link attribute constraints in the subsequent stage. In fact,
in linkmapping phase, it can also be converted toMCF(multi-
commodity flow) question. Such algorithm often leads to
low acceptance ratio because of the insufficient search space.
The latter adopts the two coordinated stages, which can be
further subdivided into three major classes [1], two stages
coordinated VNE [10]–[14], one stage coordinated VNE
[15]–[17], interInP coordination [18] respectively. It makes
consideration of link mapping in the node embedding phase
or unifies the two stages. Such algorithm may spend too
much time in virtual network mapping because of the more
computation.

There are some questions according to the above descrip-
tion. On the one hand, low acceptance ratio shows a large
number of invalid requests result in low revenue and lack
of practicality. On the other hand, long virtual mapping time
will cause the entire network to be paralyzed, because of lots
of high concurrent virtual requests in the real-time scenes.
Focusing on these issues, we propose An Efficient and Fast
embedding algorithm, named as AEF, which is a two-stage
coordination algorithm. Our main goal is to improve map-
ping time and make the other evaluation metrics at a higher
level.
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Our main contributions in this paper are summarized as
follows.
• We put forward a mapping rule, which considers
whether neighbor links’ resource of the mapped sub-
strate node can support neighbor links’ demand of the
current virtual node in terms of bandwidth metric. This
rule is equivalent to considering the next mapping in
advance, called 1-lookhead. It ensures the higher prob-
ability of finding a path in subsequent link mapping
stage when the mapping rule is satisfied. Thereby it can
improve relatively the average acceptance ratio.

• Soft distance constraint is used. It differs from traditional
concept [19]. This brenchmark is considered in the first
time in node mapping phase. If it fails, which means we
can not find substrate node to match in term of distance
constraint, then we will ignore this restrict in the second
time. It can ensure the set of mapped substrate nodes are
as close as possible and enhance the whole revenue in
these scenes constructed by Waxman model [20].

• Similar to the traditional algorithm, in the link mapping
phase, we use BFS to find the solution and consider that
the use of the underlying network topology resources
may be unbalanced in this stage. For this reason, this
paper makes a trade-off between the link load and the
link mapping cost.

• We proof that the time complexity of our algorithm
can be decreased compared with D-ViNE_SP, subgraph
Isomorphism and conduct a large of simulation experi-
ments. Simulation results also show that our AEF algo-
rithm guarantees high performance and accelerates the
mapping time. Therefore our AEF has great feasibility
and advantages in theory.

The rest of this paper is organized as follows. We discuss
the related work in Section II. Virtual network mapping prob-
lem and model are explained in Section III. We detail the
process and implementation of AEF algorithm in Section IV.
Numerous simulated comparative experiments are performed
in Section V. At last, we summary the experimental result and
draw conclusions.

II. RELEATED WORKS
The existing virtual network mapping algorithms can be
roughly divided into three categories: two-stage independent
algorithms, two-stage coordination algorithms and one-stage
algorithms.

Two-phase independent algorithms simply fulfills node
mapping phase and link mapping phase independently.
Minlan Yuy et al. [6] put forward the baseline VN Embed-
ding algorithm, which completes node mapping by means
of greedy strategy and uses k-shortest paths algorithm to
accomplish link mapping. In addition, the authors also pro-
pose innovative path splitting and path migration. The for-
mer adopts a strategy that can divide traffic for paths with
insufficient bandwidth, so that a virtual link can be split
into multiple underlying paths. The latter makes room for

subsequent virtual requests by adjusting the path that has
beenmapped. However this paper simply adjusts the flow and
does not optimize it, which makes process consume a lot of
time. Lu et al. [4] and Zhu and Ammar [7] propose improve-
ments, they use global labeling. Some links or nodes with
high load are marked as ‘‘critical’’ and only these are adjusted
so that the cost of regulation is not too high. In addition to
adjusting the nodes with high load, another strategy can be
used, which is to avoid using these high-load node resources
when mapping. Razzaq et al. [9] introduce the NEL(Node
Exhaustion Limit), they search a substrate node to match in
order to make the resources of the underlying node minus the
requirements of the virtual node must be greater than or equal
to NEL. Jarray and Karmouch [16] use the pricing model
through the auction mechanism to increase the minimum
auction price for nodes with high loads. These two strategies
effectively protect high-load nodes, thereby providing more
options for subsequent virtual requests and improving the
request acceptance ratio.

Two-stage coordination algorithms consider global
resources when node mapping and link mapping, and the
two phases depend on each other. This type of algorithm
first defines node scales through certain topological prop-
erties. Traditional attributes include CPU of a node, degree
of a node and bandwidth of its surrounding links. But
for heuristic algorithms, these factors often do not fully
reflect the overall topology and the mapping results are
not very convincing. Zheng et al. [13] also consider the
substrate nodes which have been mapped. Cao et al. [11],
[12] have a comprehensive consideration of Node Centrality,
Link Strength, Link Interference, Distance Between Two
Nodes and so on. Then it uses the node scales to get all
nodes ranking. Bianchi and Presti [14] use Markov model
to iteratively calculate the importance of nodes according
to previous node attributes, which is similar to [12]. Refer-
ence [4] compute it by means of LP(Linear Programming)
model. Next it refers to these ranking to complete node
mapping. Most algorithms do this step using L2S2(Large to
Large and Small to Small) greedy strategy. However, [13]
matches the underlying nodes based on whether the cost
after matching is the smallest, and [14] mainly depends on
whether the benefits after matching are the largest, that is
the most rewards. At last, it accomplishes link mapping by
MCF(Multi-Commodity Flow) or KSP(K-Shortest Path). But
these algorithmsmay take more computation time, a common
optimization trick is to remove links that do not meet band-
width demand and simplify the network topology. In [13],
the authors put forward an improved minimum cost flow
method. In the latest research, Yao et al. [21] propose a
model based on reinforcement learning to solve virtual net-
work mapping, which processes network topology attributes
and structures in a matrix form and shows better perfor-
mance. Zhang et al. [26] introduce a reinforcement learning
method to complete node mapping, and achieve optimization
automatically with the historical data. This is the first to
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utilize historical requests data, and outperforms the most
other algorithms.

One-stage algorithms is mainly to unify node mapping
phase and link mapping phase, which completes them in one
phase. Cordella et al. [15] use recursive one-stage algorithm
to complete link mapping while node mapping with the help
of five syntax rules and some semantic rules. In addition,
it can use the ILP(Integer Linear Programming) model
to complete the one-stage mapping. This model requires
a lot of computing time to solve. Chowdhury et al. [19]
relax the integer variable to get the LP model, and then
use D-ViNE and R-ViNE to solve it. In [16], the authors
use column generation technology to make the VN embed-
ding problem be decomposed into a master problem(which
includes constraints related to the availability of substrate
resources) and a pricing problem (which includes the con-
straints related to the embedding of VN resources) and solve
it by A-JNLE_CG_B&B and A-JNLE_CG_R algorithms.
These strategies can greatly reduce more the running time
than the original model.

Generally speaking, the calculation time of a one-stage
algorithm is often large, even the improved scheme is not
suitable in the occasions with high real-time requirements
and two-stage independent algorithm itself is not optimal
due to the independence of the two stages. In order to con-
sider the efficiency and execution time of the algorithm, our
algorithm is based on a two-stage coordination algorithm.
In this paper, we first define the node scales similar to other
algorithm. But our algorithm only uses the two attributes of
node’s CPU and bandwidth of its surrounding links. In fact,
these two attributes play the main role. In the fast map-
ping scheme, the result does not need to be optimal, but
the mapping is completed as quickly as possible, so it is
reasonable to use these two attributes. ISP(Internet service
provider) wants the physical nodes mapped by the virtual
nodes to be as close together as possible, because it can reduce
operating expenses and decrease network propagation delay
[13]. We use the soft distance to achieve this requirement,
and the result is that revenue/cost ratio will be improved.
For load balancing, the optimization of nodes and the opti-
mization of links cannot be satisfied at the same time [7],
so this paper only does load balancing optimization for link
mapping.

III. VNE PROBLEM MODEL
According to [1], our model is based on the center static
concise classification. Similar to many previous algorithmic
models [11], [19], we define our VNE problem by using
graph theory. If not specified, superscripts S and V represent
the underlying network and virtual network respectively,
embedding and mapping has same meaning, referenced
resources equals to node scale, link rule is equivalent to
mapping rule, the current virtual node represents the vir-
tual node participating in the node mapping at now in this
paper.

A. NETWORK MODEL
1) SUBSTRATE NETWORK
Generally speaking, the underlying network is a relatively
dense network topology. It can be describe by undirected
weighted connected graph GS = (N S , ES ), where N S is the
set of substrate nodes and ES is the set of substrate links. Each
substrate node nS ∈ N S is attached to CPU resource, labeled
as c(nS ). For two given substrate nodes i and j, the unique
substrate link eS (i, j) ∈ ES connects them. The bandwidth
resource of the eS (i, j) is denoted by b(eS ). In particular, the
link bandwidth resource exists in both endpoints, it is to say,
eS (i, j) and eS (j, i) share the bandwidth resource b(eS ).
We use the notation PS (s, t) to represent all the paths from

substrate node s to substrate node t . A path pS ∈ PS (s, t) has
a capacity, named as SE (pS ). It is defined in equation (1).

SE (pS ) = min
eS∈pS

b(eS ) (1)

Given the substrate node i, the referenced resource is denoted
by R(i), which is defined in equation (2). It provides a criteria
for matching substrate nodes fast.

R(i) = c(i)+
∑

es∈LS (i)

b(es) (2)

where LS (i) is the set of all adjacent substrate links of sub-
strate node i. In the latest papers, for R(i), factors such as
node degree, link stress and interface between nodes are often
considered. In fact, the CPU resources of the nodes and the
bandwidth of the surrounding links account for the main
components. This paper mainly implements fast mapping,
which is not necessarily optimal for the solution, equation (2)
is in line with the requirements of this paper.

We define the distance of two given substrate nodes by
Euclidean distance. It is denoted by equation (3).

Distance(i, j) =
√
(ix − jx)2 + (iy − jy)2 (3)

where i and j are any two substrate nodes, and ix , iy, jx , jy are
the coordinate of i and j.
Fig. 1 describes a simple example of virtual network

embedding. It is consisted of two parts. The left part in picture

FIGURE 1. Virtual network embedding.
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is the substrate network. Every substrate node has its label,
for example, {0, 2, 4 . . .}. The number in rectangle above
node is its CPU resource. Every substrate link has a embedded
number, which is its bandwidth resource. This topology is
generated by Waxman model whose parameters are α = 0.1,
β = 0.5, because these parameters are consistent with the
actual topology and more commonly used. An increase in the
parameter α increases the probability of edges between any
nodes in the graph, while an increase in β yields a larger ratio
of long edges to short edges. Next we introduce the right part
of picture.

2) VIRTUAL NETWORK
Similar to substrate network, we also use undirected weighted
graph to characterize the virtual network by GV = (NV , EV ),
whereNV is the set of virtual nodes andEV is the set of virtual
links. Each virtual node nV ∈ NV is associated with the CPU
resource c(nV ). Each virtual link eV (i, j) ∈ EV between two
virtual nodes i and j is attached to the bandwidth b(eV ).
In Fig. 1, the right part is virtual network. The implication

of its number is similar to the explanation of the substrate
network. The model adopted is also Waxman model, and
corresponding parameters are α = 0.5, β = 0.5.

B. VIRTUAL NETWORK MAPPING
When a virtual request arrives or leaves, it needs to bemapped
or freed. That is to allocate CPU resource and link bandwidth
resource or revoke corresponding assigned resource in the
substrate network. The whole process is completed in two
coordinated stage, according to our AEF algorithm.

In Fig. 1, orange dotted lines denote node mapping pro-
cedure, the link mapping process is not special to show.
For example, the figure depicts a node mapping and a link
mapping. The node mapping is {85 -> 18, 86 -> 4, 84 ->
14, 83 -> 8, 82 -> 6} and the link mapping is {(85,86) ->
(18,4), (85,84) -> (14,18), (84,86) -> (14,4), (83,86) -> (4,8),
(83,84) -> (14,4)(4,8), (84,82) -> (14,16)(16,6)}.

1) NODE MAPPING STAGE
For each virtual request, a virtual node must be mapped to
an unique substrate node. The node mapping function FN ():
NV
→ N S determines the assignment of virtual nodes.

FN (M ) ∈ N S

FN (M ) 6= FN (N ), if and only if M = N

arg min
r∈VRs

ExeTime(FN r (·)) (4)

subject to c(MV ) ≤ c(FN (MV )) (5)

R(MV ) ≤ R(FN (MV )) (6)

b(eiS )−
Ti+1∑
j=Ti

b(ek j
V )≥0, ∃k < |LS (FN (M ))|,

∀i ∈ [0, k] (7)

where FN r (·) is node mapping for all node in one virtual
request r , VRs is a set of all virtual requests. ExeTime is a

function of computation time that this phase will to take. kj
is the jth sequence subscript index with all links from LV (M )
in full order, Ti is the interval sequence(subscript index) of
selected elements(the virtual link after full permutation).

In above, equation (4) means that the node mapping time
is as little as possible under the condition of satisfying the
constraints. equation (5) and equation (6) indicate jointly
that available CPU resource of the mapped substrate node
FN (MV ) must be able to support CPU demand of the virtual
node MV . Equation (7) is the mapping rule in node embed-
ding phase, which shows that the neighbor links’ resource
of the mapped substrate node FN (MV ) must can hold on all
neighbor links’ demand of the virtual node MV . We must
point out that all node CPU demand needs to be fulfilled,
otherwise, this virtual request will be rejected directly.

2) LINK MAPPING STAGE
In this phase, every virtual link must be mapped to a shortest
substrate path which satisfies the demand of this virtual link.
The Link mapping function FL() : EV → PS determines the
assignment of virtual links.

FL(eV (M ,M ′)) ∈ PS (FN (M ),FN (M ′))

arg min
r∈VRs

ExeTime(FLr (·)) (8)

subject to b(eV ) <= SE (pS ) (9)

whereFLr (·) is linkmapping for all virtual links in one virtual
request r , VRs is a set of all virtual requests. ExeTime is a
function to compute the time. Equation (8) shows that the
link mapping time is as little as possible under the condition
of satisfying the constraints, which is defined in equation
(9). pS is the shortest path in PS (FN (M ),FN (M ′)). If pS is
empty, we reject this virtual request. Otherwise, we continue
to process. If and only if all virtual links are embedded
successfully, the link embedding stage is completed.

C. EVALUATION METRICS
In this paper, the most important and novel evaluation metric
is the mapping time. We defined some metrics in equation
(10) - equation (12).

TotalTimek =
k∑
i=1

(ExeTime(FN ri (·))+ ExeTime(FLri (·)))

(10)

where TotalTimek is the total time spent in previous k virtual
requests embedding. ri represents ith virtual request. In addi-
tion, the other important evaluation metric is the revenue to
time, it shows how much revenue infrastructure provider can
get.

Revenue(t)=

{∑
c(nV )+

∑
b(eV ) mapped

0 otherwise
(11)

RevenueToTimek =

∑T
t=0 Revenue(t)

T
(12)
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where Revenue(t) is the revenue to map the virtual request at
time t . If there is not virtual request at time t or this virtual
request is not mapped successfully, the value is 0. T is current
time, which has no scale and is just one unit. This unit can
represent a minute, an hour, etc.

In order to measure the load of the underlying network
links, we make a statistical analysis of the remaining band-
widths of all the substrate links, and use the standard devia-
tion(denoted by Std) to measure whether the use of network
bandwidth is balanced.

Std =

√∑
es∈ES (b(e

s)− x)2

n
(13)

where x is the average of all substrate link bandwidths.
The other two referenced evaluation metrics in this paper

are the acceptance ratio and the cost to revenue ratio respec-
tively. The detailed information can be seen in [1], [3], if you
are interested in these respects.

IV. OUR AEF ALGORITHM
The proposed AEF algorithm is elaborated in this section.
Our algorithm is based on heuristic search and aims to make
mapping time as little as possible. The algorithm used in
the node mapping phase of this paper looks like to other
algorithms, such as [23], it adopts the measure of each node
iteratively obtained by the page-rank algorithm, and then sorts
according to this measure. However, in this paper, equation
(2) is directly used for storing. In fact, there are many papers
that use the page-rank algorithm, but they do not guarantee
that the mapped results are optimal, and this process itself
is time-consuming and not very suitable for time-sensitive
occasions. At the same time, there is no clear improvement
in the mapping cost. This paper considers the main factors
of node mapping, and is complemented by the mapping rules
and close mapping strategy to make node mapping fast and
efficient. Firstly, we put forward innovative mapping rule to
filter more redundant candidate nodes. Secondly the main
algorithm is explained and described how to complete core
mapping phase. We use some key strategies to speed up
node mapping and link mapping. At last we analyze time
complexity of the algorithm in many aspects. The detailed
procedures are as following.

A. MAPPING RULE
A virtual node may be mapped to multiple candidate nodes in
the substrate network. The actual number of candidate nodes
aremore than expected, even if the distance between substrate
mapped nodes is required to be less than the given value
DC(distance constraint) in our AEF algorithm. Therefore,
how to filter these candidate nodes is a key issue. Generally
speaking, the first step is to eliminate the substrate nodes
that do not meet the CPU demand of the current virtual
node. In fact, this method cannot work well in a resource-
rich substrate network, although this way is also adopted in
our algorithm. Thus, we propose a strategy to filter more
redundant candidate nodes. It is a link rule, which means

Algorithm 1 Mapping Rule

Input: the virtual networkGV , the substrate networkGS , the
virtual node nV , the substrate node nS

Output: the boolean result mapped
1: if c(nV ) > c(nS )||R(nV ) > R(nS ) then
2: Return false
3: else
4: Return whether or not equation (7) is staisfied
5: end if

that the adjacent links of the mapped substrate node must
be able to accommodate all the adjacent links of the current
virtual node. The detailed description refers to equation (7).
If a substrate node satisfies this rule, it will be considered to
be mapped. However, if there are multiple candidate nodes
which satisfy link rule at the same time, we select the one
with more referenced resource(defined in equation (2)).

Algorithm 1 implements the mapping rule in node embed-
ding phase. The Mapping Rule procedure works as follows.
Line 1 checks base conditions. If CPU resource or ref-
erenced resource(defined in equation (2)) of the mapped
substrate node cannot accommodate demand of the cur-
rent virtual node, we return false in Line 2, it means the
mapped substrate node cannot match mapping rule. Other-
wise, we judge this rule according to equation (7).

B. NODE MAPPING STAGE
In this phase, we use the mapping rule to consider the accep-
tance ratio of the subsequent link mapping and use the soft
distance factor to get as many shorter paths as possible for
the next stage.

1) Build Priority Queue: We construct two priority queues
to host all substrate nodes and all virtual nodes respectively,
named as pqS and pqV . All nodes are sorted by their refer-
enced resource(detailed in equation (2)) in descending order.

2) Apply Soft Distance Factor: It must be noticed that
the distance is not like other paper’s concept. For exam-
ple, in [11], [19], its distance constraint represents the rela-
tionship of virtual node and substrate node. However, our
specified distance exists in substrate nodes. It is defined in
equation (14).

DistanceFactor(i) =

∑
n∈MN S Distance(i, n)

|MN S |
(14)

where Distance(i, n) is detailed in equation (3). MN S is a
collection of underlying nodes, which are mapped by the
neighbor virtual nodes of the current virtual node. In general,
the shorter the distance between the substrate nodes is, the
smaller the path length between them is. Therefore, we can
control the DistanceFactor(i) to increase the cost to revenue
ratio. In our algorithm, the default value of DC is 70.

DistanceFactor(i) ≤ DC, for i ∈ N S

Soft Distance Factor is mainly to make all the underlying
nodes mapped as close as possible. This goal has also been
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Algorithm 2 Node Mapping

Input: the virtual network GV , the substrate network GS

Output: the boolean result succ
1: build priority queue pqS , pqV

2: while pqV 6= ∅ do
3: Pick out the first node from pqV named as nV

4: while pqS 6= ∅ do
5: Pick out the first node from pqS named as nS

6: Let m =Mapping Rule(GV , GS , nV , nS )
7: if m is true and DistanceFactor(nS ) ≤ D then
8: Put them to nodeMapping Map
9: Let matched = true
10: Break inner while loop
11: end if
12: end while
13: if not matched then
14: Do not consider DistaneFactor , continue to repeat

inner while loop. If we still cannot match the current
virtual node, return false

15: end if
16: end while
17: Return true

considered in other papers. In [5], authors use the BFS in
the node mapping stage, taking the already mapped substrate
node as the root node and performing hierarchical traversal to
find the next substrate node that meets the constraints. In fact,
the ultimate goal of this and that paper is to make a virtual link
with fewer hops on the underlying path. However, this paper
uses a heuristic method, which is based on the consideration
of distance, the path length between the two substrate node
that are closer is often shorter. The other algorithm uses the
BFS, although the goal can also be achieved, but computation
time will be greatly worse.

It is called soft distance because it is not required but
optional. If we can find a substrate node which satisfies
mapping rule above and distance factor simultaneously, it will
be the best choice. Otherwise, the distance factor will be
ignored to match substrate nodes at the second time.

The Node Mapping procedure works in the Algorithm 2
and the details are shown as follows. Line 1 builds two
priority queues to save all substrate nodes and all virtual
nodes respectively. Line 2 is outer loop, as long as the queue
pqV is not empty, we continue to execute, it will end until we
process all virtual nodes. Line 3, we pick the element with
more referenced resource since the pqV has some elements.
It says that we poll the first element named as nV , because the
two priority queues sort elements by their referenced resource
value in descending order. Line 4 is inner loop, it checks
whether the queue pqS is empty. If pqS has some elements,
we pick out the first in Line 5 named nS . Line 6 applies the
mapping rule for nV and nS . If the mapping rule is matched,
then we consider soft distance constraint(defined in equation
(14)), which is required to be less or equal than DC . Once
the two conditions are satisfied in Line 7, we complete node

FIGURE 2. Node mapping.

mapping for the current virtual node and put the relationship
into nodeMapping map in Line 8. We mark variable matched
true and break inner loop in Line 9 - 10 at the same time.
For a virtual node picked in Line 2, we cannot find any
substrate node to match in Line 13, then we ignore soft
distance constraint to find again fromLine 4 - 12. If we cannot
findmapped substrate node again, thenwe return false in Line
14. It means the link mapping is not successful. Otherwise,
it works well in Line 17, we return true, which means the link
mapping is completed successfully.

In Fig. 2, we make simply the position of the node as
its coordinates. The upper case A - F represent substrate
nodes and the lower case a - c denote virtual nodes. From
substrate node A to substrate node F, their coordinates are
(1, 3), (2, 2), (2, 1), (1, 0), (0, 1), (0, 2) repectively. According
to Algorithm 2, we build a priority queue pqS where all
the substrate nodes are put. Then substrate nodes in pqS are
{A, E, F, C, D, B}. In addition, virtual nodes in pqV are
{a, c, b}. For line 2-3, we select virtual node a, then consider
the substrate node A (seen at picture (1)) in line 4-5. When
we check the Mapping Rule in line 6, (a,b) can be support by
(A,F), but (a, c) cannot be satisfied by neighbor links (marked
by brown line) of substrate node A. So we consider the next
substrate node E (seen at picture (2)) in line 5. For substrate
node E, (a, c) can be accommodated by (E, F) and (a, b) can
be accepted by (E,D), therefore substrate node E satisfies the
Mapping Rule. Notice we do not consider distance factor for
the first mapped substrate node. We complete node mapping
for virtual node a. Next, we pick out virtual node b to map
in line 2-3. We also consider substrate node A firstly, because
it has higher referenced resource in picture (3). We can verfy
easily that theMappingRule is satisfied, but the distance from
substrate node E to substrate node A is

√
5, which is large

than DC(set to 1). Therefore we consider substrate node F
in line 4-5 (seen in picture (4)) by skipping substrate node
E, because substrate node E has been mapped. Obviously,
substrate node F can satisfy all conditions. We complete node
mapping for virtual node b. At last, we use the last node c in
line 2-3. Except for substrate node E and substrate node F,
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FIGURE 3. BFS baseline link mapping.

we cannot find any nodes which satisfy the distance factor,
because the minimum distance is

√
2 which is large thanDC .

So we do not consider distance factor to execute again in line
4-12. Then we find substrate node A is a nice node which
satisfies the Mapping Rule in picture (5). We complete node
mapping for virtual node c.

C. LINK MAPPING STAGE
In this stage, we adopt a method to process virtual link map-
ping. This strategy guarantees the stability of our algorithm.
Because the time complexity of traditional KSP(K-Shortest
Path) algorithm [24] is related to k , there will be difference in
the mapping time for every virtual link.

1) PRUNING THE SUBSTRATE NETWORK
According to equation (9), we can know that every substrate
link resource in the final selected path must be more than the
demand of the current virtual link. Therefore, we can pure
some substrate links whose resource is less than the demand
above.

2) FEASIBILITY ANALYSIS OF BFS
We use BFS strategy to find a shortest path from the start sub-
strate node to the end substrate node, because BFS can find
the actual shortest path in unweighted graph. The conclusion
is explained at [24].

In Fig. 3, we ignore CPU resource and demand of nodes.
A -H represent substrate nodes and a - c denote virtual nodes.
Assume the node mapping is as shown in the figure. Then
we prepare to start link mapping. For (a, c), we need to find
a shortest path from substrate node F to substrate node D.
In (1), we prune the neighbor links {(F, G), (F, A)} of F,
they are marked by thick brown line. The only link (F, E)
which is marked by bold black line can support the demand
of (a, c), so it can arrive next substrate node E, which is
marked by gray circle. In (2), we prune the neighbor link (E,
G), because its resource is less than demand. The only link
(E, D) is eligible. Then it arrives at the destination substrate
node D. So we find a path (F, E)(E, D). We completed link

Algorithm 3 Link Mapping Baseline

Input: the virtual network GV , the substrate network GS

Output: the boolean result succ
1: for all eV ∈ EV do
2: Prune the substrate network
3: Use BFS to find a path p satisfied equation (9) accord-

ing to eV

4: if p = null then
5: Return false
6: end if
7: end for
8: Return true

mapping of (a, c). Before the next round, we need to update
the bandwidth resource. In (3), we start to find another path
from substrate nodeF to substrate nodeC. Because we update
the network, we can only pass through (F, A). In (4), it arrives
at A, then we prune link (A, G) and select (A, B) to go.
In (5), it arrives at substrate node B. The link (B, C) will
be removed, we pass through (B, H). In (6), it arrives at
substrate node H. There is no link to be pruned, because all
the neighbor links are suitable. We select (H, C) to reach the
destination substrate node C and complete link mapping of
(a, b). The corresponding shortest path is (F, A)(A, B)
(B, H)(H, C). Then we update bandwidth resource. In (7),
we mark the corresponding path of link mapping with two
colors.

Algorithm 3 completes the linkmapping stage by BFS. The
Link Mapping procedure works as follows. Line 1 traverses
all virtual links to complete mapping. Line 2 prunes some
substrate links whose bandwidth resource is less than corre-
sponding demand of the current virtual node. Line 3 uses BFS
to find the shortest path from mapped start substrate node to
mapped end substrate node. If we cannot find a path satisfied
equation (9) in Line 4, it returns false in Line 5, which means
the link mapping is unsuccessful. Otherwise, it works well in
Line 8,and completes successfully the whole link mapping.

3) TRADE OFF LINK LOAD AND MAPPING COST
In fact, in the process of link mapping, the target is to use
frequently the substrate link with higher bandwidthmore than
lower bandwidth ones. Because sensitive bandwidth links
are reserved, more space can be provided for subsequent
virtual request mappings, which indirectly improves the aver-
age acceptance ratio. To this end, we propose the following
formula (define in equation (15)) to assign a cost value to each
underlying link, and then the problem is converted to find a
path with the minimum cost from the mapped start substrate
node to the mapped end substrate node. We call it advanced
strategy.

Cost(eS ) =


C

b(eS )
, b(eS ) ≥ d

Inf , else
(15)
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FIGURE 4. Advance link mapping.

where C is constant coefficient, its default value is 700. d is
the current virtual link demand.

The aforementioned advanced strategy can ensure that the
link with higher bandwidth is used as much as possible, but
the path length found may be longer, which increases the
cost of link mapping. In order to balance the link load and
mapping cost, we need to ensure that the difference between
the path calculated by the advanced strategy and the shortest
path computed by BFS does not exceed SPL(Shortest Path
Limit). If it exceeds, then we use the BFS strategy, otherwise
we verify whether the path sought by the advanced strategy
meets the requirements, and if it does, then we adopt the
advanced strategy.

The notation of SPL can be understood as long as the dif-
ference between the path length and the shortest path length
is less than this value is considered as an acceptable solution.
It is an adjustable value that controls the balance between
mapping cost and link load.

Fig. 4 is an example to explain the advanced strategy.
In that Figure, the left part is a virtual request and the other
is underlying network. The CPU resources or demands of
the nodes are ignored. Assume that the mapping result of
node mapping is {a -> A, b -> B, c -> E}. The top right
figure is the mapping of the virtual link ab. The orange-
red dotted line is the path obtained using the BFS strategy
and the blue dotted line is the path gotten by the advanced
strategy. The corresponding path cost are 700/10 = 70 and
700/70 + 700/70 = 20 respectively. Since the difference
between the two path length is 1, it is less than SPL(set to 2),
we adopt the path (A -> F -> B). The bottom right of the
figure is the mapping of the virtual link ac. As above, through
calculation, we find that the cost of the orange-red dotted
path is 700/70 + 700/10 = 80 and the cost of the blue
dotted path is 700/70+700/70+700/140+700/35+700/
35 = 65. However the difference between the two paths is 3,
which is greater than the SPL. Therefore we adopt the path
(A -> F -> E).

Algorithm 4 uses an advanced strategy to complete the link
mapping, it trades off the link load and the mapping cost.

Algorithm 4 Link Mapping Advance

Input: the virtual network GV , the substrate network GS

Output: the boolean result succ
1: for all eV ∈ EV do
2: Use BFS to find a path p1 satisfied (9) according to eV

3: Assign cost value to substrate links by equation (15)
and Use Dijkstra to find a path p2 based on substrate
link cost value.

4: if p1 = null then
5: Return false
6: else if p2 ! = null & len(p2)− len(p1) ≤ SPL then
7: Adopt p2
8: else
9: Adopt p1
10: end if
11: end for
12: Return true

The Link Mapping Advance procedure works as follows.
Line 1 and Line 2 find the two paths by the BFS strategy
and advanced strategy respectively. Line 3 - 9 determines
which path to accept. It considers link load based on the
original algorithm and ensures that the minimum bandwidth
in the underlying network is relatively large and introduces
the concept of SPL to make mapping cost not too high.

D. TIME COMPLEXITY ANALYSIS
In this section, we will analyze the time complexity of the
algorithm in detail.

1) AVERAGE TIME COMPLEXITY
Analysis of average time complexity needs to be based on a
specific topology, we use Waxman model in this paper. The
probability of edge is prob defined as following.

prob = α · exp−
d(v,w)
β·L (16)

where L is the maximum distance between all nodes.
Proposition 1: When |N S

| is large enough, L in equation

(16) is close to
√
2, then prob ≈ α · exp

−
1

2
√
2β

A proof of Proposition 1 is provided in Appendix A.
Firstly, we compute the referenced resource(seen in equa-

tion (2)) for all substrate nodes and virtual nodes. In this pro-
cess, we need to compute node CPU resource or demand and
its neighbor links bandwidth resource or demand for every
node. The time complexity is

∑
nS∈N S (1 + LS (nS ) for the

substrate network, the same as the virtual network. Therefore
the time complexity is approximate to O(prob · |N S

|
2).

Secondly, inNodeMappingAlgorithm, line 2 and line 4 are
two loops, every loop completes some operations at line 5-10.
The main points of these operations are Mapping Rule Algo-
rithm. It needs to verify equation (7), this process needs to
put neighbor links of the substrate node and the virtual node
to priority queue, it involves link sort. As a result, the time
complexity is O(prob · |N S

| · log(prob · |N S
|)). In additional,
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in inner loop at line 4, the actual repeated time is k , where
k ≤ |N S

|.
Definition 1: The probability that substrate node satisfies

the referenced resource condition is called Pr.
Definition 2: The probability that the distance of two sub-

strate node less than DC is called Pd.
Proposition 2: Assume the substrate network has enough

links and nodes, and the resources are randomly distributed.
Then the actual number of executions in Algorithm 2 line 4 is

k = min {
1

Pr · Pd
, |N S

|}.

A proof of Proposition 2 is provided in Appendix B.
Therefore, the average time complexity of Node Mapping

Algorithm is O(k · |NV
| · prob · |N S

| · log(prob · |N S
|)).

Thirdly, in Link Mapping Baseline Algorithm, line 1 is
only outer loop. The inner operation is mainly BFS. Because
the prune operation can be combined into BFS process. BFS
needs to traverse all substrate links. Thus, the average time
complexity of this stage is O(|NV

|
2
· |N S
|
2). In fact, the Link

Mapping Advance Algorithm has onemore step than the Link
Mapping Baseline Algorithm to find the path using Dijkstra,
the average time complexity in this stage remains the same.

In summary, the average time complexity of whole algo-
rithm is O(prob · |N S

|
2
+ k · |NV

| · prob · |N S
| · log(prob ·

|N S
|) + |EV | · |ES |), where |EV | =

prob · |NV
|
2

2
, |ES | =

prob · |N S
|
2

2
.

2) WORST TIME COMPLEXITY
We combine with the analysis of average time complexity,
then we talk the worst time complexity of our algorithm.
In fact, we just let prob = 1 and k = |N S

| to conclude
that the worst time complexity of AEF algorithm is O(|N S

|
2
·

|NV
| · (log(|N S

|) + |NV
|)), which applies to all topological

networks.

E. PERFORMANCE ANALYSIS
Our algorithm has three main advantages(Execution Time,
Acceptance Ratio and Link load) and performs well in other
aspects.

1) EXECUTION TIME
Real time is the main goal of our algorithm. We optimize it in
both node mapping stage and link embedding stage. In node
mapping phase, we consider the referenced resource of node
tomatch substrate node by L2S2 strategy, which is simple and
fast. In link embedding stage, we use BFS to find a shortest
path instead of KSP algorithm, because the latter is instable,
we cannot know the suitable value of parameter k . For link
mapping algorithm by BFS, the time complexity is O(|EV | ·
|ES |), however KSP is O(k · |EV | · |V S

|
2). High performance

is referred to simulation results in next section.

2) ACCEPTANCE RATIO
This evaluation metric is very important to infrastructure
provider. It is also the core point to judge the quality of

TABLE 1. Substrate network parameter settings.

TABLE 2. Virtual network parameter settings.

an algorithm. In our algorithm, we consider to improve this
evaluation metric in both two stages. In node mapping phase,
we use Mapping Rule to ensure the mapped substrate node
has more ability to complete subsequent link embedding.
In link mapping stage, we use BFS to find path, it will find
a shortest path as long as there exists some paths from the
mapped start substrate node to the mapped end substrate
node. Thus, AEF algorithm can improve greatly the accep-
tance ratio. This is also verified in Section IV.

3) NETWORK BANDWIDTH STANDARD DEVIATION(STD)
The cost of link setting in this paper is inversely proportional
to the remaining bandwidth. The link with larger remaining
bandwidth is selected first. Therefore, the standard deviation
between all substrate link remaining bandwidths will be rel-
atively small after link mapping, which can be clearly seen
from the comparison between the AEF_Baseline algorithm
and AEF_Advance algorithm in next section.

V. SIMULATION EXPERIMENT AND ANALYSIS
A. SIMULATION ENVIRONMENT DESCRIPTION
In the simulation, we adopt Waxman model to produce sub-
strate network. We set the parameters α = 0.5, β = 0.1. The
environment settings are like [25]. The detailed parameter
settings of substrate network is referred to Table 1 which
describes some parameters for substrate network.

For each virtual network, we also use Waxman model to
generate it. We set the parameters α = 0.5, β = 0.25.
We make requested virtual networks arrive obey the Pois-
son distribution and set virtual networks arrival rate 10 very
100 time units. In addition, the lifetime for each virtual
network obeys an exponentially distribution with a mean
of 1000 time units. We run our simulation for 2000 time
units. The detailed parameter settings of virtual network are
referred to Table 2 which lists some parameters for virtual
network.

B. SIMULATION RESULT
In this subsection, we conduct the simulation experiment
and show the results. The algorithms to be compared are

61536 VOLUME 8, 2020



D. Hu, Z. Yang: Efficient and Fast Embedding Algorithm for the Virtual Networks

FIGURE 5. Total execution time.

FIGURE 6. Average acceptance ratio.

TABLE 3. Compared algorithm description.

NRM algorithm [26], subgraphIsomorphism algorithm and
D-ViNE_SP algorithm. The detailed explanation refers to
Table 3.

As is shown in Fig. 5, the curve is very steep for sub-
graphIsomorphism and D-ViNE_SP. They are often time-
consuming in the process of mapping. The curve describing
our algorithm is almost straight and the execution time is
similar to NRM. NRM is a greedy algorithm without other
optimization methods, so the execution time is the fastest. Its
total execution time is 660ms. In the two versions of our algo-
rithm, since the advanced strategy will call Dijkstra algorithm
one more time during link mapping, the execution time will
be longer than the baseline algorithm. For our algorithm, the
execution time is relatively short, which is basically on the
same order of magnitude as NRM. At last, our algorithm’s
execution time is 3.02%of subgraphIsomorphism and is 0.7%

FIGURE 7. Average cost to revenue ratio.

FIGURE 8. Substrate link bandwidths standard deviation.

of D-ViNE_SP. The results imply that our algorithm has less
execution time and is suitable for applications with real-time
requirements.

As is show in Fig. 6, we analyze three algorithms, NRM,
AEF_Advance, AEF_Baseline firstly. These three algorithms
all maintain 100% acceptance ration in the early stage.
Because the link node resources of the underlying net-
work are sufficient in that stage, and generally they can
be mapped successfully. With the arrival and completion of
a large number of virtual requests, the underlying network
resources have become scarce since then, which has led to a
decline in the acceptance ration. At the same time, we can
see that the AEF_Baseline has a higher acceptance ration
than NRM. This is because AEF_Baseline considers map-
ping rules, called 1-lookhead, which can avoid virtual nodes
mapping to wrong substrate nodes in advance. In addition,
the AEF_Advance has a higher acceptance ration than the
AEF_Baseline. This is because the former has optimized the
link load, making the link bandwidthmore balanced. Thenwe
look at the other two algorithm, subgraphIsomorphism and
D-ViNE_SP. These two algorithms show a rapid decline in
the most of time and obvious low acceptance ratio. At last,
our algorithm’s acceptance ratio is 4.16 times that of the
subgraphIsomorphism algorithm and is 2.13 times that of the
D-ViNE_SP algorithm.

Fig. 7 shows that subgraphIsomorphism andD-ViNEmake
a better use of resources while bringing more benefits to
InP. Meanwhile, our algorithm’s performance in this regard
is relatively well, although there are still some gaps between
the above two algorithms. We mainly look at the remaining
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three algorithms. Most of the time, our algorithm performs
better than the NRM in this respect, because our algorithm
uses the soft distance factor in node mapping stage, ensuring
that the mapped nodes are as close as possible, that is, the
mapped path will be decrease accordingly.

In Fig. 8, the smaller the Std value, the more balanced the
corresponding link load. It shows that AEF_Advance makes
underlying link bandwidths more balanced, which is signifi-
cantly better than other algorithms, because other algorithms
do not consider link load optimization. At the same time, the
two algorithms, AEF_Advance and AEF_Baseline, should
be noticed. The difference between them is that the former
considers the link load during link mapping phase, and uses
the inverse function of remaining bandwidth of the link as
link cost to find a backup path, so that the substrate link
with the larger bandwidth is more likely to be selected, and
the statistical standard deviation for the bandwidth will be
smaller.

VI. CONCLUSION
To accelerate the mapping time and guarantee high perfor-
mance, we propose the AEF algorithm. AEF is two coordi-
nated stages algorithm, it is proved to solve the VNE issue in
polynomial time, its time complexity is analyzed to O(|N S

|
2
·

|NV
| · (log(|N S

|)+ |NV
|)). Simulation Results show that our

algorithm is faster than most other algorithms and ensures
the overall better efficiency, especially in the acceptance ratio
and link load. In addition, our algorithm’s cost to revenue
ratio is similar with the other compared algorithms. Overall,
our algorithm can accelerate greatly mapping procedure and
improve the average acceptance ratio under the precondition
of guaranteeing the average revenue and link load on the
whole.

APPENDIXES
APPENDIX A
PROOF PROPOSITION 1

Proof: Node v and Node w are randomly distributed at
square with sides that are 1 unit in length. Therefore it equals
to solve following formula.∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

√
(vx − wx)2 + (vy − wy)2dwydvydwxdvx

=

∫
∞

0
(
erf (x)
3x

exp−x
2
+

4
15
√
π
exp−2x

2

+
4

15
√
π
exp−x

2
)dx

=

√
2+ 2+ 5 sinh−1(1)

15
≈ 0.521 (17)

prob ≈ α · exp
−

1

2
√
2β (18)

APPENDIX B
PROOF PROPOSITION 2

Proof: Assume the resource of substrate network obeys
to U(0, γ ), the demand of virtual network obeys to U(0,
1), it says the ratio is γ , which is constant value. Because
substrate network owns more nodes and links, according to
central limit theorem, every substrate node referenced value
obeys to normal distribute, where µ = prob · |N S

| · γ and

σ 2
=
prob · |N S

| · γ 2

12
.

f (x) =

√
6

γ ·
√
π · prob · |N S |

exp
−

6(x−prob·|NS |·γ )2

prob·|NS |·γ 2 (19)

For every virtual node, the average referenced resource

is
prob · |NV

|

2
. Therefore the probability that we select ran-

domly one substrate node whose referenced resource is great
than one virtual node is defined as following.

Pr = 1−8(
prob · |NV

|

2
) (20)

The probability distribution of two distance is defined
in (21).

f (l) =


2l(l2 − 4l + π ), 0 < l ≤ 1
2l(−2− π − l2

+ 4 arcsin(
1
l
)+ 4
√
l2 − 1), note

Pd =
∫ DC

−∞

f (l) (21)

where note is expressed by 1 < l ≤
√
2, DC is constant

value and denotes the constraint to average distance of some
substrate nodes. If the substrate node satisfies the referenced
resource, it equals to satisfy the Mapping Rule. Therefore,
we conclude following formula.

k = min {
1

Pr · Pd
, |N S

|} (22)
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