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ABSTRACT We show that Si MOSFETSs, AlIGaN/GaN HEMTs, AlGaAs/InGaAs HEMTs, and p-diamond
FETs with feature sizes ranging from 20nm to 130nm could operate at room temperature as THz
spectrometers in the frequency range from 110 GHz to 9.2 THz with different subranges corresponding to the
transistors with different features sizes and tunable by the gate bias. The spectrometer uses a symmetrical
FET with interchangeable source and drain with the rectified THz voltage between the source and drain
being proportional to the sine of the phase shift between the voltages induced by the THz signal between
gate-to-drain and gate-to-source. This phase difference could be created by using different antennas for
the source-to-gate and drain-to gate contacts or by using a delay line introducing a phase shift or even
by manipulating the impinging angle of the two antennas. The spectrometers are simulated using the
multi-segment unified charge control model implemented in SPICE and ADS and accounting for the electron
inertia effect and the distributed channel resistances, capacitances and Drude inductances.

INDEX TERMS Terahertz, FET, spectrometer, SPICE, unified charge control model.

I. INTRODUCTION

Terahertz (THz) technology applications ranging from
spectroscopy and imaging, non-destructive testing, quality
control, and communications [1]-[10] require sensitive
detectors of THz and sub-THz radiation. Plasmonic field
effect transistors (also called TeraFETs) have demon-
strated excellent performance as THz and sub-THz detectors
[11]-[13] and potential for THz generation [14], [15].
A recent proposal is to use TeraFETs as spectrometers and
interferometers of THz and sub-THz radiation based on the
frequency-dependent THz signal rectification resulting from
the phase difference in the THz voltages induced between the
source-gate and drain-gate contacts of a single FET detec-
tor [16]. The qualitative analytical theory presented in [16]
showed that the TeraFET spectrometer response varies from
positive to negative with the gate bias. The gate voltage,
at which the response is zero, depends on the frequency of
the impinging THz signal that could be accurately deter-
mined. The strength of the response is proportional to sin@,
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where 6 is the phase difference between the signals coupled
to the gate-to-source and gate-to-drain contacts.

In this work, we simulate Si MOSFETSs with feature sizes
ranging from 20nm to 130nm and determine the TeraFET
spectrometer operating ranges as functions of the device
feature size. Our results show that such Si-based THz spec-
trometers could operate in the frequency range from 110 GHz
to 9.2THz. Using Si TeraFET that are fabricated using a
standard Si VLSI technology opens up unique capabilities
for cost-effective THz electronics technology and an avenue
for a quick commercialization. Our results show that other
materials systems might have advantages compared to sil-
icon for the THz spectrometer applications, especially at
higher frequency. However, the commercialization for these
materials systems presents a greater challenge, especially for
p-diamond promising the highest performance in the 240 to
320 GHz range, which is of most interest for Beyond 5G
applications but probably further in the future in terms of the
commercialization potential.

For the simulations, we use the unified charge control
THz SPICE model for plasmonic field effect transistors
implemented in Verilog-A [17], [18]. It has been validated
for FETs in various feature sizes and different material
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FIGURE 1. Plasmonic FET under THz radiation modeled with multiple
segments in the channel accounting for the THz current distribution.

systems including 20nm FDSOI MOSFETs and 130nm
AlGaAs/InGaAs pHEMTs [17], [18].

The THz spectrometer simulations using the SPICE model
show that the signal detected as the drain-to-source voltage
at the modulation frequency of the impinging THz radiation
drops to zero at the frequency that is tunable by the gate volt-
age and establish the spectrometer frequency detection ranges
that are functions of the gate length and the gate-source volt-
age. Our preliminary analysis show that the process variations
could be adjusted during spectrometer calibration by relating
the cross-over frequencies to the gate bias. A more detailed
analysis of the process variation effects will be presented in
the following sections.

Il. THz SPICE MODEL

The response of TeraFETs in the THz frequency range is the
rectified drain-to-source voltage appearing due to the rectifi-
cation of the decayed or resonant plasma waves in the FET
channel [19]-[21]. Fig. 1 illustrates the operating principle
of a standard TeraFET THz detector with the transmission
line in the device channel and the gate-to-channel current
streamlines due to the impinging THz radiation. The imping-
ing THz radiation couples to the FET via antennas connected
to the gate-to-source and/or also to the gate-to-drain circuits
or even just to the interconnects and contact pads. The exci-
tations of the electron density — plasma waves — excited by
the voltages at the THz frequencies due to the impinging
radiation are rectified due to the nonlinear electron transport
in the FET channel. The induced voltage across the FET
channel is a DC drain-to-source voltage or (more practi-
cal) lower frequency voltage modulated due to the mod-
ulation of the impinging THz signal and measured by a
lock-in amplifier to increase the signal-to-noise ratio. For
ot K 1, where w is the THz frequency and t = mu/q is
the momentum relaxation time, w is the mobility, m is the
effective mass, and ¢ is the electronic charge, the plasma
waves are overdamped. For wt > 1, the plasma waves
are resonant [22]. For the standard TeraFET THz detector,
the most efficient regime is when the THz signal is only
coupled to the gate-to-source contacts as shown in Fig. 1.
The analytical THz detector theory was first derived for the
above threshold regime [20] and was then generalized to
include the subthreshold regime and the parasitic resistances
capacitances [17].
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Fig. 1 also shows the nonlinear transmission line
representing the equivalent circuit in the transistor chan-
nel. In addition to the capacitances representing the
gate-to-channel coupling and resistances accounting for the
electron scattering in the device channel this improved equiv-
alent circuit includes Drude inductances accounting for the
electron inertia and important or even dominant at high
frequencies [23]. Fig. 1 also schematically shows the THz
current crowding near the gate edge due to low distributive
capacitive impedance at high frequencies.

The unified charge control model (UCCM) yields the equa-
tions for the intrinsic FET capacitances Cgy and Cgq [18].
The SPICE model accounts for the extrinsic components
including the parasitic capacitances Cp,, and the series resis-
tances R,, Ry and R4. The Drude inductance Lgruge = TReh,
where R, is the channel resistance, accounts for the elec-
tron inertia [24] and, therefore, allows to describe the plas-
monic resonances. To account for the THz current crowding,
the channel is split into segments. The required number of
segments N > 3L/L,, where L is the channel length and
Lo = \/1WVg/(2mf), where f is the THz radiation frequency,
Ve = Vgs — Vrp is the gate voltage swing, Vry is the
threshold voltage [25]. L, represents the characteristic scale
of the voltage variation along the FET channel, which must
be accounted at frequencies such that L, < L requiring
the channel segmentation in the FET model. Fig. 2 shows
the minimum required number of the segments needed for
different material systems as a function of the THz frequency
and FET channel length.

Fig. 3 compares the simulated I-V characteristic with the
measured I-Vs for AlGaAs/InGaAs pHEMTs with 130 nm
gate length and 18 um gate width fabricated by Qorvo Inc.
Fig. 4 compares the simulated I-V characteristics with the
Sentaurus TCAD simulation results for a 20nm FDSOI
NMOS (W = 1um and L = 17nm). These comparisons
validate our multi-segment UCCM SPICE/ADS model for
different material systems.

Ill. ANALYTICAL MODEL AND SPICE SIMULATION
RESULTS FOR THz SPECTROMETER
Fig. 5 (a) shows the schematic of the spectrometer using
a single plasmonic FET [16]. In the spectrometer regime
of operation, the symmetry between the source and drain
is broken by the phase shift & of the THz voltages applied
between the gate-source and gate-drain terminals.

In the above threshold regime, the rectified voltage across
the FET channel due to the impinging THz radiation is given
by [16]

BwV?sin6
V= :
4V Isin (kL)|>/w? + y2

Here L is the channel length, V,, is the THz voltage magnitude
(the same between gate-source and gate-drain), @ = 2xf,
y = 1/t,k = (2 +il')/s is the plasma wave vector, 2 =

\/\/w4+a)2y2/2+w2/2, r = \/\/a)4+a)2y2/2—a)2/2,
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FIGURE 2. Minimum number of segments needed for the multi-segment model: (a) Si (Vge =0.11V, o =0.05 m2/Vs), (b) InGaAs (Vge =0.1V,
p = 0.35m?2/Vs), (c) GaN (Vg¢ = 0.1V, o = 0.15m?/Vs), (d) p-diamond (Vg; = 0.1V, . = 0.2m?/Vs).

0.006 1 Ves:
0.3V
0.005-
0.004 A g 00a0pp00a0pd00 0.2V
Z 0.003 ¥
= y 0.1V
= 0.0021
0.001
g0 -0.1V
0.000-

Vds:

o> 500mV
o 50mV
10mv

mvV

1d (A)

05 04 03 -02 01 00 01 02
Vs (V)
(b)
FIGURE 3. Comparison of the simulated I-Vs for the one segment SPICE

model (lines) and the multi-segment model (circles) with the measured
1-Vs (triangles) for AlGaAs/InGaAs pHEMTs.

B =
velocity.
Any one of the steady-state analysis types in the circuit
simulator (SPICE or ADS) yields the spectrometer response
for the THz spectrometer shown in Fig. 5 (b), where an ideal
DC block is used into the equivalent circuit for the extrac-
tion of the DC response at the source and drain terminals.
However, for a more accurate estimation of the response
magnitude, the voltage sources accounting for the imping-
ing THz radiation have to be substituted by more detailed
receiving antenna equivalent circuits. V, = 10mV and
0 = 90° are assumed for the THz signals and 50 seg-
ments are used for the SPICE model. Fig. 6 compares the
rectified drain-to-source voltage as a function of f for Si,
AlGaAs/InGaAs, AlGaN/GaN and p-diamond FETs between
the analytical model and the ADS simulation. The differ-
ence is due to the analytical model not accounting for the

8sinh (I'L/s)sin (2L /s), s is the plasma wave
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FIGURE 4. Comparison of the simulated I-Vs for the one segment SPICE
model (red) with fitted to TCAD simulation results (blue) for the 20 nm
FDSOI NMOS (W = 1 um and L = 17 nm): (a) output characteristics
(Vgs = 0.8V for the top curve and step is —0.1V) and (b) transfer

characteristics (V45 = 0.6V for the top curve and Vg5 = 50 mV for the
bottom curve).

capacitive coupling between the drain, source, and gate. The
analytical theory is not valid below threshold and does not
account for parasitics that are important or even dominant for
ultra-short channel FETs. Our compact multi-segment THz
model resolves these issues and is suitable for the spectrom-
eter design. Fig. 7 shows the effect of series resistance on
the simulated spectrometer response. It could be seen that
InGaAs based HFET is much more sensitive to the series
resistance than other FETs especially Si MOS.

Fig. 8 shows the effect of the gate bias on the THz
spectrometer response. It could be seen that with the increase
of the gate bias, the lowest cross-over frequency f,, increases,
while the response magnitude decreases. Fig. 9 shows the
lowest cross-over frequency f., for different gate biases.
Different FETs with different feature sizes could operate
as the THz spectrometer in different frequency bands. For
example, the subrange for the 20nm Si MOS spectrometer
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FIGURE 5. Schematics of operating a single plasmonic FET as a spectrometer [16] (a) and the THz spectrometer

simulation (b).
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FIGURE 8. Simulated THz spectrometer response as a function of frequency at different gate biases for (a) Si (1 = 0.05m2/Vs), (b) InGaAs (x =
0.35m?2/Vs), (c) GaN (x = 0.15m?/Vs), (d) p-diamond (x = 0.2 m?/Vs) without series resistance (Rg = Rs = Ry = 09).

is from 4.1 THz to 9.2 THz. For Si MOS with feature sizes
from 20nm to 130nm it is possible to cover the contin-
uous THz band from 110 GHz to 9.2 THz, while the fre-
quency bands covered for InGaAs, GaN and p-diamond
FETs with feature sizes from 60nm to 130nm are from
2.2 THzto 8 THz, from 0.9 THz to 3.3 THz, and from 0.5 THz
to 1.9 THz, respectively. Fig. 10 shows the comparison of
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the f., range in different material systems with different
feature sizes using the THz SPICE model. It could be
seen that FETs with shorter channels should be selected
as the spectrometers applied at higher THz frequencies.
With the same feature size, InGaAs FETs are more suitable
for spectrometers operating at high THz frequencies than
Si FETs.
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IV. CONCLUSION

Using our compact multi-segment THz SPICE/ADS model
accounting for the electron inertia and the distributed chan-
nel impedance, we simulated THz spectrometers using Si,
InGaAs, GaN, and p-diamond FETs. Our results show that
using the phase shift in the THz radiation coupling to the
gate-to-source and gate-to-drain contacts, Si MOSFETSs with
feature sizes from 20nm to 130nm could operate as THz
spectrometers in the 110 GHz to 9.2 THz frequency range,
while InGaAs, GaN and p-diamond FETs with feature sizes
from 60 nm to 130 nm could operate as the THz spectrometers
in the 2.2 THz to 8 THz, 0.9 THz to 3.3 THz, and 0.5 THz
to 1.9 THz frequency ranges, respectively. The spectrometers
are tunable by the gate bias. This technology should enable
novel THz components and systems for THz interferometry,
imaging, and communications, including communications in
Beyond 5G 240 GHz to 300 GHz range.
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