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ABSTRACT With the exploration of marine resources, the number of underwater nodes is increasing with
each passing day, and the demand of mutual cooperative position between nodes is becoming extremely
urgent. The existing underwater positioning technology is mainly realized by transplanting cooperative posi-
tion technology from ground space, without taking into consideration the consequent problems of complex
underwater acoustic channels, large signal propagation attenuation and the limited load of underwater nodes.
According to the characteristics of the underwater cooperative position network, this paper proposes gaussian
parameterized information aided distributed cooperative positioning algorithm (GPI-CP) with underwater
environment. The algorithm utilized here is the form of Gauss parameter to calculate information and
establish a confidence model. In order to reduce the computational complexity, the Taylor model was
adopted to linear approximate European distance. Then distributed underwater node cooperative position
is obtained by combing with the factor map theory. This algorithm combined with the sum-product theory
and parameterized Gaussian information transmission, is promising to realize fast underwater cooperative
position and reduce communication calculations. The proposed algorithm was simulated and analyzed in
terms of location ambiguity, ranging error and the number of nodes, etc. When the proposed algorithm
was compared with the existing underwater cooperative position method, it was noticed that the position
performance had improved more than 10% and the communication calculation is less.

INDEX TERMS Underwater cooperative position, distributed positioning, Gaussian parameter, factor graph.

I. INTRODUCTION
The 21st century is the era of ocean, and the utilization
of ocean resources has improved significantly. The multi-
node cooperative position and tracking shows advantages at
high adaptability, high detection efficiency, and is signifi-
cantly beneficial in military, and ocean development, etc.
Thus, its development has attracted great attention [1]. With
the development of underwater communication networks,
the research on underwater node positioning technology has
become extremely urgent [2]. Earlier underwater position-
ing technologies were primarily transplanting from wireless
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communication, such as Direction-of-Arrival Estimation, etc.
However, the positioning suffers poor stability due to the high
attenuation of underwater electromagnetic waves, the low
propagation speed of the commonly used acoustic waves, and
the complex underwater environment such as the influence
of ocean current and other factors. Also, the positioning
accuracy of the single-node DOA estimation was limited, and
the information sources were few. Due to large attenuation
of electromagnetic waves in water, most underwater detec-
tions were realized by transmitting acoustic signals. Besides,
the complex underwater environment resulted in excessive
reduction of positioning accuracy. It was also difficult to
achieve accurate positioning estimates because of poor posi-
tioning stability caused by the severe impact of environmental
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factors [3]. In [4], based on the Fourier spectrum estimation,
a beam-forming algorithm is proposed, which extends the
time domain to the spatial domain. However, the main lobe
of the spatial power spectrum of the array signal has a certain
width. When two signals with close angles are incident on
the receiving array, the main lobe overlaps, which makes
it impossible to estimate the Angle-of-Arrival of the signal
effectively. Therefore, the condition of effective estimation of
the target position is limited by the selection of array spacing.
On this basis, the maximum entropy algorithm is proposed in
[5], the Capon minimum variance algorithm is proposed in
[6] and the Pisarenko harmonic decomposition algorithm is
proposed in [7], etc. Although these algorithms improve the
azimuth resolution to a certain extent, they have a few short-
comings, such as low efficiency, poor timeliness, etc. In [8],
based on the super-resolution theory of subspace decompo-
sition, a multi-signal classification algorithm is proposed.
Characteristic decomposition is conducted on the covariance
matrix of the target echo signal, and then, the spatial spec-
trum function is constructed. Through peak search, the signal
azimuth can be estimated, and then the specific position of the
target can be predicted. This algorithm breaks the limitation
of the Fourier spectrum and can recognize the target signal in
a single beam. In [9], a rotation-invariant subspace algorithm
is proposed. It adopted the rotation invariant property of
the subspace of the spatial correlation matrix to directly get
the closed-form solution of the angle. Compared with the
MUSIC algorithm, this algorithm does not need a spectrum
peak search after decomposing the correlation matrix charac-
teristics of array signals. However, there is a certain degree
of decline in terms of positioning accuracy and resolution.
To overcome this shortcoming, many scholars have proposed
several improved algorithms, such as the least square SPRIT
algorithm [10]. Besides, there are other DOA estimation algo-
rithms based on subspace, such as the algorithm of maximum
likelihood (ML) [11] and the subspace weight algorithm [12].
These algorithms achieve local optimization, but there is still
a large amount of computation required.

The above algorithms analyze the cooperative position
mainly from the perspective of a single node. In recent
years, the main research utilized advanced communications
and networking techniques in wireless area to obtain the
the mutual ranging information between nodes and realize
the cooperative positioning of nodes. In [13], a distributed
least squares cooperative position in underwater communi-
cation network is proposed. This combines the relaxation of
the square distance with the Gauss change information, and
then the generalized trust region technology and a two-step
location confidence updating process is utilized to simplify
the algorithm. The process of updating the algorithm confi-
dence is simple and has low computational complexity but
the calculation complexity is large. Also, the introduction
of a weight factor significantly improves the positioning
accuracy of the algorithm. In [14], a cooperative position
algorithm based on semi-definite programming is proposed.
By relaxing the non-convex optimization constraints, the cost

function minimization is converted to a convex SDP prob-
lem. It can achieve better robustness and can guarantee to
converge to the global minimum without the optimal initial
value. In [15], a cluster location algorithm for wireless sen-
sor networks based on the second-order cone optimization
is proposed. It converts the SOCP problem to the global
minimization to obtain the location coordinates of the nodes.
Thereafter, the Gauss-Newton optimization is adopted to
refine the cluster and further improve the positioning accu-
racy. The algorithms proposed in [14] and [15] are cen-
tralized and have high complexity, hence not suitable for
large-scale networks. In [16], a hybrid distributed message
delivery algorithm based on confidence and average field
is proposed. In this algorithm, the confidence is applied
in the motion correlation part of the factor graph, and the
average field message is used in the measurement correla-
tion part of the factor graph. By using the approximation
of Gauss confidence, only three real values are needed for
message iteration, which greatly reduce the computational
complexity of the algorithm. In [17], a cooperative posi-
tion algorithm based on connectivity information assisted
confidence propagation is proposed. The connectivity infor-
mation is integrated into the confidence. The unnecessary
location information flow is prevented by reducing the loca-
tion uncertainty occurring in BP-based cooperative position,
and the positioning accuracy of the algorithm is improved,
however, it is difficult to meet the requirements for the rang-
ing accuracy of communication technology. A distributed
cooperative position algorithm based on variation messag-
ing is proposed in [18]. The algorithm utilizes the second-
order Taylor expansion to approximate the Gauss form of
the nonlinear ranging model, then, only five parameters,
the mean value, and covariance of information in the network
are transmitted, which significantly reduce the complexity
of the algorithm. Prof. Chen proposed a modeling position
uncertainty of networked autonomous underwater vehicles
and achieve position of underwater autonomous underwater
vehicles, but the number of autonomous underwater vehicles
is limited and hard to expansion [19]. Prof. Jouhari have
research about localization protocols and Internet of Under-
water Things, but it also ignore the effect of underwater
channel [20]. However, without consideration about the par-
ticularity of the underwater acoustic environment, directly
application of these algorithms to the underwater cooperative
position system results in high complexity, excessive power
consumption and the larger interference of underwater wire-
less communication. In this paper, a distributed underwater
cooperative position algorithm based on the Gaussian Param-
eter - Gaussian Parameter Propagation (GPI-CP) is proposed.
Considering the limitation of transmitting power and data
rate of underwater cooperative position nodes, the form of
Gaussian parameter was adopted to calculate the propagation
of information confidence in the network. To reduce mul-
tiple extreme points of Gaussian parameter, the non-linear
terms in likelihood function were expanded by the first-order
Taylor series, so that the expression and transmission of the

VOLUME 8, 2020 64635



L. Zhang et al.: Gaussian Parameterized Information Aided Distributed Cooperative Underwater Positioning Algorithm

confidence information were in the form of Gauss parameter,
which were finally combined with factor graph to reduce the
influence of interference signal in the channel and realize the
underwater node cooperative position. The proposed algo-
rithm has wide application value in intelligent robot swarms
such as unmanned underwater vehicles.

II. PROBABILITY DENSITY MODE
In the underwater cooperative node system, due to the random
fluctuation of ocean currents and the influence of marine
organisms, it is hard to set up the underwater nodes in
an underwater suspended environment. Therefore, the exist-
ing co-location method based on Gaussian distribution dis-
tance measurement is not suitable for underwater co-location.
In this paper, a confidence propagation model based on factor
graph is proposed to describe the position change of under-
water cooperative nodes adaptively. This algorithm can well
reflect the influence of communication ranging error caused
by underwater multipath interference and propagation error
caused by signal attenuation on the positioning results of
underwater nodes.

In practice, the underwater nodes working in long term are
anchored along the seabed to sustain high stability. Therefore,
in the underwater node cooperative position system designed
in this paper, the two-dimensional plane was adopted to real-
ize the positioning, and the height information was corrected
by the water pressure gauge and seabed mapping data and
the height measurement method is proposed in [20]. In the
underwater cooperative node network system, the underwater
nodes with high stability were selected as anchor nodes. The
positioning data of anchor nodes was accurately known, and
the remaining underwater nodes were treated as the nodes to
be positioned. Consider an underwater cooperative network
which includesM anchor nodes andN nodes to be positioned.
Let M represents the set of all anchor nodes, N represents
the set of all nodes to be positioned, and S represents the set
of all nodes in the network. Then S = M ∪ N . Denote the
coordinate of node i as xi = [xi, yi]. Then X = {xi|i ∈ S}
represents the set of all node locations. Define Mi and Ni
as the set of neighbor anchor nodes and the set of neighbor
undetermined nodes for node i, respectively. Then Si =Mi∪

Ni includes all the neighbor nodes for node i in the network.
The cooperative network of underwater nodes is set as

follows.

1) the communication distance equals to the measurement
distance, which is set as R.

2) the ranging information error between node i and node
j follows Gaussian distribution, i.e. nj→i ∼ N

(
0, σ 2

ij

)
.

3) the prior probability p (xi) of all the nodes is indepen-
dent, and the prior probability of the x-axis and y-axis
p (xi), p (yi), are independent also.

In this way, the ranging at undetermined node i to any of
its neighbor nodes j ∈ Si can be expressed as:

zj→i =
∥∥xj − xi

∥∥+ nj→i (1)

where ‖ · ‖ represents Euclidean norm. Define Zi ={
zj→i|j ∈ Si

}
as the set of ranging information of undeter-

mined node i to all of its neighbor nodes, andZ = {Zi|i ∈ Ni}

is the set of ranging information of all the undetermined nodes
in the network. With the location information xi and xj, the
likelihood function of the ranging p

(
zj→i|xi, xj

)
is expressed

as

p
(
zj→i|xi, xj

)
=

1√
2πσ 2

ij

exp

{
−
(zj→i −

∥∥xi − xj
∥∥)2

2σ 2
ij

}
(2)

According to the principle of Bayesian estimation, to get
the estimation of location xi, we need to get the posterior
probability p (xi |Z ) first, and then the minimummean square
error estimation (MMSE) is adopt to update the position error
and achieve initial position estimation:

x̂i =
∫

xi∗p(xi |Z )dxi (3)

The location posterior probability of undetermined node
i can be acquired by the marginal integral of joint posterior
probability distribution p (X |Z ) as:

p(xi |Z ) =
∫
p(X |Z )dX\xi (4)

where dX\xi represents all variables in X collection except
variable xi. Assume independence of the statistical character-
istics among nodes, we can get:

p(X |Z ) ∝ p(Z |X )p(X) =
∏
i∈N

(
∏
j∈Si

p( zj→i
∣∣xj, xi))

×

∏
i∈N

p(xi)
∏
a∈M

p(xa) (5)

where p(xi) and p(xa) represent the prior probability distribu-
tion of function nodes and anchor nodes respectively.

III. UNDERWATER DISTRIBUTED COOPERATIVE
POSITION METHOD
Since the factor graph theory can replace the optimal value
of the global variable by the product of the optimal value
of the local variables in the underwater cooperative position
network, the discontinuity and uncertainty of the underwa-
ter node communication, the positioning performance of the
whole underwater distributed cooperative node network can
be improved by the product of the local cooperative position
of single underwater node. In this paper, a typical underwater
network topology as shown in Figure 1 with four underwater
nodes was studied. The gray nodes denote anchor nodes
with known location and high coordinate accuracy, while
the white nodes are undetermined nodes. When node 2 was
located, node 4 was also known as the cooperative node
of node 2.

From the general conclusion of Equation (5), the joint pos-
terior probability distribution of all node position variables
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FIGURE 1. Typical underwater network topology.

FIGURE 2. Combined posterior probability factor graph.

in Figure 1 is shown as follows:

p (X |Z ) = p(x1, x2, x3, x4 |z1→2 , z3→2, z4→2)

= p(z1→2|x1, x2, )p(z3→2|x2, x3)

×p(z4→2|x2, x4)p(x1)p(x2)p(x3)p(x4) (6)

where xi = [xi, yi] denotes the coordinates of node i; fxi =
p (xi) , fyi = p (yi) represent the prior probability of node
position on x-axis and y-axis;fj→k = p

(
zj→k |xj, xk

)
repre-

sents the likelihood function of the ranging information. The
factor graph of Equation (6) is shown as Figure 2.

As seen fromFigure 2, the scale of the factor graph depends
on the topology size of the underwater cooperative network.
It can effectively reduce the interference of underwater acous-
tic channel. A large number of underwater nodes will lead
to a complex structure of the joint posterior probability fac-
tor graph. For any undetermined node, the joint posterior
probability factor graph included two sub-factor graph struc-
tures. One was a sub-graph composed of information from
the anchor nodes, as shown in Figure 3(a), and the other
was a sub-graph composed of information from the coop-
erative nodes (neighbor nodes to be positioned), as shown
in Figure 3(b). Anchor nodes could provide information for
neighbor nodes, but request no information back, there is
only likelihood function fa→i(factor nodes) of ranging infor-
mation from anchor nodes to undetermined nodes. As the
information between the undetermined nodes was mutually
exchangeable, there existed two factor nodes fm→i and fi→m
as shown in Figure 3(b).

FIGURE 3. Two kinds of sub-factor graph structures.

As seen from Figure 3, for each undetermined node, there
were two types of information: input information from other
function nodes and output information transmitted to other
function nodes.

A. INFORMATION REPRESENTATIONS
(1)Input information

For anchor node a:
Assume the location of the anchor node was not updated,

only provided information for neighbor nodes, that is, only
output information and no input information.

For undetermined node i:
The undetermined nodes first received information from

the neighbor nodes (including anchor nodes and cooperative
nodes) and updated the principles through factor graph and
information from function node to variable node in product
theory. For undetermined node i in the lth iteration, the input
information from the function node fa→i in Figure 3(a) are
expressed as:

µ
(l)
fa→i→xi

=

∫∫∫
fa→iµ

(l−1)
xa→fa→i

µ
(l−1)
yi→fa→i

dxadyi (7)

µ
(l)
fa→i→yi

=

∫∫∫
fa→iµ

(l−1)
xa→fa→i

µ
(l−1)
xi→fa→i

dxadxi (8)

Similarly, the input information from function nodes fm→i
and fi→m in Figure 3(b)is expressed as:

µ
(l)
fm→i→xi

=

∫∫∫
fm→iµ

(l−1)
xm→fm→i

µ
(l−1)
yi→fm→i

dxmdyi (9)

µ
(l)
fm→i→yi

=

∫∫∫
fm→iµ

(l−1)
xm→fm→i

µ
(l−1)
xi→fm→i

dxmdxi (10)
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µ
(l)
fi→m→xm

=

∫∫∫
fi→mµ

(l−1)
xi→fm→i

µ
(l−1)
ym→fi→m

dxidym (11)

µ
(l)
fi→m→ym

=

∫∫∫
fi→mµ

(l−1)
xi→fi→m

µ
(l−1)
xm→fi→m

dxidxm (12)

In these equations, µ
(l−1)
xm→fm→i

, µ
(l−1)
ym→fm→i

, µ
(l−1)
xm→fi→m

,

µ
(l−1)
ym→fi→m

represent the output information at l − 1th of the

neighbor node m, µ(l−1)xi→fm→i
, µ(l−1)yi→fm→i

, µ
(l−1)
xi→fi→m

, µ(l−1)yi→fi→m
represent the output information at l − 1th of the node i to be
located.

B. CONFIDENCE MODEL
By receiving information from all function nodes, the edge
posterior probability distribution (confidence) of variable
nodes xi was updated as follows:

b(l) (xi) = p (xi|Z)

= fxi
∏
j∈Ni

[
µ
(l)
fj→i→xi

µ
(l)
fi→j→xi

] ∏
k∈M i

µ
(l)
fk→i→xi

(13)

b(l) (yi) = p (yi|Z)

= fyi
∏
j∈Ni

[
µ
(l)
fj→i→xi

µ
(l)
fi→j→yi

] ∏
k∈M i

µ
(l)
fk→i→yi

(14)

C. LOCATION ESTIMATION OF UNDETERMINED NODES
The position estimation of undetermined node iwas obtained
by MMSE calculation, which is shown as follows:

x̂(l)i =
∫
xip (xi|Z) dxi =

∫
xib(l) (xi) dxi (15)

ŷ(l)i =
∫
yip (yi|Z) dyi =

∫
yib(l) (yi) dyi (16)

D. OUTPUT INFORMATION
For anchor node a:
Due to the high positioning accuracy and known location

information of anchor nodes and interference of underwater
channel is larger, the information from anchor nodes was
considered as Dikela δ function, so we get the following:

µ
(l−1)
xa→fa→i

= fxa = δ
(
xa − mxa

)
(17)

µ
(l−1)
ya→fa→i

= fya = δ
(
ya − mya

)
(18)

where mxa and mya represent the location of anchor nodes on
x-axis and y-axis, respectively.
For undetermined node i:
The output information of each undetermined node was

used for the next iteration. According to the sum-product
theory of factor graph, the output information from variable
nodes xi and yi to function node fa→i in Figure 3(a) can be

expressed as

µ
(l)
xi→fa→i

= fxi
∏
j∈Ni

[
µ
(l)
fj→i→xi

µ
(l)
fi→j→xi

] ∏
k∈{Mi\a}

µ
(l)
fk→i→xi

=
b(l) (xi)

µ
(l)
fa→i→xi

(19)

µ
(l)
yi→fa→i

= fyi
∏
j∈Ni

[
µ
(l)
fj→i→yi

µ
(l)
fi→j→xi

] ∏
k∈{Mi\a}

µ
(l)
fk→i→yi

=
b(l) (yi)

µ
(l)
fa→i→yi

(20)

As can be seen from Equation (19-20) that variable nodes
xi and yi send different information to their neighbor function
nodes, which is of great complexity and communication load.
In fact, because of the cycle in the factor graph model, confi-
dence was an approximate inference algorithm which implies
that adding or reducing an option µ(l)xi→fa→i

, µ(l)yi→fa→i
did not

improve or degrade the performance. Therefore, the output
information can be approximated by the confidence of vari-
able nodes as

µ
(l)
xi→fa→i

= b(l) (xi) (21)

µ
(l)
yi→fa→i

= b(l) (yi) (22)

Similarly, the information from variable nodes xi and yi to
function nodes fm→i and fi→m in Figure 3(b) can be expressed
as:

µ
(l)
xi→fm→i

=
b(l) (xi)

µ
(l)
fm→i→xi

= b(l) (xi) (23)

µ
(l)
yi→fm→i

=
b(l) (yi)

µ
(l)
fm→i→yi

= b(l) (yi) (24)

µ
(l)
xi→fi→m

=
b(l) (xi)

µ
(l)
fi→m→xi

= b(l) (xi) (25)

µ
(l)
yi→fi→m

=
b(l) (yi)

µ
(l)
fi→m→yi

= b(l) (yi) (26)

As can be seen from Equation (21-26), the output infor-
mation from one variable node to all of its neighbor function
nodes is equal, which is broadcast information of their confi-
dence to all neighbor nodes, which in turn reduces calculation
burden.

E. INFORMATION PARAMETERIZATION
Although the prior probabilities of variables xi and yi were
initialized to Gaussian distribution, the information in the
factor graph was generally not in Gaussian form, because the
ranging function was a non-linear Euclidean distance. In this
paper, the first-order Taylor series was utilized to expand
the non-linear term of the approximate likelihood function,
so that the closed Gaussian information expression could be
obtained.
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Information from the function node fa→i
Suppose that at l − 1th iteration, the information

µ
(l−1)
xi→fa→i

, µ
(l−1)
yi→fa→i

follows Gaussian distribution. Substitut-
ing Equation (2) into (7), we get:

µ
(l)
fa→i→xi

∝

∫
1

√
2πσa→i

exp

{
−

(
za→i −

∥∥mxa − xi
∥∥)2

2σ 2
a→i

}

×N
(
yi,m

(l−1)
yi→fa→i

,
(
σ
(l−1)
yi→fa→i

)2)
dyi (27)

Expand the non-linear term in Equation(27) by the first-
order Taylor series at the l− 1th iterative coordinate estimate(
x̂(l−1)i , ŷ(l−1)i

)
, that is:

∥∥mxa − xi
∥∥ = d̂ (l−1)a→i +

x̂(l−1)i − mxa
d̂ (l−1)a→i

(
xi − x̂

(l−1)
i

)

+
ŷ(l−1)i − mya

d̂ (l−1)a→i

(
yi − ŷ

(l−1)
i

)
(28)

where d̂ (l−1)a→i =

∥∥∥mxa − x̂(l−1)i

∥∥∥. Substituting equation (28)
by equation (29), we get:

µ
(l)
fa→i→xi

∝ N

(
xi,mxa + za→i

x̂(l−1)i − mxa
d̂ (l−1)a→i

, σ 2
a→i

)
(29)

Similarly, it can be calculated that:

µ
(l)
fa→i→yi

∝ N

(
yi,mya + za→i

ŷ(l−1)i − mya
d̂ (l−1)a→i

, σ 2
a→i

)
(30)

Information from function nodes fm→i and fi→m
Suppose that at l−1th iteration, the informationµ(l−1)xm→fm→i

,

µ
(l−1)
ym→fm→i

,µ(l−1)yi→fm→i
follows Gaussian distribution. Substitut-

ing Equation (2) by (29), Denote the coordinate of node m as
xm = [xm, ym].we get:

µ
(l)
fm→i→xi

∝

∫∫∫
1

√
2πσm→i

× exp

{
−

(
zm→i −

∥∥mxm − xi
∥∥)2

2σ 2
m→i

}

×N
(
xm,m

(l−1)
xm→fm→i

,
(
σ
(l−1)
xm→fm→i

)2)

×N
(
yi,m

(l−1)
yi→fm→i

,
(
σ
(l−1)
yi→fm→i

)2)
dxmdyi

(31)

Expand the nonlinear term in Equation(31) by the first-
order Taylor series at the l− 1th iterative coordinate estimate

(
x̂(l−1)i , ŷ(l−1)i

)
, and

(
x̂(l−1)m , ŷ(l−1)m

)
, that is:

∥∥mxm − xi
∥∥ = d̂ (l−1)m→i +

x̂(l−1)i − x̂(l−1)m

d̂ (l−1)m→i

(
xi − x̂(l−1)i

)

+
x̂(l−1)m − x̂(l−1)i

d̂ (l−1)m→i

(
xm − x̂(l−1)m

)
(32)

where d̂ (l−1)m→i =

∥∥∥mxm − x̂(l−1)i

∥∥∥. Substituting equation (32)
by equation (31), we get:

µ
(l)
fm→i→xi

∝ N

(
xi ,m

(l−1)
xm→fm→i

+ zm→i
x̂(l−1)i − x̂(l−1)m

d̂ (l−1)m→i

,

× σ 2
m→i +

(
σ
(l−1)
xm→fm→i

)2 )
(33)

Similarly, it can be calculated that:

µ
(l)
fm→i→yi

∝ N

(
yi ,m

(l−1)
ym→fm→i

+ zm→i
ŷ(l−1)i − ŷ(l−1)m

d̂ (l−1)m→i

,

× σ 2
m→i +

(
σ
(l−1)
ym→fm→i

)2 )
(34)

µ
(l)
fi→m→xi

∝ N

(
xi ,m

(l−1)
xm→fi→m

+ zi→m
x̂(l−1)i − x̂(l−1)m

d̂ (l−1)i→m

,

× σ 2
i→m +

(
σ
(l−1)
xm→fi→m

)2)
(35)

µ
(l)
fi→m→yi

∝ N

(
yi ,m

(l−1)
ym→fi→m

+ zi→m
ŷ(l−1)i − ŷ(l−1)m

d̂ (l−1)i→m

,

× σ 2
i→m +

(
σ
(l−1)
ym→fi→m

)2 )
(36)

Then the confidence of undetermined node i is calculated
as follows:

b(l) (xi) ∝ N
(
xi,m(l)xi ,

(
σ (l)xi

)2)
(37)

b(l) (yi) ∝ N
(
yi,m(l)yi ,

(
σ (l)yi

)2)
(38)

The mean and variance are updated as:

m(l)xi =
m(0)xi

(
σ
(l)
xi

)2
(
σ
(0)
xi

)2 +

(
σ (l)xi

)2 ∑
k∈Mi

m(l)fk→i→xi(
σ
(l)
fk→i→xi

)2
+

(
σ (l)xi

)2 ∑
j∈Ni

 m(l)fj→i→xi(
σ
(l)
fj→i→xi

)2 + m(l)fi→j→xi(
σ
(l)
fi→j→xi

)2


(39)
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m(l)yi =
m(0)yi

(
σ
(l)
yi

)2
(
σ
(0)
yi

)2 +

(
σ (l)yi

)2 ∑
k∈Mi

m(l)fk→i→yi(
σ
(l)
fk→i→yi

)2
+

(
σ (l)yi

)2 ∑
j∈Ni

 m(l)fj→i→yi(
σ
(l)
fj→i→yi

)2 + m(l)fi→j→yi(
σ
(l)
fi→j→yi

)2


(40)
1(

σ
(l)
xi

)2 = 1(
σ
(0)
xi

)2 + ∑
k∈Mi

1(
σ
(l)
fk→i→xi

)2
+

∑
j∈Ni

 1(
σ
(l)
fj→i→xi

)2 + 1(
σ
(l)
fi→j→xi

)2
 (41)

1(
σ
(l)
yi

)2 = 1(
σ
(0)
yi

)2 + ∑
k∈Mi

1(
σ
(l)
fk→i→yi

)2
+

∑
j∈Ni

 1(
σ
(l)
fj→i→yi

)2 + 1(
σ
(l)
fi→j→yi

)2
 (42)

It’s plausible to suppose that m(l)fj→i→xi = m(l)fi→j→xi and(
σ
(l)
fj→i→xi

)2
=

(
σ
(l)
fi→j→xi

)2
. Then the Equation(39-42) can

be simplified as:

m(l)xi =
m(0)xi

(
σ
(l)
xi

)2
(
σ
(0)
xi

)2 +

(
σ (l)xi

)2 ∑
j∈Ni

2m(l)fj→i→xi(
σ
(l)
fj→i→xi

)2
+

(
σ (l)xi

)2 ∑
k∈Mi

m(l)fk→i→xi(
σ
(l)
fk→i→xi

)2 (43)

m(l)yi =
m(0)yi

(
σ
(l)
yi

)2
(
σ
(0)
yi

)2 +

(
σ (l)yi

)2 ∑
j∈Ni

2m(l)fj→i→yi(
σ
(l)
fj→i→yi

)2
+

(
σ (l)yi

)2 ∑
k∈Mi

m(l)fk→i→yi(
σ
(l)
fk→i→yi

)2 (44)

1(
σ
(l)
xi

)2 = 1(
σ
(0)
xi

)2 +∑
j∈Ni

2(
σ
(l)
fj→i→xi

)2
+

∑
k∈Mi

1(
σ
(l)
fk→i→xi

)2 (45)

1(
σ
(l)
yi

)2 = 1(
σ
(0)
yi

)2 +∑
j∈Ni

2(
σ
(l)
fj→i→yi

)2
+

∑
k∈Mi

1(
σ
(l)
fk→i→yi

)2 (46)

IV. ALGORITHM PROCESS
The steps of the distributed underwater cooperative position
algorithm based on parameterized Gaussian information are
given in Table 1. We note that it included two stages: ini-
tialization and loop iteration. The initial positioning infor-
mation of all nodes is their initial water entry positioning
information.

TABLE 1. Algorithmic representation: GPI-CP.

V. SIMULATION RESULTS AND ANALYSIS
In the simulation part, the positioning performance of GPI-
CP distributed underwater cooperative position algorithm
was simulated and analyzed. In the simulation, a 10×10km2

cooperative underwater positioning network area including
M anchor nodes and N undetermined nodes was set up.
In the network area, the anchor nodes were the underwater
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FIGURE 4. Positioning performance under different location
ambiguities(RMSE).

nodes with high positioning accuracy, and their positions
were set unchanged. The undetermined nodes were randomly
and evenly distributed in the cooperative location network
plane, and the communication distance between each under-
water node was same with the ranging R and obtained by
asynchronous measurements method [21]. It is assumed that
the ranging noise between any two underwater nodes obeyed
the Gaussian white noise with mean value of 0 and variance
of σ 2

j→i. The prior position probability distribution of the
undetermined node i on the x-axis and y-axis is respectively
as follows:

fxi (xi) = N
(
xi,m(0)xi ,

(
σ (0)xi

)2)
(47)

fyi (yi) = N
(
yi,m(0)yi ,

(
σ (0)yi

)2)
(48)

In the simulation, assuming σ (0)xi = σ
(0)
yi = σp; the

maximum time of iteration was set as L = 20 times; the
Monte Carlo time was set as T. The positioning performance
of the algorithm was simulated and analyzed from four
aspects, such as position ambiguity, ranging error, location
node scale and communication calculation. The test was con-
ducted in a water tank environment.

A. EFFECT OF POSITION AMBIGUITY
The influence of the ambiguity of prior position information
of underwater nodes on convergence speed and positioning
accuracy was analyzed in Figure 4 and 5. The simulation
parameters were: number of anchor nodes M = 13, number
of undetermined nodes N = 100. The standard deviation of
ranging noise was 1m, and the Monte Carlo simulation time
was T = 500 times.
As can be seen from Figure 5, the positioning accuracy

of underwater nodes gradually increased with the decrease
of position ambiguity. This is because prior information pro-
vided by the neighbor nodes is more accurate with low σp.
It can also be seen from Figure 4 that low σp lead to fast
convergence. This is because with accurate prior position

FIGURE 5. Positioning performance under different location
ambiguities (CDF).

FIGURE 6. Positioning performance under different ranging
errors (RMSE).

information, the first-order Taylor series would expand close
to the real position of the undetermined nodes, thus speeding
up the convergence.

B. THE EFFECT OF RANGING ERROR
The effect of the standard deviation of ranging error on
convergence speed and positioning accuracy was analyzed
in Figure 6 and 7, respectively. The number of anchor nodes
M = 13, the number of undetermined nodes N = 100. The
standard deviation of prior information location ambiguity of
the nodes was 10m, and the Monte Carlo simulation time was
T = 500 times.
It can be seen from Figure 6 and 7 that with the decrease

of the standard deviation of ranging error, the position-
ing accuracy of the underwater nodes increased accord-
ingly. This is because the smaller the standard deviation
of ranging error, the closer is the measurement distance
between the undetermined nodes and the neighbor nodes
in comparison to the real distance between them. Further,
the more reliable the underwater cooperative information
provided by the neighbor nodes to the undetermined nodes,
the better is the positioning performance of underwater
nodes.
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FIGURE 7. Positioning performance under different ranging errors (CDF).

FIGURE 8. The influence of the number of undetermined nodes and the
number of anchor nodes on the positioning performance in the
network(RMSE).

C. THE INFLUENCE OF THE NUMBER OF UNDETERMINED
NODES AND THE NUMBER OF ANCHOR NODES
The impact of the number of undetermined nodes and the
number of anchor nodes on the positioning performance
was analyzed in Figure 8 and 9 respectively. The simulation
parameters were: Number of anchor nodes M= 13/9, number
of undetermined nodes N= 100/50. The information ambi-
guity of node prior location was 10m, standard deviation of
ranging error was 1m, and the Monte Carlo simulation time
was T = 500 times.
It can be seen from Figures 8 and 9 that when the number

of anchor nodes was 13 and the number of undetermined
nodes was 100, the positioning performance was the best,
and the positioning accuracy of 90% nodes was 2m. When
the number of anchor nodes was constant, the positioning
accuracy increased as the number of undetermined nodes
increased. This was because the more undetermined nodes
involved, the cooperative neighbor information received by
each node increased, then improved the positioning perfor-
mance of underwater nodes.

When the number of undetermined nodes in the net-
work was kept constant; the more the number of anchor
nodes, the better the positioning performance was. More
anchor nodes meant more neighbor nodes with high
reliability location information provided by the undetermined

FIGURE 9. The influence of the number of undetermined nodes and the
number of anchor nodes on the positioning performance in the
network(CDF).

nodes, and the improved positioning performance of under-
water nodes.

D. COMPARISON OF DIFFERENT POSITION
ALGORITHMS
The positioning performance of the GPI-CP algorithm pro-
posed in this paper was compared with the SPAWN algo-
rithm which proposed by prof. Van [13] and the Taylor-VMP
algorithm which proposed by prof. Cakmak [17]. The com-
parison results are shown in Figures 10 and 11 respectively.
The simulation was set as: number of anchor nodes M= 13,
undetermined nodes N= 100. The information ambiguity of
node prior location was 10m, standard deviation of ranging
error was 1m. The number of particle samples of SPAWN
algorithm was 500, time of Monte Carlo simulation was T=
500 times.

It can be seen from Figure 10 that the positioning errors of
the three algorithms decreased with the increase of iteration
time and gradually tended to converge. Spawn algorithm had
the best performance and the highest convergence speed,
because it adopted a large number of weighted particles to
express messages. The more the particles, the higher the posi-
tioning accuracy was. The GPI-CP algorithm proposed in this
paper adopted the way of parameter information expression
and transmission, and its positioning performance was very
close to that of SPAWN algorithm. When the algorithm con-
verges completely, the RMSE of our proposed algorithm is
the smallest. Compared with the SPAWN algorithm, the posi-
tion performance is improved by 10%, and compared with the
Taylor VMP algorithm, the position performance is improved
by 30%.

The comparison results of computational complexity and
communication calculation between the GPI-CP algorithm,
SPAWN algorithm and Taylor-VMP algorithm are shown
in Table 2. K represents the number of particles and Ni
represents the number of neighbor undetermined nodes. The
computational complexity of the SPAWN algorithm was
significantly larger. It was directly proportional to the prod-
uct of the number of neighbor nodes Ni and the square of

64642 VOLUME 8, 2020



L. Zhang et al.: Gaussian Parameterized Information Aided Distributed Cooperative Underwater Positioning Algorithm

FIGURE 10. Positioning performance comparison between GPI-CP
algorithm and SPAWN algorithm(RMSE).

FIGURE 11. Positioning performance comparison between GPI-CP
algorithm and SPAWN algorithm (CDF).

particle number k of the undetermined nodes, while the GPI-
CP algorithm and Taylor-VMP algorithm were only related
to Ni. As for the Communication calculation, both the GPI-
CP algorithm and Taylor-VMP algorithm adopted Gaussian
approximation. Each underwater node only needed to transfer
four Gaussian parameters (x-axis mean and variance, Y-axis
mean and variance) per time. However, each node of the
SPAWN algorithm needed to transfer k particles and k weight
coefficients each time, so the communication calculation was
very large. Therefore, in specific and practical applications,
a compromise between positioning performance, computa-
tional complexity and communication calculation can be con-
sidered in order to choose a positioning algorithm with better
comprehensive performance.

E. TEST EXPERIMENT IN POOL ENVIRONMENT
In the laboratory pool test, the pool in Chang’an cam-
pus of Northwest Polytechnic University was adopted for
the experiment. The size of cooperative node position
was 100m ∗ 100m, and the ranging and communication
calculation between each underwater node was equal.
The underwater node modules independently developed by
the research group were adopted. The positioning results

TABLE 2. Comparison of computation complexity and communication
calculation between GPI-CP algorithm and SPAWN algorithm.

FIGURE 12. Single test positioning performance of GPI-CP algorithm.

FIGURE 13. Positioning deviation contour map of 100 undetermined
nodes.

of the algorithm are shown in Figure 12. The positioning
error contour map of all undetermined nodes after multiple
iterations is shown in Figure 13. The simulation was set as:
the number of anchor nodes M= 13, and the number of unde-
termined nodes N= 100. The standard deviation of ranging
error between nodes was set as 1m, standard deviation of
location ambiguity was 10m.

In Figure 13, the blue line connecting the real position and
the estimated position of the undetermined nodes represents
the positioning error. As can be seen from Figure 12, except
for the undetermined nodes at the right boundary coordinates
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(100,83), other underwater nodes had high positioning accu-
racy, which is because the number of cooperative neighbor
nodes (including anchor nodes and cooperative nodes) of
the boundary point was small, resulting in large deviation in
position estimation. Figure 13 shows the contour map of posi-
tioning error of 100 undetermined nodes after 20 iterations.
It can be seen from Figure 13 that after 20 iterations, the
positioning accuracy of most underwater nodes is less than
1.6m, and that the positioning accuracy of node 3 to be located
is about 19m, which corresponds to the boundary underwater
nodes with large positioning deviation as shown in Figure 12.

VI. CONCLUSION
In view of the high complexity and low efficiency of the
existing underwater cooperative position algorithms, the first-
order Taylor expansion algorithm was adopted at the esti-
mation location of the undetermined nodes and the neighbor
nodes. The Gaussian parameterization of all messages was
combined with the factor graph theory and the product princi-
ple to realize the underwater distributed cooperative position.
The simulation analyzed the proposed algorithms from three
aspects: ambiguity setting, ranging deviation and the number
of nodes. In the aspect of location ambiguity, the convergence
of all nodes could be completed by about eight iterations, and
the fluctuation deviation of overall location ambiguity could
be reduced by more than 80%. In terms of ranging error,
the convergence of the whole cooperative position nodes
could be completed by about ten iterations, and the ranging
error could be reduced by more than 10%. In terms of the
number of nodes, the more the underwater nodes, the bet-
ter the performance gain, and the smaller the increment of
computational complexity. The simulation comparison was
conducted with the existing algorithms in the comprehen-
sive environment, and the results proved that the algorithm
proposed by this paper has lower computational complexity
and better cooperative position performance, as well as a
better prospect for application in the underwater distributed
cooperative position network system. In the future work,
we will combine the BP-based method with the covariance
intersection technique to minimize the uncertainty in correla-
tions and achieve fast computing in the network of intelligent
unmanned underwater vehicle.
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