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ABSTRACT Image haze removal is critical for autonomous driving. However, it is a challenging task for
the existing image dehazing algorithms to eliminate the block effect completely and handle objects similar
to light (such as snowy objects and white buildings). To address this problem, we propose a novel single-
image dehazing method based on superpixels and Markov random field. We obtain the transmission map
in the superpixel domain to eliminate the block/halo effect and introduce Markov random field to revise
the transmission map in the superpixel domain. The key idea is that the sparsely distributed, incorrectly
estimated transmittances can be corrected by properly characterizing the spatial dependencies between the
incorrectly estimated superpixels and the neighbouring well-estimated superpixels. The experimental results
demonstrate that the proposed method outperforms state-of-the-art image dehazing methods.

INDEX TERMS Superpixel, Markov random field, haze removal, edge preservation, dark channel prior.

I. INTRODUCTION
Outdoor images taken in hazy weather have low contrast
and visibility. The low image quality will greatly affect
human perception of colours in the image and humans’ object
recognition and matching abilities. There is a broad collec-
tion of compelling algorithms for image dehazing, including
the multiple image dehazing method [1]–[3], polarization-
based methods [4]–[6], and model-based image recovery
methods [7]–[14], [15]. Model-based image recovery meth-
ods come from physically valid algorithms that remove
haze by modelling the optical transmission of imaging in
scattering media and the prior information to remove the
backscattered light in front of the scene and to compen-
sate for the light attenuation of the scene. Tan [9] pro-
posed a new dehazing method based on Markov random
field (MRF) to maximize the local contrast of the image.
Although Tan’s method can achieve impressive results,
the colours of the restored image are usually oversat-
urated. Fattal [10] proposed an independent component
analysis (ICA)-based colour image defogging method; this
method is reliable but time consuming. Zhu et al. [13] pro-
posed a decay prior for depth estimation, which is trans-
mitted by machine learning. In addition, there are many
methods based on image enhancement methods, such as
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histogram equalization, curvelet transform, homomorphic fil-
tering, wavelet transform, compression sensing [27], [28]
and Retinex methods [29], [30], which can increase the
overall contrast, make the brightness of the image suitable,
and achieve a satisfactory visual effect. However, sometimes
the enhanced image seems unreal. One of the well-known
methods is He’s dark channel prior (DCP) [12], which is rec-
ognized as one of the most effective image dehazingmethods.
However, when the object in the is close to light in colour,
the dark channel prior may not be valid. Wang et al. [31] pro-
posed a single-image dehazing method based on a physical
model and an image brightness component, but this method
can easily produce a halo and overexposure effects. More-
over, there have been some other attempts at single-image
haze removal [35]–[43].

This paper proposes a new approach for the estimation of
the transmittance using a superpixel and MRF model. The
dark channel prior is employed to characterize the depen-
dency of the image observation on the transmittance and
formulate the energy function in the MRF model. However,
the dark channel prior is found for superpixels rather than
patches, so the block effect is avoided. However, the problem
of the underestimation of the transmittance within the regions
where the pixel colours are not dark is inevitable. We assume
that the dark channel prior is valid for most of the super-
pixels of a natural image. With this assumption, the under-
estimated transmittance in the sparsely distributed regions
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FIGURE 1. The flowchart of the proposed method.

can be properly adjusted by characterizing the smooth term
reflecting the spatial dependencies of adjacent superpixels in
the MRF model. The flowchart of the proposed method is
illustrated in Fig. 1.

II. IMAGE DEHAZING USING SUPERPIXELS AND MRF
A. INITIAL TRANSMISSION MAP ESTIMATION BASED ON
the DARK CHANNEL PRIOR AND SUPERPIXELS
The optical model commonly used to describe the image
observed in a scattering medium is

I (x) = J (x) · t (x)+ A · (1− t (x)) (1)

where I is the captured image; J is the scene radiance; A is
the pure background light, which is supposed to be available
in the image space and is often be evaluated from the image
pixels; and t is the medium transmittance. The second term
in (1) is the backscattered light in front of the scene. The goal
of single-image recovery is to recover J and t from I . Since
for each colour channel of the image pixel, both J and t are
unknowns in (1); there must be other constraints or priors
to solve the underdefined problem. In general, recovery of
the scene radiance J relies on the estimation of the transmit-
tance t , which varies at different depths of the scene.
The DCP [12] describes that for a single input image I , the

transmittance can be directly estimated by

t (x) = 1− ω · min
y∈�(x)

( min
c∈{r,g,b}

I c (y)
Ac

) (2)

where �(x) is a patch centred at x, of which the size is
generally 15∗15 or 11∗11 in traditional algorithms; A is the
ambient light and ω is a control parameter. However, regard-
less of the chosen size of�(x), the block effect is inevitable.
To handle this problem, He et al. s[12] employed a guided
filter [26] to refine the transmission map by smoothing the
block effect. This method is simple but not very effective,

FIGURE 2. (a) Input image. (b-c) Corresponding transmission map
obtained by (b) He’s method and (c) the proposed method. Red and blue
squares are the close-ups of structure’s details.

and there are obvious gradually changing artefacts at the
edges in the transmission map (Fig. 2(b)). On the other hand,
the proposed method successfully preserves the edge details
while reducing the artefacts (Fig. 2(c)).

To address this problem, we segment an input image into
numerous superpixels by simple linear iterative clustering
(SLIC) [16], and we define �(x) as the superpixel to which
pixel x belongs. The dark channel can be obtained on the
superpixels rather than the traditional patches.

Yang et al. [17] and Noh et al. [18] calculated the transmit-
tance by using the minimum value of superpixels. However,
it is impossible for the boundaries of superpixels to always
adhere to the structural edges exactly, which means that a
normal minimal operation may also yield a block effect,
which is less serious but still evident than that from He’s
method (Fig. 3). To remove the block effect, we introduce
the similarities between the superpixel and its component
pixels to successfully select the proper dark channel pixel.
Let Sp represent the similarity of pixel p to its belonged
superpixel�i. Sp is expressed by the mean vectorµi,c and the
covariance matrix Ci,c in RGB colour values (c ∈ {r, g, b}).
We adopt the probability density function of the multivariate
Gaussian distribution to estimate Sp as follows:

Sp =
1√

(2π)n · det
(
Ci,c

) · exp(−1
2
·
(
xp,c − µi,c

)T
× C−1i,c

(
xp,c − µi,c

))
(3)

where xp,c is a three-dimensional vector on the RGB values
of pixel p, and for the colour image, n = 3 is the dimension-
ality. The dark channel is calculated following the formula as
follows:

Idark−sp�i
= min

c∈{r,g,b}

(
min

p∈�i and Sp>r

(
I c (p)

))
(4)

where r is a constant. A large value of r may increase the
transmission map and darken the restored image, while a
small value of r cannot eliminate the block effect. We define
r as 10−2 in our experiment; this value is suitable for
most images we tested and can be adjusted to a value in
[10−3,10−1] (Fig. 3). To avoid non-results, we establish the
rule that if more than half of the pixels p in superpixel �i
cannot satisfy the constraint Sp > r , then we calculate the
dark channel of superpixel �i as follows:

Idark−sp�i
= min

c∈{r,g,b}

(
median
p∈�i

(I c (p))
)

(5)
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FIGURE 3. (a) Input image. (b-g) corresponding transmission maps obtained directly on windows or superpixels without any refinement
(i.e., through guided filtering). There are always 2000 superpixels. (b) He’s method (c) Yang’s method. (d) Noh’s method. (e-g) The proposed
method with different values for the parameter: (e) r=10−5, (f) r=10−2, and (g) r=10−1.

FIGURE 4. (a) Input image. (b) Corresponding initial transmission map
obtained based on superpixels. (c) Corresponding revised transmission
map from the superpixel-based MRF method. The error transmittance
estimate for the geese in the initial transmission map is revised.

The superpixel-based transmission map is calculated by

t = 1− ω1·I
dark−sp
�i

(6)

where ω1 is a constant to keep a very small amount of haze.
When ω1 = 1, the fog is completely removed, while a small
value of ω1 means that more fog will be retained. Similar
to He’s method [12], we let ω1 = 0.9 to achieve a better
visual effect. A variable in our algorithm is the number of
superpixels. On the one hand, superpixel boundaries and
actual structural boundaries become incompatible for a small
number of superpixels. On the other hand, if the number
of superpixels is too large, the running time will become
quite long. The number of superpixels is set to 3000 in our
experiments.

B. REVISION OF TRANSMISSION MAP USING
SUPERPIXELS AND MRF
The dehazing results recovered by the initial transmission
map have better preserved structural edges. However, there is
still an exception when there are objects with colours similar
to that of light. This situation is challenging for the existing
image dehazing algorithms (see the transmittance of the geese
in Fig. 4). Moreover, neighbouring superpixels that are not on

structural boundaries, always have similar scene depths and
transmittances. For this reason, we refer to the idea of MRF.

The revised transmission map can be calculated by mini-
mizing the energy function as follows:

E
(
t̂
)
=

∑
i

E(ti, t̂i)+
∑
i,j

N (ti, tj) · E(t̂i, t̂j) (7)

where ti is the initial transmittance of superpixel i and t̂ is
the estimated revised transmittance. The data term E(ti, t̂i)
represents the probability of superpixel i having a transmit-
tance t̂i. The neighbour term N (ti, tj) represents theintensity
of the relevance between superpixels i and j. Thesmooth term
E(t̂i, t̂j) encodes the probability that neighbouring pixels have
similar transmittance.

The data term should enhance the possibility of correcting
the incorrectly estimated transmittance, which is usually sta-
tistically significantly different from its correctly estimated
transmittance, while keeping the remaining values of super-
pixels as constant as possible. Thus, we characterize the data
function in the following form:

E
(
ti, t̂i

)
= ω · log

(∣∣ti − t̂i∣∣+ 1
)

(8)

where ω is the weighing parameter, which is used to control
the balance between the data term and smooth term. A large
value of ω means that the estimated transmission map will
be close to the initial transmission map, while a small value
of ω means that the estimated results will be smoothed. The
influence of ω on the estimated results can be seen in Fig. 7.
Meanwhile, the form of the data term ensures that MRF does
not produce halo effect on the edges, which enables the MRF
to achieve a good boundary preservation effect.

The choice of the neighbour term N (ti, tj) is a critical issue
for edge preservation. Our method contains a structural edge
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FIGURE 5. Comparisons of the transmission map estimation accuracies. (a) Input image. (b-f) Transmission maps
obtained by (b) Meng’s method, (c) the proposed method, (d) Zhu’s method, (e) Berman’s method and (f) He’s method.

term, which is a general superpixelwise squared difference of
transmittance, written as

S (ti) =
∑
j

gi.j · ti ·
∣∣tj − ti∣∣, j ∈ Ri (9)

where j belongs to Ri, the circular region centred at the centre
of superpixel i. S (ti) represents the spatial squared difference
within region Ri. gi.j is a weighing function defined according
to spatial affinity, expressed as

gi.j ∝ exp

(
−

(
xi − xj

)2
+
(
yi − yj

)2
2σ 2

)
(10)

where σ controls the spatial scale of the circular region.
A small value of S(ti) indicates that superpixel i has great
relevance with nearby superpixels and should be smoothed,
while a large value denotes the possible structural edges (see
Fig. 6 and Fig. 7). As can be seen in the figures, the designed
structural edge term faithfully adheres to the edges. The
neighbour term is characterized by the following:

N
(
ti, tj

)
=


1

S (ti) · S
(
tj
)
+ ε

, if j ∈ Ri

0, else
(11)

FIGURE 6. (a) Initial transmission map (the transmittance of the geese is
incorrectly estimated). (b) S(t), which represents the superpixels at
possible structural edges.

where ε is a small constant to prevent the denominator from
being 0, and its value is selected as 10−6. This design of
the neighbour term ensures that the structural edges are
maintained.

The smooth function E(t̂i, t̂j) encodes the probability that
neighbouring superpixels have a similar depth. Generally,
applying traditional smoothing functions such as (t̂i − t̂j)

2

may yield discontinuities of the structural edges and produce
halo artefacts near boundaries [19], [20]. However, the neigh-
bour term we introduced solves the boundary problem well.
We characterize the smoothing term in the following form:

E
(
t̂i, t̂j

)
=
∣∣t̂i − t̂j∣∣ (12)
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FIGURE 7. (a) Input image. (b) Initial transmission map obtained based
on superpixels. (c) S(t), which represents the superpixels at possible
structural edges. (d-g) Revised transmission map based on superpixels
and MRF with different values of weight coefficient ω.

To minimize the cost function of (7), we apply the graph cut
technique [21] and employ the α-expansion algorithm [21]
to solve the graph cut problem with good computational
performance.

We analyse the accuracy of transmission map estima-
tion through nonreference subjective assessment. As shown
in Fig. 5, we compared the transmission maps captured by
Meng’s [22], Zhu’s [13], Berman’s [32], and He’s meth-
ods [12] and the proposed method. The scene in the red
circle is the nearby white object, whose transmittance is
often misestimated. Meng’s, Zhu’s and He’s methods fail to
avoid this problem, while Berman’s method and the proposed
method perform well. However, the transmittance estimation
of Berman’s method at rapidly changing edges (see the esti-
mated transmittance around the leaves on the trees in Fig. 5)
is fuzzy, which will cause a halo effect.

C. RECOVERY OF THE SCENE RADIANCE
We pick the top 0.1% of the brightest pixels in the dark chan-
nel of the input image. These pixels are most hazy/opaque.
The ambient light Ac is estimated to be the average of these
pixels in the three colour channels. The scene radiance is
recovered as

Jc (x) =
Ic (x)− Ac

max(t (x) , t0)
+ Ac (13)

where t0 = 0.1 prevents noise amplification when t (x) is
close to zero.

III. EXPERIMENTAL RESULTS
To assess the performance of the proposed method, we test
it on various haze images and compare it with Meng’s [22],
Zhu’s[13], Tarel’s [11], He’s [12], Berman’s[32], and
Codruta’s [33] methods. For a fair comparison, we use the 7×
7 patch in Meng’s and He’s methods. All the compared meth-
ods apply a lower bound of t0 = 0.1 for the transmittance in
(12) and a guided filter with the same parameters to smooth
the transmission map.

A. QUALITIVE COMPARISON OF REAL-WORLD IMAGES
For the visual comparisons, we select 30 real-world outdoor
images, which have rich edge information and a large range
for the depth of field, and they are often used for contrast
in research papers. By adopting Meng’s [22], Zhu’s [13],
Tarel’s [11], He’s [12], Berman’s [32], and Codruta’s [33]
methods and the proposed method, some of the restored
images are shown in Fig. 10 for no-reference subjective quali-
tative comparisons. The contrast and visibility of the restored
images are greatly improved compared with the original
images. Nevertheless, the degrees of restoration are different.
In the first row of Fig. 10, the red squares are the close-ups
of the details; note that the degree of dehazing on the road
is too low in the results of Zhu’s, Berman’s and He’s meth-
ods, whereas Tarel’s method realizes overly strong dehazing
and its restored image is accompanied by colour distortions.
Relative to the above methods, Codruta’s and Meng’s meth-
ods and the proposed method can achieve better results in
reducing the halo effect among the structural boundaries.
Meng’s results in the close-shot scenery are close to those
obtained by the proposed method, as displayed in Fig. 10.
However, the effect ofMeng’s algorithm on long-shot scenery
is oversaturated, especially the sky region, whereas the fog
removal ability for Zhu’s and Codruta’s methods over distant
scenes is weak.

Compared with the images restored by the compared algo-
rithms, the images restored by our method have better sharp-
ness, contrast and are free of oversaturation.

To evaluate the proposed method quantitatively, we apply
a blind assessment metric [34] dedicated to visibility restora-
tion to measure the haze removal effect. The input images and
the restored results are transformed into greyscale images,
which are used to calculate three indicators to evaluate the
restoration effect. The number of edges that are newly visible
after dehazing is denoted by indicator e. The mean of the
ratio of the gradient norms over these edges both before and
after restoration is denoted by indicator r . The percentage
of pixels that become completely black or completely white
after dehazing is denoted by indicator σ . Larger values of e
and r and smaller values of σ indicate a better restoration
effect. To analyse the results, the gradient images of edges
are shown in Fig. 8. The images of (b), (c) and (g) are
influenced by noise, which demonstrates Codruta’s, Meng’s
and Berman’s method have amplified the noise level while
trying to improve the visibility of foggy images. The gradient
images show that the proposed and He’s methods perform
better.

All 30 real-world outdoor images are restored by all
the compared methods, the mean values of the three
blind assessment indicators are calculated in Fig. 11,
and Table. 1 shows the blind assessment results for
restored images in Fig. 10. Fig. 11 and Table. 1 indicate
that the proposed method outperforms the other meth-
ods in terms of the edge restoration and haze removal
effects.
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FIGURE 8. Gradients of results from different methods.

FIGURE 9. Evaluation of the final results by CEM.

TABLE 1. Evaluation results by the method proposed in [34].

A perceptual evaluation using the contrast enhancement
metric (CEM) was carried out, and improved by machine
learning [44]. CEM has a good correlation with human judg-
ments and sort images by their contrast. Fig. 9 presents the
CEM of our and the compared results. Then we rank their
performance according to CEM. The CEM is also trained
with human’s intuition. As a result, the CEM evaluation
shows the proposed method outperforms the others.

B. QUALITATIVE COMPARISON OF SYNTHESIZED IMAGES
The first step is to synthesize foggy images for evalu-
ation. The ground truth images, and their corresponding
ground truth depth maps are chosen from the Middlebury
Stereo datasets [23]–[25]. The synthesized images can be
obtained by

J = I · e−β·d + A ·
(
1− e−β·d

)
(14)

VOLUME 8, 2020 60733



Y. Tan, G. Wang: Image Haze Removal Based on Superpixels and Markov Random Field

FIGURE 10. Qualitative comparison of the different methods on real-world images. (a) The hazy images. (b) Codruta’s [33] results.
(c) Meng’s [22] results. (d) Zhu’s [13] results. (e) Our results. (f) Tarel’s [11] results. (g) Berman’s [32] results. (h) He’s [12] results.

FIGURE 11. Averaged blind assessment indicators (e, r, σ ) of the
compared algorithms.

where d is the depth map obtained directly from the datasets.
The background light A takes values in the set {150, 200, 220,
250} for testing. The attenuation coefficient β takes values in
the set {0.75, 1, 2, 2.5} for simulating different turbidities.

FIGURE 12. A group of synthesized ‘Adirondack’ images with different
background light values A and attenuation coefficients β.

All the compared algorithms are tested on the synthesized
images with different A and β vaues. Fig. 12 shows a group
of synthesized images.
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FIGURE 13. Restoration of the synthesized images. (a) Hazy images. (b) Ground truth images. (c) Meng’s [22] results. (d) Zhu’s [13] results. (e) Our
results. (f) Tarel’s [11] results. (g) He’s [12] results. (h) Berman’s [32] results. (i) Codruta’s [33] results.

FIGURE 14. Average MSEs of all the compared algorithms.

FIGURE 15. Average SSIMs of all the compared algorithms.

Fig. 13 shows some of the images restored by the com-
pared methods. We compute the MSE and SSIM results to
assess the performance of all the compared methods. A low
MSE indicates that the restored image is close to the ground
truth image, while a high SSIM represents a strong ability
to preserve the structural information. The results shown
in Fig. 14 and Fig. 15 are the average MSEs and SSIMs for
each of the ground truth images with their 16 synthesized
images. As seen, the weak defogging ability over distant
scenes of Codruta’s and Zhu’s methods yields the highest

MSEs and lowest SSIMs overall. The average MSEs and
SSIMs of Berman’s and He’s results are better than Meng’s
and Tarel’s results, which usually suffer from overenhance-
ment. In contrast, our method achieves the best value over
all the test modes, which indicates that our method has better
colour fidelity and preserves structural boundaries better than
the other methods.

IV. CONCLUSION
In this paper, we propose a novel image dehazing algo-
rithm using an MRF on the superpixel domain. By means
of superpixels, the block effect and halo artefacts can be
avoided. Moreover, underestimating the transmittance in the
area where pixel colour is close to that of light is avoidable by
utilizing anMRF. The restored results show that the proposed
method can achieve better results than other state-of-the-
art image dehazing methods under different turbidity and
lighting conditions.
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