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ABSTRACT With the tremendous advances in ubiquitous computing, mobile crowd sourcing (MCS) has
become an appealing part of the Internet of Things (IoT). InMCS systems, workers collect data with a certain
quality, and get incentivized in return. However, MCS systems are vulnerable to misbehaving acts such as
workers submitting multiple false or fake reports using multiple devices to affect the majority vote of the
task. In addition, workers may try to maximize their profit by submitting multiple truthful data, a behavior
that may prevent other potential workers to participate. The selection of such workers for a task has a negative
impact on the decision making or the payoff of the task. Most of the current approaches aim to maximize the
completion of tasks based on the reputation or the credibility of workers, but without consideration of tasks’
payoff and the threat of misbehavior. In literature, a misbehaving act, where workers impersonate multiple
identities using multiple devices to maliciously change the majority votes or selfishly increase their payment,
has not been addressed during MCS recruitment. In this paper, a two-layer selection approach is proposed
based on game-theory in which the payoff of the tasks is maximized based on the individual contributions
of the workers. In addition, the proposed model detects and eliminates the misbehaving act where workers
submit multiple reports using multiple devices, during the recruitment phase. Simulations using real-life
datasets show that the proposed approach succeeds in detecting and eliminating misbehaving devices, and
outperforms the benchmarks in terms of the payoff of the tasks.

INDEX TERMS Mobile crowd sourcing, misbehaving acts, identity management, trust management, game
theory, Gale-Shapley.

I. INTRODUCTION
Mobile Crowd Sourcing (MCS) is a paradigm that utilizes the
ubiquity, mobility, and distribution of mobile devices in order
to collect large amount of data efficiently, in terms of time and
cost [1]. Typically, there are three main entities in MCS: task
requester, management platform, and mobile users or work-
ers. The management platform recruits workers, or service
providers, that ensure the quality of the available tasks’ exe-
cution. The recruited workers communicate with the manage-
ment platform upon task’s completion, where the submitted
data is evaluated and the workers are paid accordingly [2]. In
order to enhance the efficiency of MCS in terms of number
of completed tasks and their completion time, recent works
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have introduced multitasking, where workers are selected to
perform multiple tasks, especially in a large solution space,
where the solution becomes overly complex.

The data collected by the workers depends on the nature
of the task. If the task is objective, such as environmen-
tal monitoring including noise pollution and nuclear source
localization [3], the data is in the form of sensory readings.
On the other hand, if the task is subjective, the crowd’s opin-
ions regarding a certain phenomenon are requested [4], [5].
An example of subjective tasks could be evaluating and
documenting the severity of a fire, crash, or damages after
a natural disaster. The most common approach to reach a
consensus is the use of majority-voting, where the most
frequent answer is considered as the closest answer to the
ground truth. However, it becomes challenging to formulate
the right decision in the presence of misbehaving workers,
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which can mislead the requester by submitting multiple
false reports. Recently, a similar situation was reported
in [6], where using 99 phones and a handcart, a partici-
pant was able to trick the Google Maps App and create a
virtual traffic jam. This demonstrates the need for a more
reliant MCS system that is able to detect and prevent such
instances.

MCS is vulnerable to external adversaries’ attacks, such
as spoofing and jamming, which aim to degrade or crash the
service. These can be handled using network’s security mea-
sures [7]. MCS is also vulnerable to internal misbehaving acts
by malicious or selfish workers aiming to degrade the Quality
of Service (QoS) of the tasks. These kinds of maliciousness
need to be addressed in the workers’ recruitment phase.
An internal misbehaving act, known as Sybil attack, was
first introduced in MCS and IoT by a Microsoft researcher,
where multiple identities are used in participatory sensing to
contribute a huge amount of false data [8]. This was generally
solved by authorization tokens where a device cannot use
multiple tokens simultaneously. However, current solutions
do not consider the presence of misbehaving workers that
accomplish a task numerous times using multiple devices,
and their effect on MCS. These workers take advantage of
the anonymity, implemented in MCS for privacy protection,
where submitted reports cannot be linked to the worker and
therefore it cannot be deduced that two or more reports are
submitted by the same worker [9]. In addition, they register
to the MCS platform using different verified email addresses
and personal information, and behave normally, which makes
their detection extremely difficult [10].

Additionally, guaranteeing high payoff for the tasks within
the constraints and the requirements of the task requester
is another critical aspect of MCS. The payoff of a task is
defined as the benefit gained in contrast to the costs endured
by that task. The benefit can be in the form of the QoS
achieved by the task, which is defined differently based on the
application. The QoS during selection commonly describes
the confidence in the selected workers to truthfully perform
the task. The existing allocation approaches, such as [2], [11],
and [12] optimize the QoS of the tasks without assessing the
contribution that each individual worker adds to the QoS. As
a result, the task requesters tend to overpay for the selected
workers using these selection models, thus compromising the
payoff of the tasks.

To overcome the aforementioned challenges, a novel two-
layer selection approach, Misbehavior-Proof Workers Selec-
tion (MPWS), is proposed.MPWS aims to select workers that
maximize the payoff of the tasks while detecting and elimi-
natingmisbehaving devices. In the first layer, groups of work-
ers are allocated to a cluster of tasks using genetic algorithm
such that the QoS of each task is maximized. In the second
layer, a game-theoretical approach based on Gale-Shapley
is deployed to distribute the workers in the group amongst
the tasks in the cluster such that the payoff of each task is
maximized. The second layer also addresses the issue of the
misbehaving act, where a worker uses multiple devices to

impersonate multiple identities and maliciously change the
majority-voting decision of a task [13], or selfishly maximize
their profit. This layer is designed to detect and eliminate
such misbehaving devices without invading the privacy of the
participating workers. Hence, the main contributions of this
work can be summarized as follows:

• Propose a novel selection mechanism that allocates
workers with high QoS-to-cost ratio, thus maximizing
the payoff of the tasks.

• Introduce and study a misbehaving act where workers
use multiple devices to impersonate multiple identities
in an MCS system.

• Develop a stand-alone mechanism that detects and elim-
inates misbehaving devices during the selection process,
while keeping the owners of these devices anonymous.

The proposed approach is simulated using real-life datasets
under the conditions of both truthful and untruthful envi-
ronments. In an untruthful environment, workers imperson-
ate multiple identities using multiple devices, whereas in
a truthful environment, each device is owned by a unique
worker. Two benchmarks are used to assess the perfor-
mance ofMPWS: Group-basedMulti-taskWorkers Selection
(GMWS) [11] and Gale-Shapley Matching game Selection
(GSMS) [12].

II. BACKGROUND AND RELATED WORK
A. BACKGROUND
The Gale-Shapley matching game is a game theoretical
approach that was first introduced by Gale and Shapley for
the stable marriage and college admission problems [14].
The stable marriage problem is a one-to-one stable matching
between a set of men and a set of women, where the sets are
donated by U = {m1, . . . ,mn1} and W = {w1, . . . ,wn2},
respectively. In addition, there is a set E ⊆ U × W of
acceptable men-women pairs. Each man mi ∈ U has an
acceptable set of women A(mi), where A(mi) = {wj ∈ W :
(mi,Wj) ∈ E}. Similarly, each woman has an acceptable set
of men A(wj), where A(wj) = {mi ∈ U : (mi,Wj) ∈ E}.
Each player in the game, from U and W , has ordinal pref-

erences where they rank their A(mi) and A(wj) in a strict order
in their respective preference lists [15]. In the classical stable
marriage problem, the set of men is equal to the set of women,
i.e. n1 = n2 = n, and all men are in everywoman’s acceptable
list, and vice versa, i.e E = U × M . The matching is
considered unstable if there exists a couple that would rather
be paired together over their assigned match [16]. However,
if the sets of men and women are not equal, n1 6= n2, as is
the case in this work, n1 and n2 are made equal by simply
adding the appropriate number of men or women with empty
preference list. A blocking pair, which is a pair that blocks
a matching M , is then defined as (mi,wj) ∈ E \ M , where
mi is unpaired or prefers wj to its current matching, or wj
is unpaired or prefers mi to its current pair. In this scenario,
the game achieves equilibrium by reaching a stable matching
if it encounters no blocking pair [14].
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On the other hand, the college admission problem, also
known as hospital/residents problem, is a one-to-many stable
assignment of students to different colleges based on two-
sided preference, given that each college has a limited admis-
sion capacity [14]. In this work, one-to-one matching is used,
which makes the college admission problem not applicable
for this work.

B. RELATED WORK
This section summarizes some of the work done related to
the allocation of workers to multiple tasks in MCS and the
evaluation of the trustworthiness of the data and the workers.

1) MULTITASK ALLOCATION
Workers allocation is one of the main challenging aspects in
MCS since different tasks have different requirements, such
as acceptable QoS, reputation, and execution time [3], [17].
In addition, workers in an MCS system have different capa-
bilities such as the devices they are carrying, acceptable
traveling distance [18], and reputation [19], [20]. The recruit-
ment of workers is commonly done by two main approaches,
group-based selection (GRS) and individual-based selection
(IRS). In the former, a group of workers is evaluated and
considered for a task, or set of tasks, based on their col-
lective capabilities. In the latter, the workers are assessed
individually and are recruited if they meet the tasks’ require-
ments and constraints. GRS has shown superiority when
compared with IRS in both single-task and multiple-tasks
assignments [11], [21].

Recent research is directed towards multi-worker multitask
allocation due to its efficiency in terms of workers utiliza-
tion [18], especially in subjective tasks. In [11], Group-based
Multi-task Workers Selection (GMWS), which is a cluster-
basedmultitasking approach, is proposed. In GMWS, a group
of workers is allocated using genetic algorithm to perform
all tasks in the cluster, such that the collective QoS of each
task ismaximized. In [12], a game-theoretical approach based
on the Gale-Shapley game is proposed to match multiple
workers and tasks while satisfying both sides’ preferences.
The preferences of the workers depend on their proximity
to the tasks, whereas the preferences of the tasks depend on
the expected QoS. The QoS for both approaches depend on
the willingness of the selected workers to perform the task.
However, these approaches do not consider the payment of
the worker, and subsequently, do not consider the payoff of
the tasks.

Another multi-worker multitasking approach is proposed
in [17], where particle swarm optimization is employed to
ensure high payoff for tasks while minimizing the response
time of the tasks. The approach aims to maximize the number
of accomplished tasks by allowing the allocated workers
to recommend other workers from their social network to
perform the task, if they are unable to. If the task still failed
to be accomplished, the allocated workers are penalized by
reducing their reputation scores. However, this approach does

not consider the contribution of each selected worker to the
achieved QoS of the tasks.

There are two modes of workers selection in MCS, oppor-
tunistic and participatory. In opportunistic sensing, the work-
ers are allocated to tasks as part of their daily routines,
whereas in participatory sensing, the workers are required to
travel to the tasks in order to perform them.

In [22], an opportunistic multi-task allocation framework,
MTasker, is proposed using a descent greedy approach to
maximize the overall utility of each task, while considering a
minimum quality constraint for a task, the sensor availability,
and the maximum allowed task allocation for a worker. The
task’s utility is defined by temporal-spatial coverage of the
workers. While this approach considers the contribution of
allocated worker, it only considers opportunistic workers,
where their contribution can be predicted by their mobility
pattern. A similar goal of maximizing the spatial-temporal
covering is presented in [23]. This is achieved by social-
network assisted system for worker recruitment in mobile
crowd sensing where influence maximization is used to select
seed users.

The work in [24] proposes a framework that optimizes the
integration of these two modes by selecting a group of oppor-
tunistic workers offline, based on their daily routines, and
complement them by online selection of participatory work-
ers, under a constrained budget. The proposed framework,
HyTasker, uses a nested-loop greedy process for the offline
selection while simultaneously predicting the allocation for
the participatory workers.

The aforementioned works mainly focus on optimizing the
workers recruitment inMCS. However, the trustworthiness of
these workers is not considered.

2) DATA AND WORKERS TRUSTWORTHINESS
Another critical aspect of MCS is examining the trustworthi-
ness of the data. Trustworthiness is associated with the data
that the user collects and it is in a direct relationship with
the user’s reputation [20]. The injection of faulty data has a
negative impact on the overall system because they could be
misdeemed as correct data.

A common mechanism to assess the validity of submitted
reports is by reputation-based systems. In [20], an approach
to validate and quantify the data truthfulness is proposed. The
approach collaborates statistical and vote-based user reputa-
tion scores. Statistical or centralized reputation is calculated
by the management platform, whereas vote-based or decen-
tralized reputation is evaluated based on the votes of the
participants.

Another approach is estimating the credibility of the
submitted data based on calculating the reliability of the
worker [25]. This is evaluated based on four factors, (i) sim-
ilarities between a worker’s submitted report in comparison
with others submitted at the same time frame, (ii) reliability
of the user based on the plausibility of their event reports,
(iii) frequency of submitted reports, and (iv) the feedback
reported from other users evaluating the data being reported.
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Another common approach to checking the trustworthi-
ness of the data is by truth discovery of the submitted data.
In [26]–[28], the unreliable sensory data collected by workers
is encrypted and sent to the cloud along with the encrypted
reliability of the workers. The truth discovery is conducted
based on the reliability of the workers on the encrypted data
in the cloud to discover the ground truth which is later sent
to the task requester for decryption. While in these works
the privacy of the workers is considered, however, workers
that maliciously submit false data to disrupt the systems are
not considered. In [29], privacy-preserved truth discovery
mechanism is proposed while considering malicious work-
ers who deliberately aim to disrupt the system. This work
updates the reliability and the ground truth and filters out
the false data before sensing them to the cloud while keep-
ing the computational costs and communication overheads
minimal.

Moreover, cross validating the submitted data is also
another common approach to discover the ground truth of
a given task. In [30], validating workers are recruited to
assess the data collected by sensors and contributing crowd
in timely fashion. The collected data from both parties are
then consolidated to have a better representation of the ground
truth, which is later used to re-evaluate the contribution and
the incentives of the participating workers. In [31], data is
collected from there different sources depending on their
availability, crowdsensed data (S-report), crowdsourced data
(U-report) and authoritative data (E-report). If E-reports are
available, they are considered the ground truth, otherwise,
the average of S-reports ad U-reports are used to discover
the ground truth. In [32] A truth discovery algorithm and
corresponding reward distributionmethods are proposed. The
ground truth is estimated based on the aggregated crowd-
sensed data and partial control data which are obtained from
infrastructure IoT sensors. The truth discovery considers both
vulnerabilities of the workers and bias of their devices, but
does not consider false injected data.

The aforementioned approaches assess the credibility of
the workers after the tasks are assumed to be accomplished,
and not during the selection phase. In addition, they do not
consider misbehaving workers that may manipulate the sys-
tem by using multiple identities.

In efforts towards suppressing Sybil attacks without impro-
vising the privacy of the participating workers, [9] pro-
posed authorization tokens with lifetime for authenticated
devices. These devices receive encrypted credentials, known
as pseudonym, to ensure the integrity of submitted reports.
A device cannot use more than one pseudonym simultane-
ously, which prevents Sybil attacks. Moreover, in [8], a trust
model is proposed based on a cloud-based service manage-
ment framework that detects Sybil attack assuming the fol-
lowing: a) abnormal traffic of connected devices is tracked
and can be detected, b) each worker owns a unique ID, and
c) worker posing Sybil attack submits data using a single
radio frequency. However, these approaches do not consider
workers who carry multiple devices and the pseudo identities

can be manipulated. They can receive multiple tokens for
every device and exploit different radio frequency.

III. PROPOSED APPROACH
The problem of misbehaving workers carrying multiple
devices to maximize their profit and jeopardizing the
achieved QoS of the tasks is demonstrated in Section III-A as
a motivation for the work. Following, Section III-B proposes
a two-layer workers selection approach, MPWS, to detect
and eliminate those untruthful workers whilst achieving high
payoff for the tasks. The first layer uses a meta-heuristic
approach to select a group of workers that guarantees the
highest expected QoS for a cluster of tasks. The second layer
aims to distribute the group of workers among the cluster’s
tasks such that untruthful workers are excluded and the payoff
for the individual tasks is maximized.

A. MOTIVATIONAL SCENARIO
In this section, the allocation problem simulated in an envi-
ronment where all participants are truthful versus an environ-
ment where some misbehave, is illustrated. The simulation
was performed for 40 tasks and 600 available workers, where
Group-based Multi-task Workers Selection (GMWS) [11] is
used for the selection. GMWS is a multitasking approach
where selected workers are requested to perform multiple
tasks, such that the QoS of each task is maximized. This
selection approach clusters the geographically-close tasks
and allocates a group of workers to each cluster to perform
the tasks in that cluster. In this example, a snapshot of the
final selection is illustrated, for a cluster of 4 spatial-temporal
tasks and 10 workers that are selected to perform them.

In both environments, the same dataset of independent
devices is used. For the untruthful environment 10% of ran-
dom workers are duplicated to simulate impersonating multi-
ple identities. Fig. 1a shows 10 different individuals selected
in a truthful environment, each owning exactly one device.
On the other hand, Fig. 1b shows the selection of 10 devices
belonging to only 3 different owners, where the first worker
uses exactly one device the second carries two selected
devices and the last carries seven selected devices. Hence,
in this scenario two workers are misbehaving by using mul-
tiple devices.

In GMWS, workers that maximize the QoS of the tasks
are selected and the tasks are scheduled such that it mini-
mizes the traveling distance. In this example, the collective
QoS achieved by the tasks depends on their initial reputation
before attempting the task, the willingness of the worker in
attempting the task and the completion time, these parameters
are further explained in section III-B. It can be seen from
Fig 1 that except W440, none of the other behaving work-
ers that were selected in the truthful environment (Fig 1a)
are selected in the untruthful environment (Fig 1b). This is
because the presence of misbehaving devices in an untruth-
ful environment may prevent other potential workers from
being selected, if the expected QoS of misbehaving devices
is higher than that of behaving devices.
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FIGURE 1. Illustrative example for a simplified MCS allocation problem in truthful and untruthful environments.

TABLE 1. Expected vs. Achieved QoS by each task in truthful and
untruthful environments.

TABLE 2. Total payments in truthful and untruthful environments.

TheQoS of each task in a truthful environment is compared
against that in an untruthful environment in Table 1. The
expected QoS is evaluated based on the selected workers
without the detection of the duplicate misbehaving devices,
on the other hand the achieved QoS is computed while
considering only unique entities. As evident from Table 1,
the achieved QoS based on the selection is up to ∼ 22%
less than the expected QoS by the tasks in the untruthful
environment.

As the tasks request multiple workers, only three unique
reports are submitted in the untruthful environment in this
example, which degrades the achieved QoS of the tasks.
In addition, since the misbehaving workers are not detected,
they are getting paid for performing the task. Table 2 shows
that in the case of the untruthful environment, ∼ 51% of the
total cost of the tasks is given to untruthful devices.

Hence, as shown by this example, a novel approach is
required to detect and eliminate untruthful devices to realize
the achieved QoS, and to prevent misbehaving workers from
maximizing their profit and reducing the chances of behaving
devices to participate. In addition, false reports submitted
by multiple-identity workers have graver implications on

TABLE 3. List of parameters and symbols used and definitions.

the final decision making of the task requester. It is worth
noting that this scenario is viable in any selection mechanism
where tasks must be performed by multiple workers, which
is mostly the case for quality assurance or for collecting
different opinions. If a mobile user initiating multiple iden-
tities is a good candidate for selection, then most proba-
bly their other identities are also good candidates. This is
because the other devices share similar profiles and same
location.

B. MODEL DESCRIPTION
In this model, each task publisher requests multiple work-
ers to perform the task. Furthermore, every worker can
perform multiple tasks, even for those posted by different
publishers. The tasks are characterized by T =< LTj , S

T
j ,

QTj ,TC
T
j ,R

T
j ,P

T
j >, and the workers are characterized by

W =< LWi , SA
W
i ,R

W
i ,C

W
i ,D

W
i ,P

W
i >, where the different

parameters are defined in Table 3.
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C. FIRST LAYER: GROUP SELECTION FOR
A CLUSTER OF TASKS
This layer maximizes the QoS of the tasks while minimizing
their completion time. This is achieved by - 1) clustering the
tasks based on their geographic locations using k-medoids
algorithm, 2) selecting a group of workers that maximizes
the expected QoS of the tasks in a cluster using genetic
algorithm, and 3) scheduling the tasks for the workers such
that the traveling distance is minimized using tabu search
algorithm [11].

For the clustering of tasks, the Silhouette evaluation [33]
is used to determine the number of clusters CT such that
the distances between the individual tasks in a cluster is
minimized. The number of clusters that achieves the highest
separation score, is used by the k-medoids clustering algo-
rithm [34] to cluster the tasks in a givenArea of Interest (AoI).
K-mediods is a partitioning algorithm that minimizes the
distance among nodes in a cluster. This gives it the advantage
over other partitioning agorithms, such as k-means, which
minimizes the distance between the nodes and a cluster cen-
ter [34], or the distance-dependent Chinese restaurant pro-
cess, which minimizes the distance between any two nodes
in a cluster [35], [36].

Subsequently, for everyCT , a group of workers is assigned
such that every member added to the group must have an
added value and must not violate any of the constraints of
the tasks in the corresponding cluster. The groups of work-
ers are formed using genetic algorithm [21], starting with
a group of one member, and gradually increasing until the
maximum number of required workers is reached. The group
that achieved the highest expected QoS for the cluster is
selected. The expected QoS of a worker relative to a cluster
QoSCTi is evaluated as:

QoSCTi = RCTi × C
W
i × τ

CT
i (1)

where RCTi is the reputation of the worker relative to the
minimum reputation required by the tasks in the cluster, i.e.
if RWi ≥ max(RTj ) ∀j ∈ CT , then RCTi = RWi , otherwise,
RCTi = 0. τCTi is a decreasing function with the increase in
the worker’s traveling time to the cluster, defined as [11]:

τCTi = min
j∈CT

[1−max(0,min[logTCTj (T
j
i ), 1])] (2)

where T ji is the time taken in seconds for worker i to reach
task j. The collective QoS of a group of workers g relative
to a cluster CT , QoSCT (g), is evaluated as the probability
of receiving at least one successful reading following the
binomial distribution as:

QoSCT (g) = 1−
g∏
i=1

[1− QoSCTi ] (3)

Finally, the tasks in a cluster are scheduled using tabu
search algorithm [37] for eachmember, such that the traveling
distance for the worker is minimized in order to minimize
the total payment. In this layer, all the group members are

expected to perform all the tasks in the cluster they are allo-
cated to. While every member adds a value to their assigned
cluster, the added value to each individual task varies.

It may be considered a loss to some tasks in a cluster to
employ a member of the assigned group if their added value
is minimal compared to their cost, as this reduces the payoff
of the task. In addition, since the tasks are scheduled for
every i ∈ g based on the shortest distance and the spatial
location of the tasks, if there exists an untruthful worker in
the group holding multiple devices, i.e. a subgroup within g
is one individual, this worker will have the same schedule
for all their devices and will not be detected. This in turn
contributes to: 1) misbehaving devices selfishly increasing
their profit, while preventing potential behaving devices from
being selected, 2) misbehaving devices maliciously steering
the decision making of the task requester by reporting the
same information multiple times, and 3) false calculation of
the actual achieved QoS for the tasks in the cluster, as demon-
strated in Section III-A.

D. SECOND LAYER: GALE-SHAPLEY MATCHING
GAME SELECTION
To overcome the challenges presented by the first layer, a sec-
ond layer based on Gale-Shapley matching game is proposed.
Gale-Shapley is game-theoretical bipartite matching prob-
lem that considers two-sided preferences with complexity of
O(n2). Game-theory is a strategic interaction among rational
parties. In this work, we assume that all the players are
rational by trying to increase their payoff. In the original one-
to-one Gale-Shapley [14], also known as the stable marriage
problem, a set of men and a set of women are matched in
pairs based on their preset preferences, such that there is no
unmatched pair that would rather be matched together. For
this work, the Gale-Shapley matching is considered since
other matching algorithms, such as the Hungarian maximum
matching algorithm [38], do not consider two-sided prefer-
ences and/or have higher computational complexity. Hence,
playing this game will ensure that the workers and the tasks
will list their preferences appropriately, otherwise they will
not be matched.

In this work, the game is adapted to many one-to-one
matching to allowmultitasking, where the selection is divided
into multiple rounds of one-to-one matching in which misbe-
having workers are detected. A round is defined as a time
slot in which at least one task-worker assignment is made.
Hence, the assigned workers should finish the given tasks
within the round time, considering that the task’s completion
time depends on the traveling time of the worker to the task.
The members in the selected group from the first layer g
and the tasks in cluster CT are matched using the adapted
Gale-Shapley.

Each worker, i ∈ g, creates a preference list by ranking
the tasks j ∈ CT as the resulting order of the tabu search
algorithm, since this is the shortest path a worker can perform
the tasks in. On the other hand, each j ∈ CT creates a
preference list by ranking the workers i ∈ g in the descending
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order of their Shapley value [39] relative to the task. The
Shapley value is proportional to the contribution in QoS of
each worker to each task. The created preference lists include
all group members and all the tasks in the cluster, since the
group formed by the first layer conforms with all the tasks
constraints and vice versa. Using the preference lists by both
workers and tasks, the stable assignments are made in each
round, where a worker can be assigned to at most one task,
and a task can be allocated to only one worker. Using this
technique, if there exists some misbehaving workers carrying
multiple devices, even though all their devices will have the
same preference lists, they cannot co-exist performing the
same task at the same time, making it impossible for such
behavior to go undetected. In other words, workers multitask
but in a specific order at a specific time period. If a worker is
misbehaving using multiple devices, then they most probably
will receive the same order for all their devices, since their
devices will share the same location. By design, in the pro-
posed approach, the devices will receive the order of the tasks
with a certain delay, defined by the time period of the round,
which will make it necessary to be at multiple locations at the
same time.

As a result, misbehaving workers will not be able to
complete all the assigned tasks using all their devices, and
consequently the reputation of their devices will drop. The
reputation here is evaluated as:

RWi = αR
W
i + (1− α)

Completed tasks
Total assigned tasks

(4)

where the updated RWi of the worker depends on the weighted
sum of the previous reputation and the ratio of completed
to assigned tasks from that cluster. Equation (4) is also
used within the rounds, where the number of completed and
assigned tasks are updated to anticipate the final reputation.
If the round finished and an allocated task was not completed,
the corresponding device’s reputation drops. Since each task
has a set of acceptable payments (PTj ) corresponding to mini-
mum reputation thresholds (RTj ), the device whose reputation
drops below max(RTj ) for j ∈ CT , or becomes low compared
to the requested payment, is eliminated within the rounds.
This also gives chances to truthful devices to get assigned.

In addition, since the matching is based on preferences for
both tasks and workers, if i ∈ g are all truthful independent
devices, the workers selected for each task will be the workers
contributing the most to the QoS of that task, i.e. have the
highest Shapley value for that task. This means that it is
possible that a worker i ∈ g is assigned to some or all the
tasks j ∈ CT . However, it cannot happen that a worker is not
assigned to any task, or a task is not assigned any worker. This
is because each member in the group formed by the first layer
has a high contribution to the QoS of at least one of the tasks
j ∈ CT . Subsequently, the payoff of the tasks will increase as
the drop in the cost for the task will be much greater than the
drop in the QoS. The payoff of a task is defined as the QoS
achieved by the task over the cost of assigned workers, and is

TABLE 4. Final assignments for tasks and workers in different rounds.

computed for a task j as:

Payoff j =
QoS j

TPj
(5)

where QoS j is computed using (3) for final assigned mem-
bers k , where k ⊆ g. TPj is the total payment by task j to
assigned workers and is computed as:

TPj =
∑
i∈k

d jiP
W
i (6)

where d ji is the distance, in kilometer, between worker’s
current location LWi and task’s location LTj .
Revisiting the example of the untruthful environment in

Section III-A, a group of workers are selected by the first
layer as shown in Figure 1b. Taking the 7 untruthful devices
W227, 717, 718 − 722 as an example, their preference lists
are T < 33, 40, 31, 12 >. For illustration purposes, it is
assumed that all these devices start with the same reputation
value 0.663 and the tasks’ required minimum reputation is set
to 0.6.
Table 4 shows the final assignments using the second layer,

many one-to-one Gale-Shapley, divided into 10 rounds.
It can be seen from this example that W227 and W717

got the same order of assignments but starting from different
rounds, and the same would have been true for the remaining
misbehaving devices of this owner. However, due to the
inability of the owner to be at 3 different task locations at
the same time in r3, device W718 could not complete the
task, hence its reputation dropped below 0.6 and got elimi-
nated from further assignments. The same applies to devices
W719 − 722. It is worth noting that by using this technique
misbehaving devices are prevented from performing all the
tasks.

E. OVERALL APPROACH
The overall proposed algorithm is presented in Fig. 2, and is
detailed as follows:

Step 1) - Line 1: The dataset of the workers population
and the tasks are used as input. This will be later discussed in
Section IV.

Step 2) Lines 2 to 3: The number of clusters CT that
minimizes the separation scores between the tasks in an
AoI is evaluated using the Silhouette evaluation. K-medoid
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FIGURE 2. Overall approach for the proposed two-layer selection model.

clustering algorithm is then used to cluster the tasks into CT
clusters.

Step 3) Lines 4 to 7: For every cluster of tasks, the popu-
lation dataset is filtered for qualified workers, where genetic
algorithm is employed to find the best group g ∈ W of
workers that maximizes the expected QoS for the tasks in
cluster n ∈ CT . Tabu search algorithm is then used to find
the optimal path for every worker in g ∈ W that minimizes
the traveling time for the worker and the completion time of
the tasks.

Step 4) Lines 8 to 9: Every task creates a preference list of
the workers based on the descending order of their contribu-
tions assessed by the Shapley value. In addition, every worker
in g ∈ W creates a preference list of the tasks in the order of
the shortest path discovered in step 3.

Step 5) Lines 10 to 14: Based on the preference lists
created in step 4, the adapted Gale-Shapley game is used to
match each worker in g ∈ W to tasks in n ∈ CT in different
rounds. At each round, if the worker performs the matched
task, their reputation increases, otherwise it decreases. If their
reputation decreases below the minimum reputation require-
ment, that worker is considered ineligible for further selec-
tion. This process is repeated until the maximum number of
rounds is reached. The maximum number of rounds is set to
the number of workers in the group, this is to ensure that every

worker gets the chance to be assigned even in the presence of
misbehaving workers.

Step 6) The QoS of each task in n ∈ CT is calculated
using (3), and the final reputation of the participating workers
are updated using (4). In addition, the payment for each
worker for their completed tasks is calculated using (6).
Finally, steps 2-6 are repeated for all clusters n ∈ CT .

IV. SIMULATION RESULTS
In this section, the proposed two-layer misbehavior-proof
workers selection (MPWS) approach is simulated and eval-
uated in truthful and untruthful environments, to prove its
robustness. The former is the case where all participants are
assumed to be truthful, i.e. every participant owns one device,
while the latter is simulated by randomly selecting 10% of
the workers to be misbehaving and duplicating their entry
1-9 times, i.e. every misbehaving participant owns 1-9 extra
devices. The proposed mechanism is also compared with
two multi-worker multi-task approaches, i.e. group- based
Group-based Multi-task Workers Selection (GMWS) [11]
and Gale-Shapley matching game selection (GSMS) [12].
In all simulations, a Dell Intel Xeon workstation equipped
with 256 GB RAM and 300 GB hard disk is used.

The effect of varying the number of available tasks while
fixing the number and locations of 600 participants is evalu-
ated. The different number of tasks increases gradually from
set of 10 to 100 in an AoI of size 5 × 5 km, by randomly
generating 10 tasks and adding them to the existing dataset.
For all approaches, the maximum number of workers is set
to 10, and a number of 10 simulations for each set of tasks is
taken to average out the results. In the case of truthful envi-
ronment, the 10 simulations are independent of each other;
a different set of tasks are generated, and the dataset of the
population is reset. To demonstrate detection and elimination
in the untruthful environment (10% injected misbehaving
devices), the same set of tasks are repeated for all 10 sim-
ulations, while resetting the locations of the participants in
the population. For a fair comparison, all three approaches
use the same dataset for population and tasks, and the same
equations (1) - (6).

The ID and the latitude-longitude coordinates of the partic-
ipants in the population are obtained from Sarwat Foursquare
dataset, which is a social networking application contain-
ing data about users, their social connections, check-ins and
venues [40], [41]. The data is filtered for those who are
within the studied AoI. Reputation is obtained from a real-
life dataset, the Stack Exchange Data Dump.1 The remaining
attributes, which include: Sensor Availability, Distance Con-
straint, Confidence, and Payment Requested are generated
following a uniform distribution, where Payment Requested
is between 1 to 12 unit/km. The tasks’ dataset consists of:
ID, Longitude-Latitude coordinates, Required Sensors, Min-
imum QoS, and Time Constraint. For the tasks’ minimum
reputation thresholds: RTj ≥ 0.75, 0.5 ≤ RTj < 0.75, and

1https://archive.org/details/stackexchange
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RTj < 0.5, the corresponding maximum allowed payments
are set to 12, 7, and 0, respectively.

A. BENCHMARK
1) GROUP-BASED MULTI-TASK MULTI-WORKER
SELECTION (GMWS)
In this approach, tasks are clustered based on the geographic
location and a group of workers is allocated for every cluster,
where every worker is requested to complete all the tasks
in the cluster. The tasks are scheduled for every worker in
the group in order to minimize the total distance traveled.
Since the aim of the approach is to minimize the completion
time and maximize the QoS achieved by the tasks, there is a
higher emphasis on the traveling time in the QoS equation.
To fairly compare with the proposed approach, the selection
mechanism is adapted to use the same equations used in
Section III. In addition, the notion of workers payment is
added to the approach with the same mechanism to not select
workers that request payments higher than their reputation,
as proposed.

2) GALE-SHAPLEY MATCHING GAME SELECTION (GSMS)
In this approach, Gale-Shapley game is used to match tasks
with workers to maximize the user satisfaction. This is done
by allocating workers to their most preferred tasks while
maximizing the tasks’ QoS. The approach defines confidence
as the degree at which the workers’ preferences are met:

C j
i,r = 1/ranki,r (tj) (7)

where ranki,r is the rank task j in worker i’s preference list at
round r . This is adapted to the definition of confidence in the
proposed approach, which is the willingness of the worker in
attempting the task, given their historical mobility. In addi-
tion, GSMS proposes multi-task multi-worker assignment by
performing the many one-to-many Gale-Shapley game. This
is also adapted to the one-to-one game many times as is the
case of the proposed approach. Finally, the notion of payment
is also added.

B. EVALUATION
1) TRUTHFUL ENVIRONMENT
Fig. 3 shows comparison of the proposed approach (MPWS),
GMWS, and GSMS for the total QoS, in a truthful envi-
ronment. The total QoS is computed by summing the QoS
achieved by all available tasks.

It can be seen that GMWS and GSMS outperform MPWS
in terms of total QoS by a maximum of 1.2% and 1.8%,
respectively. This is expected since in GMWS, all members of
the group are requested to perform all the tasks in the assigned
cluster, where eachmember contribute to theQoS of each task
even if this contribution is minimal. Whereas, GSMS aims
to allocate the maximum number of workers requested based
on the preferences of both workers and tasks. On the other
hand, MPWS distribute these members of the group among
the tasks in the cluster according to the contribution of the

FIGURE 3. The total QoS achieved by all tasks for varying number of tasks.

FIGURE 4. The total payment by all tasks for varying number of available
tasks.

FIGURE 5. The overall payoff of all tasks for varying number of available
tasks.

members to the tasks and the workers’ preferences. Thus,
members with relatively low contributions to a specific task
are discarded from this task’s allocated group.

In spite of the minimal drop in QoS by MPWS, it has
the advantage when it comes to the cost endured by tasks in
workers selection. Fig. 4 shows the comparison of the total
payment by the tasks for all three approaches. It is evident that
MPWS decreased total workers payment by up to 15% and
32% when compared with GMWS and GSMS, respectively.
It also shows that as the number of available tasks increases,
the difference between the approaches becomes more signif-
icant. This shows that MPWS performs better even as the
workers selection process gets more complicated.

The significance of reducing the cost for the tasks is further
illustrated by comparing the overall payoff of the tasks, which
is defined as the total QoS achieved by tasks over the total
payment by the tasks. According to Fig. 5, the overall payoff
of the tasks using MPWS outperforms GMWS and GSMS by
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FIGURE 6. The total misbehaving workers selected for varying number of
tasks.

up to 17% and 46%, respectively, thus showing the efficacy
of the proposed approach.

2) UNTRUTHFUL ENVIRONMENT
In this section the proposed approach is compared against
GMWS in the case of untruthful environment. Whilst the
duplicate devices for the same participant have different ID
numbers, they share the same location and start with the same
reputation score. The reputation of each individual device is
then updated independently, depending on the completion of
the task using that device.

To illustrate how the proposed approach detects and elimi-
nates misbehaving workers, Fig. 6 shows the total number of
misbehaving devices selected in the groups. This is computed
as the sum of all misbehaving devices in the selected groups
averaged out in 10 simulations for each set of tasks.

The proposed approach outperforms GMWS by up to
94% in terms of not selecting misbehaving workers. This is
because throughout the simulations, MPWS detects the mis-
behaving devices and reduces their reputation until the repu-
tation of the device is no longer eligible to be selected. On the
other hand, the GMWS approach is unable to detect these
devices, thus including it in every selection and increasing
their reputation. Fig. 7 illustrates what happens in between
10 sequential simulations for the total number ofmisbehaving
devices selected for varying number of tasks. The tasks are
increasing bottom-up from 10-100 tasks, and the numbers
demonstrate the total devices selected for the stack at every
simulation. It is evident that the number of misbehaving
devices drops significantly (∼ 61%) just between the first
(481) and second simulation (189), and then keep decreasing
as simulations progress, thus demonstrating fast recovery of
MPWS after detecting misbehaving devices.

Furthermore, inMPWS, if amisbehaving device is selected
and fails to perform the task, that device does not get paid.
Fig. 8 shows a comparison of the total payments given to mis-
behaving workers for MPWS and GMWS. MPWS decreases
total payment for untruthful devices by 95% when com-
pared with GMWS. This proves that even though untruthful
devices are initially selected, MPWS makes it challenging
for participants to submit duplicate reports using multiple
devices, hence increasing the payoff of the tasks and decreas-
ing the profit for the misbehaving workers. On the contrary,

FIGURE 7. Total number of misbehaving workers selected vs. the
simulation number. The graph is a stack of the varying number of tasks,
i.e. 10-100 tasks, for each of the 10 simulations. The width of each line
represents the total for the corresponding number of tasks.

FIGURE 8. The total payment for misbehaving devices for varying number
of tasks.

FIGURE 9. The total payment for behaving devices for varying number of
tasks.

in GMWS, when duplicate reports are submitted by multiple
devices owner, each device gets paid, and unrealistic QoS is
achieved.

Fig. 9 shows a comparison of payment given to truthful
workers. It can be seen that MPWS demonstrate higher pay-
ment for behaving workers by up to 119%, since MPWS
eliminates misbehaving devices from the selection process
throughout iterations, which increases the inclusion of behav-
ing workers. On the other hand, the re-selection of misbe-
having devices in GMWS prevents some of the potential
behaving devices from getting the chance to participate in the
MCS system, thus demonstrating lower payment for behav-
ing workers.

Finally, Fig. 10 shows a stacked graph of the percent-
age paid to untruthful devices out of the total payments by
the tasks as simulations progress. The maximum untruthful
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FIGURE 10. The percentage of total payment given to misbehaving
workers vs. the simulation number. The graph is a stack of the varying
number of tasks, i.e. 10-100 tasks, for each of the 10 simulations. The
width of each line represents the percentage for the corresponding
number of tasks.

paid percentage reaches up to 40% at simulation number 1,
and it reduces to 0% from simulation number 3. Moreover,
the proposed approach performs even better when the number
of tasks is higher, since this decreases the probability of
untruthful devices to complete tasks, thus making it easier to
detect and eliminate them.

V. CONCLUSION
In this work, a two-layer misbehavior-proof selection
approach (MPWS) is proposed. In the first layer, a group
of workers is selected for a cluster of tasks to maximize
the QoS of the tasks. Whereas in the second layer, a game-
theoretical approach is proposed to enhance the payoff of
the task requesters and to overcome the misbehaving act of
impersonating multiple identities using multiple devices. It is
worth noting that the second layer is independent of the first
layer, and can be used as an extension to any multi-worker
multitasking selection approach. The proposed approach was
evaluated and compared with two benchmarks, GMWS and
GSMS. The simulations results demonstrate that MPWS
decreases the total payment for tasks by up to 15% and
32% when compared with GMWS and GSMS, respectively.
In addition, the payoff for the tasks is increased by 17% and
46% when compared with GMWS and GSMS, respectively.
The results also show that MPWS decreased selection of
misbehaving devices by up to 94% and their payment by up to
95% when compared with GMWS, thus showing the efficacy
of the proposed approach. For future work, the problem of
multiple identities using multiple devices will be addressed in
opportunistic crowd sensing scheme. In opportunistic sens-
ing real-world mobility datasets will be used to predict the
availability of the workers in the locations of the allocated
tasks to further enhance the confidence of these workers in
performing the tasks.
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