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ABSTRACT Class imbalance occurs in classification problems in which the ‘‘normal’’ cases, or instances,
significantly outnumber the ‘‘abnormal’’ instances. Training a standard classifier on imbalanced data leads
to predictive biases which cause poor performance on the class(es) with lower prior probabilities. The less
frequent classes are often critically important events, such as system failure or the occurrence of a rare
disease. As a result, the class imbalance problem has been considered to be of great importance for many
years. In this paper, we propose a novel algorithm that utilizes the furthest neighbor of a candidate example
to generate new synthetic samples. A key advantage of SOMTEFUNA over existing methods is that it does
not have parameters to tune (such as K in SMOTE). Thus, it is significantly easier to utilize in real-world
applications. We evaluate the benefit of resampling with SOMTEFUNA against state-of-the-art methods
including SMOTE, ADASYN and SWIM using Naive Bayes and Support Vector Machine classifiers. Also,
we provide a statistical analysis based on Wilcoxon Signed-rank test to validate the significance of the
SMOTEFUNA results. The results indicate that the proposed method is an efficient alternative to the current
methods. Specifically, SOMTEFUNA achieves better 5-fold cross validated ROC and precision-recall space
performance.

INDEX TERMS Binary classification, data mining algorithm, furthest neighbor, imbalance problem,
SMOTE.

I. INTRODUCTION
Class imbalance appears in classification data where the
training samples from one class (majority class) signifi-
cantly outnumber the samples from the other class (minor-
ity class) [1]. The fundamental issue in class imbalance is
that classifiers induced on imbalanced training sets exhibit
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a predictive bias associated with weak performance on the
minority class.

The predictive bias is especially problematic because the
minority class is often of critical importance [2]. This is
indeed the case in real-world problems such as disease
detection [3], credit card fraud detection [4], gene profil-
ing [5], invoice classification [6], face image retrieval [7],
content-based image retrieval [8], authentication [9], radia-
tion detection [10], etc.
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Formally, given a supervised machine learning dataset D,
with n examples, which belong tom classes {C1,C2,C3, . . . ,

Cm}, if any | Ci |�| Cj | then D is called an imbalanced
dataset. There are several approaches used to solve this prob-
lem such as

• Collecting more examples belonging to the minority
class(es).

• Adjusting the loss function to assign a higher cost to
the failed detection of the minority class instances, or a
lower cost to the majority class [11].

• Re-sampling the training set, i.e., oversampling or syn-
thetically sampling the minority class, undersampling
the majority class, or applying a combination of these
methods.

In practice, the collection of more data is limited by the
associated time and cost constraints. Moreover, in some
domains, the minority class is truly rare, and thus, a sufficient
number of samples cannot be collected at any cost. Cost
adjusting has been shown to be an effective approach to deal
with imbalance; however, it generally requires adjustments
to the classification algorithm and/or the prior knowledge of
appropriate misclassification costs. Alternatively, resampling
is an easy to apply domain independent option, which has
been shown to be equivalent to cost adjustment under certain
circumstances [12]. Within the realm of resampling methods,
synthetic oversampling is particularly effective because it
avoids the loss of information that is common in random
undersampling and overfitting which can occur due to ran-
dom oversampling [13].

In this paper, we propose a novel method of synthetic
oversampling theminority class, SOMTEFUNA.Unlike Syn-
thetic Minority Oversampling TEchnique (SMOTE) [13],
which generates samples within the convex-hull formed by
the minority samples, our approach is based on finding a
potential space in the feature space, which forms a (hyper)
cuboidal shape between selected minority examples. This
potential space is found by connecting the furthest neighbours
in the minority class. The key intuition is that within the
potential space, it is appropriate to generateminority samples.

Forming the potential space from the furthest neighbour
has the fundamental advantage of improving diversity in the
synthetic set, and thus, the generality of the induced classifier.
Alternatively, the traditional methods that generate samples
between k-nearest minority class examples have a tendency to
produce synthetic samples that are near replicas of their seeds.
This risks the induction of model that overfits the minority
class. Thus, we postulate that SOMTEFUNA improves the
interpolation between the minority examples and helps to
avoid overfitting.

With SOMTEFUNA, candidate examples are generated at
random points within the potential space. In the final step,
a generated candidate is saved as a synthetic minority sample
if and only if its nearest neighbour in the training set is also a
minority class example; otherwise it is deleted. This ensures
that the synthetic samples do not encroach deep into the

majority class space, a problem which can occur with other
methods.

For our analysis, we undertake 5-fold cross validated
experiments on 33 benchmark datasets with Naive Bayes and
Support Vector machines (SVM) classifiers. We utilize ROC
and precision-recall curves for evaluation and empirically
show that SOMTEFUNA is an efficient alternative to current
state-of-the-art synthetic oversampling algorithms including
SMOTE, ADASYN and SWIM.

The rest of this paper is structured as follows:
Section 2 highlights the relevant recent work on class imbal-
ance. In Section 3, we present the proposed SOMTEFUNA
oversampling algorithm, and in Section 4, we present and
discuss the experimental results.

II. RELATED WORK
SMOTE [14] is one of the most widely applied methods
used to mitigate the negative effects of class imbalance.
It interpolates synthetic instances between nearest neighbours
in the set of minority class instances in the training set.
Thus, a synthetic sample is formed as a combination of the
features of seed examples and randomly selected k-nearest
neighbours. The k parameter must be set by the user. The
initial version of the SMOTE algorithm only applied syn-
thetic oversampling. However, a combination of synthetic
oversampling and undersampling can be effective [15]. The
original study empirically evaluated SMOTE on 9 benchmark
datasets and found it to improve classifier performance.

SMOTEBoost [16] is another approach for learning from
imbalanced datasets; this method combines SMOTE and
a standard boosting algorithm. It generates new examples
from the minority class by applying SMOTE in each round
of boosting. This enables each learner to learn more from
the minority class examples. SMOTEBoost was applied to
four imbalanced datasets, and the results showed a slight
F-value improvement in the prediction compared to the orig-
inal SMOTE.

Pan and co-workers [17] proposed two sampling meth-
ods to improve imbalanced datasets. The first is Adaptive-
SMOTE, which is intended to improve SMOTE by selecting
collections of inner and danger data from the minority class.
This is applied to firm up the distributional characteristics of
the original data. The second proposed method is based on
Gaussian oversampling, which combines dimension reduc-
tion with the Gaussian distribution. Both of these methods
were applied on 15 imbalanced datasets. The empirical eval-
uation showed good results obtained by both methods. The
performance of non-minority classes, however, was found to
degrade after sampling.

Another interesting method for learning from imbalanced
datasets is the adaptive synthetic sampling (ADASYN) [18].
This method uses a weighted distribution over examples
that belong to the minority class. This is used to assess
and address the learning difficulty. Specifically, more new
examples are created for hard-to-learn examples, compared
to those easier-to-learn minority examples. This approach
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improves the learning process by reducing the bias intro-
duced by the imbalanced data and shifting the classification
decision boundary towards the hard-to-learn examples. This
method was applied to five imbalanced machine learning
datasets. The comparison results showed that the F-values of
the ADASYN were slightly better than those of SMOTE in
three datasets.

Sampling with the majority class (SWIM) [19] is a frame-
work proposed for synthetic oversampling in extreme imbal-
ance classification. Opposite to most of the aforementioned
methods, the key feature of this method is the exploitation
of the density of the well-represented majority class. This is
used to guide the generation of new examples of the minority
class. This method was evaluated on 25 datasets with extreme
levels of imbalance. The results show improvement in the
classification performance compared to some of the exist-
ing oversampling techniques. The greatest improvement was
shown to occur on datasets with the most extreme level of
imbalance.

Siriseriwan and Sinapiromsaran proposed a parameter-free
adaptive algorithm called Adaptive Neighbor Synthetic
Minority Oversampling Technique (ANSMOT) to change the
number of neighbors required for oversampling across differ-
ent minority regions [20]. The major advantage of ANSMOT
compared to SMOTE is that it removes the need for the
dataset parameter K . Their experiments on 14 imbalanced
datasets showed that the F-measures have improved when
using ANSMOT comparing to the other methods tested.

An informative review of oversampling methods can be
found in [21], where a comprehensive empirical analysis
of 85minority oversampling methods is presented, discussed,
and evaluated on 104 imbalanced datasets.

There are other methods proposed in the literature to
enhance learning from imbalanced datasets, these include but
not limited to [22]–[30]. Despite the success of these methods
in real-world applications, all of them have their own pros and
cons, and none of them is perfect, and therefore, there is room
for enhancement in this research line. This paper proposes
an efficient method to enhance learning from imbalanced
datasets, whose results indicate that it is better than some
popular, state-of-art methods.

III. METHODOLOGY
The proposed method is prefaced on generating synthetic
minority samples at random points within a potential space
(hyper cuboidal) formed from the furthest neighbours from
randomly selected minority class examples (seed instances).

Figures 1(a) and 1(b) show hypothetical minority and
majority examples (left) and a candidate synthetic instance
generated from the minority seed and its furthest neigh-
bour (right). As can be seen in Figure 1(b), one example
ES1 is randomly selected from the minority class (shown
as a blue cross). The Furthest Neighbour (FN) algorithm
finds the example with the max distance r from the selected
seed example. In the figure, we denote it as ES2 (shown
in Figure 1(b)). The new synthetic sample is produced

FIGURE 1. Two hypothetical classes (a) and the potential space for the
new examples (b).

by taking a random value between each pair of the two
vectors. For instance, assuming that ES1 = {X1,Y1} and
ES2 = {X2,Y2}, the synthetic sample will be ESnew =

{λ, γ }, where λ = Random
(
min

(
X1,X2

)
,max

(
X1,X2

))
and

γ = Random
(
min

(
Y1,Y2

)
,max

(
Y1,Y2

))
. This emphasizes

the distinction that SMOTE would generate a new sample at
a random point on the line connecting ES1 and ES2, whereas
SMOTEFUNA generates the sample between each feature
value of the two examples, i.e., each feature of the new sample
is located within the ranges of the two examples chosen from
the dataset. In this case, the produced example is forced to be
located within the cuboidal potential space formed between
the two real examples from the dataset. Figure 1(b) presents
the potential space as a shaded rectangle, and the hypothetical
synthetic example ESnew is a gray cross within the potential
space (Figure 1(b)).

Selecting the furthest example provides an advantage of
allowing for a more diverse set of synthetic samples. At the
same time, the synthetic distribution is likely to be similar to
the true minority distribution because the synthetic examples
are generated from real minority instances. This is because
the nearest neighbour constraint on each synthetic sample
ensures that the sample does not intrude on the majority class.

Figure 2 shows a scenario of linearly separable examples
and their (oversampling) results using SMOTEFUNA com-
pared to the result of SMOTE, while Figure 3 presents a
variation on our algorithm using nearest neighbour examples
in the augmentation process.

As can be clearly seen in Figures 2 and 3, the proposed
method provides better coverage of theminority class. In con-
trast, using the nearest examples in the process of augmenta-
tion creates clusters of new examples in the original minority
data. This can distort the resulting distribution when outlier
examples are located in the decision boundary of the majority
class (overlapping) [31], [32].

Data complexity has been shown to be a major factor
contributing to the degradation of classifier performance in
imbalanced domains [33]. A key aspect of this complexity is
overlapping class distributions [34]–[37]. Figure 4(a) depicts
an artificial classification setting in which the classes are
overlapping. Post-hoc cleaning of the augmented datasets is
a common way to deal with overlap after synthetic oversam-
pling. Alternatively, SMOTEFUNA has a built-in check to
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FIGURE 2. Results of SMOTEFUNA algorithm on a simple linearly
separable space compared to SMOTE.

FIGURE 3. The affect of selecting the nearest neighbours for creating
synthetic examples.

help prevent synthetic samples from being generated inside
the majority class. For domains with overlapping classes,
the potential space will overlap with the majority class. Thus,
we do not want to blindly generate synthetic samples in the
overlapping areas. This is demonstrated in Figure 4(b).

To prevent synthesizing instances in the majority class
space, we add a constraint based on the candidate sample’s
nearest neighbour. Specifically, if its nearest neighbour is

FIGURE 4. An example of false potential space for creating new examples.

Algorithm 1 SMOTEFUNA Algorithm
Input: Imbalanced dataset D
Output: Balanced dataset D̂
1: Minority← D(Minoritysubset)
2: Majority← D(Majoritysubset)
3: Rate← length(Majority)− length(Minority)
4: i← 0
5: while i ≤ Rate do
6: n = Random(1, length(Minority)
7: ES1← Minority(n)
8: ES2← The vector with the maximum distance d from
ES1 in Minority

9: ESnew← zeros(length( ES1))
10: for j = 1 to length( ES1) do
11: Snewj = Random

(
min

(
S1j, S2j

)
,max

(
S1j, S2j

))
12: if θ ≤ β then
13: Synthetic(i) = ESnew
14: i++
15: else
16: go to 5
17: D̂ = HConcatenation(Minority, Synthetic,Majority)
18: D̂ = RandomShuffle(D̂)

from the majority class, then the candidate is discarded and
new random candidate is generated; otherwise, the candidate
is accepted and added to the synthetic set.

Algorithm 1 illustrates the steps employed by
SMOTEFUNA to generate the synthetic minority set. The
term θ = min(d(ESnew,MinorC)) is the minimum distance
between the generated example and its nearest example in
the minority class, and β = min(d(ESnewj,MajorC)) is the
minimum distance between the generated example and its
nearest example in the majority class. MinorC and MajorC
are the minority and majority examples closest to ESnew,
respectively. The terms θ and β in Algorithm 1 are the core
of the built-in checker, which validates any newly generated
sample. According to our definition, if θ is smaller than or
equal to β, then the generated sample is closer to the minority
data, therefore, it can be created since, as we assume, it is
more likely to be within the decision boundary of theminority
class. Otherwise, if θ value is greater than β value, then the
newly generated example is overlapping with the majority
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data, thus it must be deleted. Step 6 selects a natural random
number between 1 (assuming the index starts from 1) and
the length of the minority set. Minority and Majority con-
tain the minority and majority class samples from the main
dataset D, respectively. Minority(n) returns the nth example
in the minority set Minority. The distance function d can be
calculated using any distance measurement. We utilized the
Manhattan distance (Equation 1) because of its simplicity and
computational efficiency:

dk =
n∑
j=1

|S1j− Sk j|, (1)

where dk is the distance between the current (randomly
selected) example ES1 and the kth example in the dataset ESk .
The variable k varies from 1 to l, where l = |Minority|−1, n is
the number of attributes (features) in the dataset. The distance
d is calculated between ES1 and all the other examples of the
minority subset in order to find the furthest one (maximum
distance) from ES1. Step 9 initializes a vector of zeros whose
length is the same as an actual example. Synthetic(i) is set
to the ith instance of the synthetic set. HConcatenation pre-
forms a horizontal concatenation of the three sets, Minority,
Synthetic and Majority, in order to form the final balanced
dataset. RandomShuffle(D̂) is an optional step to randomize
the locations of the synthetic samples in the resulting training
set. Applying the randomization may help with the induction
of some classification methods. In particular, it prevents the
learning from seeing all of the synthetic samples in suc-
cession during training, e.g., in a single batch of neural net
training.

Figure 5 shows scenarios of different data distribu-
tions and their corresponding oversampling results using
SMOTEFUNA and SMOTE with K = 5.

Figure 5 provides a clear demonstration of the fact that
SMOTE generates samples that both overlap with the major-
ity class and result in less coverage of the minority class space
than SMOTEFUNA. Alternatively, SMOTEFUNA produces
examples within the same boundary of the minority with
much better interpolation.

Figure 6 shows another scenario in which the data of the
minority class are spread as separated groups around the data
of the majority class.

As can be seen from Figure 6, even if the minority data
is separated into different clusters, SMOTEFUNA generates
the new samples within or near to each cluster. This ability
of SMOTEFUNA to follow the distribution of the minority
data is due to the aforementioned main factors, the shape of
the potential space which provides the flexibility to generate
new samples, and the built-in check, which approves the
sample produced if it is near the minority class, and otherwise
deletes it.

In Figure 7, we illustrate the invariance of SMOTEFUNA
to outlier examples. By validating the generated exam-
ple with its nearest neighbour, SMOTEFUNA makes the
algorithm much less sensitive to a type of outlier where

FIGURE 5. Different data distributions of minority and majority classes
(left column), the results of oversampling using SMOTEFUNA (middle
column) and SMOTE results (right column), blue points are the majority,
red points are the minority and the red crosses are the new examples.

FIGURE 6. Minority data forms clusters around the majority data.

minority examples overlap with majority examples in the
space. In particular, we present a scenario in which outlier
instances from the minority class overlap with the majority
class (Figure 7(a)), and illustrate that SMOTEFUNA does
not reinforce these outliers by generating additional over-
lapping synthetic instances (Figure 7(b)). In SMOTE, users
are required to apply additional post-hoc cleaning meth-
ods, such as the removal of Tomek links [38], to prevent
this.

Figure 8 visualizes several benchmark datasets after pro-
jecting them to their first 2 principal components. In the upper
dimensions, i.e., the number of features is greater than 3,
the new generated examples seem to be located within the
same space of the minority examples with respect to the max-
imum variance in all of the presented datasets (Figure 8). The
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FIGURE 7. Illustration of how validating the new generated examples
with the nearest neighbours makes the algorithm less sensitive to outlier,
blue points are the majority.

FIGURE 8. Projection of the minority, majority and the new created
examples using 2 PCA components on different datasets. Datasets names
correspond to the datasets numbers mentioned in Table 1.

results of the principal component analysis (PCA) projection
demonstrate that SMOTEFUNA forces the data to follow the
distribution of the minority class and prevents the generation
of synthetic examples in an overlapping manner with the
majority class.

IV. EXPERIMENTS AND RESULTS
In this section, the proposed algorithm is compared with a
subset of the state-of-the-art methods for synthetic oversam-
pling. In particular, we evaluate SMOTEFUNA with respect
to SMOTE [14], ADASYN [18], SWIM [19].

In our experiments, we utilize naive Bayes (with kernel
smoothing density estimate) and support vector machines
(with error-correcting output codes model) classifiers. The
Matlab 2019b environment is used to perform the experi-
ments involving SMOTE and ADASYN, while Python is

TABLE 1. Dataset description. nInes is the number of inestances, nCl is
the number of classes, IR is the Imbalance ratio and nAt is the number of
attributes(features).

used for SWIM1 because there is no Matlab implementation
available.

A. EVALUATION MEASURES
To validate the performance of the proposed method,
each experiment is conducted using 5-fold cross-validation.
We report the performance in terms of the receiver oper-
ating characteristic curve (ROC) and area under the ROC
curve (AUC) [39]–[41]. As an additional metric of evaluation,
we utilize Precision-Recall curves (PR curve) and the area
under PR curve (AUPR). These two measures are commonly
used to test the performance of oversampling algorithms and
provide an alternate perspective on performance [42]–[44].
ROC and PR curves indicate a good performance when the
area under each curve is close to 1. The experiments are

1https://github.com/cbellinger27/SWIM_RBF/.
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TABLE 2. Number of wins for each algorithm using both classifiers and different evaluation measures, in case of equal performance of two (or more)
methods, they both considered as winners.

FIGURE 9. The ROC and PR curves of the proposed method compared to
the other methods and the original data using NB classifier.

repeated 30 times using the 5-fold cross validation approach,
and the mean of the performance measures (AUC and AUPR)
is considered as the final result for each method on each
dataset. Also, the standard deviation of the performance is
calculated for each method on each dataset to provide an
overall measure of performance.

B. DATASETS
Table 1 outlines the 33 benchmark datasets employed to eval-
uate the proposed method. These were selected as they vary

FIGURE 10. The ROC and PR curves of the proposed method compared to
the other methods and the original data using SVM classifier.

in their imbalance ratio (IR), the number of instances (nInes)
and the number of attributes (nAt), while the number of
classes (nCl) is the same (binary classification). IR is calcu-
lated as the number of examples in the majority class divided
by the number of example in the minority class [45], [46].
In our experiments, each dataset is used considering all of
its attributes. Also, each dataset is standardized using z-score
prior to the learning process

All of the datasets are publicly available to the research
community. The first set of datasets can be downloaded
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TABLE 3. p-value of the Wilcoxon signed-rank test of SMOTEFUNA vs SMOTE, SMOTEFUNA vs AD, SMOTEFUNA vs SWIM and SMOTEFUNA vs OR, using the
AUC and AUPR obtained by SVM and NB classifiers.

TABLE 4. Wilcoxon R, W+, and W−, separated by ‘‘/’’.

TABLE 5. AUC results of different methods using SVM classifier, mean ± Standard deviation (STD) calculated over 30 trials.

from the PROMISE repository [47], and the second set
of datasets is available from KEEL website (Imbalance

ratio between 1.5 and 9 and imbalance ratio higher
than 9 - Part I) [48], [49].
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TABLE 6. AUPR results of different methods using SVM classifier, mean ± standard deviation (STD) calculated over 30 trials.

C. RESULTS
ROC curve provides an efficient evaluation of the learning
process as it represents the relation between the two important
measures, true positive rate (TPR) and false positive rate
(FPR). ROC curve is a plot of TPR as a function of FPR at dif-
ferent performance thresholds. Figures 9 and 10 compare the
ROC and PR curves of different methods to SMOTEFUNA
using several datasets and classifiers using the first fold; the
averages using all folds (all trials) are provided in the tables
at Appendix.

As one can see in Figures 9 and 10, the performance of the
proposed method is better than those of the other methods.
The performance curves of SMOTE and ADASYN follow
very similar trajectories, which indicates that they cause
the induced classifier to behave similarly. Notably, SMOTE
and ADASYN do not provide any significant improve-
ment with respect to the ROC curves on some datasets.

Oppositely, SMOTEFUNA does improve performance in
these cases. In the case of SWIM, the performance is alter-
nating. Although it works well on some datasets, it seems to
not obtain satisfactory results on the majority of the datasets.
This is a noteworthy result as it was initially proposed for
extreme levels of imbalance. Our results suggest that under
certain conditions, it may perform very well on less extreme
levels of imbalance.

AUC provides an efficient evaluation of the performance.
The perfect performance of a classifier on a dataset is when
AUC is equal to 1. Due to difficulty of presenting all ROC
and PR curves for all the datasets, we use AUC and AUPR
to give a clear vision of the performance of different methods
using these two measures. The complete tables can be found
in Appendix. Table 2 summarizes the number of wins for
SMOTEFUNA algorithm on all of the used datasets, com-
pared to the other algorithms.
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TABLE 7. AUC results of different methods using NB classifier, Mean ± Standard deviation (STD) calculated over 30 trials.

As presented in Table 2, SMOTEFUNA has the highest
number of wins, compared to other resampling methods,
followed by SMOTE and ADASYN, respectively. Finally,
the baseline classifier, without resampling (original data), has
a higher number of wins than SWIM, in term of AUC and
AUPR values, when SVM is used; and slightly better than
those of the original data when NB is used. The aggregated
results in this table suggest that SMOTEFUNA is a reliable
alternative solution for oversampling imbalance data.

Tables 5 and 7 illustrate the performance of SMOTEFUNA
in terms of AUC compared to other methods using SVM and
NB, respectively. In general, the results are better than that
of the other methods on most of the tested datasets. In some
cases, the results were not satisfactory. This is perhaps due
to a specific type of outliers, where an outlier example(s) is
far from the minority data and even farther from the majority
data. In such a case, SMOTEFUNA might add examples

in the space between the minority and the outlier example.
Such situations need to be investigated in future studies
in order to improve the performance on machine learning
datasets, where this phenomenon is more likely to occur.
Using SVM classifier, SMOTEFUNA records higher results
on 21 datasets out of 33, while it records better results on
24 datasets using NB, in terms of AUC.

Tables 6 and 8 present the results of AUPR on the tested
datasets using the same classifiers and the same valida-
tion approach. For AUPR, SMOTEFUNA is better than the
other methods compared on 19 datasets using SVM, and on
20 datasets when NB is used.

As can be clearly noticed from the results of AUC and
AUPR, the learning process is improved after oversampling
using SMOTEFUNA. For example, the AUPR result using
the original data of D10 (see Table 8) has improved from
around 53% to 98%, and from around 29% to 95% when
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TABLE 8. AUPR results of different methods using NB classifier, Mean ± Standard deviation (STD) calculated over 30 trials.

learning from D17, which can be considered as a significant
enhancement of the learning process. The rest of the compar-
ative results are presented in Tables 5–8.

D. STATISTICAL ANALYSIS
To further analyze the results shown in Tables 5, 6, 7 and 8,
and to see if there are any significant differences between
the proposed SMOTEFUNA and the other methods com-
pared, a Wilcoxon signed-rank test is performed on the
SMOTEFUNA results versus each other method, using SVM
and NB classifiers on both measures (AUC and AUPR) over
all of the 33 datasets tested. We used SPSS (version 24)
software for this purpose, the results are recorded in Tables 3
and 4, these results are further verified using an online statis-
tical tool.2

2http://www.statskingdom.com/175wilcoxon_signed_ranks.html

The Wilcoxon test is suitable for our comparison because
it is safer than parametric tests (such as t-test) since it
does not assume homogeneity or normal distribution of
data. Therefore, it can be applied to error ratios, classifica-
tion results (accuracy, precision, recall), or any other clas-
sifier evaluation measure [50]. The Wilcoxon test aims to
find if a null hypothesis is true or not. The null hypoth-
esis H0 assumes that there is no significant difference
between the classification results (observations) obtained
from two different methods. We assume that the null hypoth-
esis is rejected if the p-value of the Wilcoxon test is less
than α = 0.05.

As can be seen from Table 3, the p-values for all the paired
tests are less than 0.05, and therefore, the H0 is rejected for
all the paired tests. This shows that the differences between
the (AUC and AUPR) results of SMOTEFUNA and that of
the other methods compared are big enough to be statistically
significant.
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However, the p-value does not provide information about
the relationship strength between variables, and does not
allow us to determine which variable dominates the others,
i.e., is better [51]. Thus, based solely on the p-values shown
in Table 3, we cannot tell whether these significant results are
in favor of SMOTEFUNA or not, as they have only shown
that there is a significant difference between the results of
SMOTEFUNA and each of the other methods tested.

Therefore, in order to see which method performs bet-
ter, we need to look at other measures associated with the
Wilcoxon test, namely, sum of the positive ranks (W+), sum
of the negative ranks (W−), and the effect size (R), which
serve such purpose well. The effect sizes of the Wilcoxon
signed-rank test can be calculated using

R =
|Z |
√
N
,

where Z is the test statistic, and N the total number of paired
samples, which is equal to 33 in our case. The sizes of effects
can be categorized as small (R ≤ 0.1), medium (0.1 <

R < 0.5), or large (R ≥ 0.5) [52]. The three mentioned
measures are shown in Table 4, which were obtained by the
same Wilcoxon test, whose p-values are shown in Table 3.
The results in Table 4 show the magnitude of effects

obtained by the comparison of SMOTEFUNA with the other
methods. Since the results of the other methods were sub-
tracted from those of the SMOTEFUNA, W+ is counted for
SMOTEFUNA, while W- is counted for the other method
compared. The effect size is considered as large in most
cases (12 cases) and medium in the remaining 4 cases.
Another interesting note is that W+ is significantly higher
than W− for all the paired tests, i.e. SMOTEFUNA is the
winner of most datasets, regardless the classifier or the mea-
sure used. This proves that the significant difference shown
by the p-values is in the favor of our proposed SMOTEFUNA
method in all cases (two different classifiers and two different
measures).

V. CONCLUSION
In this paper, we present a novel, parameter-free algorithm
for performing synthetic oversampling on imbalanced data
sets, for the purpose of better learning from imbalanced
data. The proposed method, SMOTEFUNA, is evaluated on
33 benchmark machine learning datasets using two different
classifiers. The experimental results show that, in general,
SMOTEFUNA outperforms SMOTE, ADASYN and SWIM
in terms of ROC and PR curves as well as AUC and AUPR
values.

Our analysis reveals that, although SMOTEFUNA typi-
cally performs well, it may be negatively impacted, partic-
ularly when an outlier example of minority class is isolated
from both the minority and majority classes. In such a case,
the potential spaces of the new examples will be shifted away
from the ideal decision boundary, and towards the outlier
example. In future implementations, this can be managed
by detecting and removing the outliers prior to utilizing

SMOTEFUNA [53]–[56]. Alternatively, the outlier problem
can be alleviated using a distance metric that is not affected
by outliers, such as [57], [58].

Our future efforts will include further evaluation of
SMOTEFUNA compared to a larger number of related meth-
ods, and extending of SMOTEFUNA to work on multi-class
imbalanced data, nominal and big datasets.

APPENDIX
A. TABULAR RESULTS
See Tables 5–8
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