
Received March 13, 2020, accepted March 19, 2020, date of publication March 24, 2020, date of current version April 7, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2982956

CPU–GPU Utilization Aware Energy-Efficient
Scheduling Algorithm on Heterogeneous
Computing Systems
XIAOYONG TANG AND ZHUOJUN FU
College of Information and Intelligence, Hunan Agricultural University, Changsha 410128, China

Corresponding author: Zhuojun Fu (fzj@hunau.edu.cn)

This work was supported in part by the National Key Research and Development Program of China under Grant 2017YFD0301506, in part
by the National Natural Science Foundation of China under Grant 61972146 and Grant 61672219, in part by the Hunan Provincial Key
Research and Development Program under Grant 2018GK2055, and in part by the Double First-Class Construction Project of Hunan
Agricultural University under Grant SYL201802029.

ABSTRACT Nowadays, heterogeneous computing systems have proven to be a good solution for processing
computation intensive high-performance applications. The main challenges for such large-scale systems are
energy consumption, computing node CPU-GPU utilization dynamic variability, and so on. In response
to these challenges, this study first provides heterogeneous computing systems architecture and parallel
application job model. Then, we build system computing node CPU-GPU utilization model and analyze
job execution energy consumption. We also deduce the optimal CPU-GPU utilization and job deadline
scheduling constraint. Third, we propose a systems CPU-GPU utilization aware and energy-efficient
heuristic greedy strategy (UEJS) to solve this job scheduling problem. To improve the algorithm global
optimization ability, we design a hybrid particle swarm optimization algorithm (H-PSO), which incorporates
the heuristic greedy strategy into the bio-inspired search optimization technique. The rigorous experimental
results clearly demonstrate that our proposed H-PSO outperforms heuristic greedy strategy, Max-EAMin,
and Genetic Algorithm in terms of the average energy consumption of jobs and system job rejection rate.
In particular, H-PSO is better than UEJS by 36.5%, Max-EAMin by 36.3%, and GA by 46.7% in term of
the job average energy consumption for heterogeneous system with high workload.

INDEX TERMS Heterogeneous computing systems, CPU-GPU utilization, energy consumption, job
scheduling, particle swarm optimization.

I. INTRODUCTION
In the past few years, many computation intensive high-
performance applications, such as image processing, natu-
ral language processing, have been deployed on large-scale
heterogeneous computing systems based on CPU-GPU [1].
This is mainly due to the low cost, good expansibility char-
acteristics of that systems [1], [2]. One of the main chal-
lenges for such infrastructure is energy consumption, which
generates high operational costs and produces a dramatic
increase in carbon. For example, the first ranked on the
top-500 list Supercomputer Summit has an operating power
of 10.096 MW [3], which its energy consumption is about
2.8 times of the total electricity consumption of universities
in Guangzhou University Town. This Supercomputer is a

The associate editor coordinating the review of this manuscript and

approving it for publication was Diego Oliva .

classical CPU-GPU heterogeneous system, which consists of
4608 computing nodes [3].

Due to the heterogeneity of system and the complexity
of parallel applications, the resource (or CPU-GPU) uti-
lization of heterogeneous computing nodes usually changes
dynamically [4], [5]. The dynamic variability of CPU-GPU
utilization also results in the changing of their power con-
sumption. In general, the power consumption increases non-
linearly with the increase of computing nodes CPU-GPU
utilization [5]–[7]. Therefore, for large-scale heterogeneous
computing systems, the energy consumption of comput-
ing nodes with different CPU-GPU utilizations is different.
Moreover, the total energy consumption of heterogeneous
computing systems will also greatly fluctuate depending on
the jobs and computing nodes dispatching schemes. This
problem can be summed up as a combinatorial optimiza-
tion problem with the goals of satisfying the application

58948 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-6661-5900
https://orcid.org/0000-0001-8781-7993


X. Tang, Z. Fu: CPU–GPU Utilization Aware Energy- Efficient Scheduling Algorithm on Heterogeneous Computing Systems

performance requirements and minimizing system energy
consumption, which is widely known as a NP-complete in
the general case [8].

Recently, techniques such as dynamic power manage-
ment, dynamic voltage-frequency scaling (DVS), slack
reclamation, resource hibernation, and so on, have been suc-
cessfully applied in reducing the energy consumption of
single computing resource [9]–[11]. These approaches are
incorporated into job scheduling strategy to solve heteroge-
neous computing systems energy consumption optimization
problem [12], [13]. However, most of them are not effectively
deal with the relationship between resource (CPU-GPU) uti-
lization dynamic variability and energy consumption.

In recognition of this, motivated by challenges of het-
erogeneous computing systems energy consumption, com-
puting node CPU-GPU utilization, and job optimization
scheduling, we propose two CPU-GPU utilization aware and
energy-efficient job scheduling algorithms. Our contributions
are multifold and can be summarized as follows:

• First, we build heterogeneous computing systems archi-
tecture, which consists of computing nodes with local
queue. And, the parallel application job model based on
CPU and GPU execution size is proposed.

• Secondly, we define system computing node CPU-GPU
utilization model and analyze the relationship between
computing node power consumption and CPU-GPU uti-
lization. We also deduce job execution energy consump-
tion and the optimal CPU-GPU utilization.

• Thirdly, we provide a systems computing node
CPU-GPU utilization aware and energy-efficient heuris-
tic greedy job scheduling algorithm (UEJS). To improve
the algorithm global optimization ability, we combine
the heuristic greedy strategy and bio-inspired search
optimization method into a hybrid particle swarm opti-
mization algorithm (H-PSO) to schedule jobs.

• Finally, the performance evaluation shows that our pro-
posed hybrid particle swarm optimization algorithm
(H-PSO) outperforms heuristic greedy strategy (UEJS),
Max-EAMin, and GA in terms of the job average energy
consumption and system job rejection rate.

The rest of this paper is as follows: The related work
is summarized in Section 2. Section 3 provides heteroge-
neous computing systems architecture and parallel appli-
cations model. In Section 4, we describe computing node
CPU-GPU utilization and job execution energy consumption
model. The CPU-GPU utilization aware energy-efficient job
scheduling algorithms are proposed in Section 5. In Section 6,
we evaluate our proposed algorithms and analyze the exper-
imental results. Finally, we present the conclusions of this
paper and propose future studies in Section 7.

II. RELATED WORK
Many heuristic job scheduling algorithms have shown
good performance in classical job scheduling problem,
such as MET, Min-Min, Max-Min, and XSufferage [14].

The widespread used heuristic Min-Min algorithm first
searches task’s minimum completion time on each processor
as task-processor set U . Then, the task-processor pair with
overall minimum completion time from U is selected. The
heuristic Max-Min is similar to Min-Min, and the difference
is the second phase that Max-Min selects the task-processor
pair with overall maximum completion time from U . The
Min-Min, Max-Min are consider as the metric of scheduling
algorithm for time optimization problem.

In recent years, a large number of scheduling algo-
rithms that combine time and other system qualities
of service (QoS), such as reliability, budget, deadline,
energy consumption, have been emerged in the field of
heterogeneous computing systems [16]–[19], [34], [39], [40].
Dogan and Özgüner [40] analyzed the task execution reli-
ability on heterogeneous computing systems, and com-
bined this into applications dynamic level to implemented
the scheduling algorithm. Roy et al. studied the real-time
precedence-constrained task scheduling problem on hetero-
geneous systems with multiple service levels (such as perfor-
mance, reliability, cost) [34]–[36]. Zhang et al. first built the
heterogeneous systems communication contention and task
execution reliability model. Then, they proposed an efficient
reliabilitymanagement solution for task scheduling [16]. Ref-
erence [17] proposed an efficient task scheduling algorithm
to satisfy the budget constraint and minimize the schedule
length. Zong et al. proposed two energy aware job scheduling
algorithms (EAD and PEBD) based on job duplication strat-
egy for homogeneous clusters [18]. Chen et al. established a
hyper-heuristic framework and proposed a quantum-inspired
high-level learning strategy to solve performance-constrained
energy optimization problem [19]

On the other hand, there are many studies that focus
on optimizing the energy consumption and the above
other objectives [12], [15], [20]. Huang et al. focus on
co-management of system reliability and energy con-
sumption, and propose an energy-efficient fault-tolerant
scheduling algorithm [20]. Tarplee et al. adopted linear pro-
gramming methods to obtain good tradeoff between applica-
tion makespan and heterogeneous computing systems energy
consumption [37]. To guarantee task deadline and reduce
energy consumption, Qin et al. use integer linear program-
ming to assign individual basic blocks by a proper operational
frequencies [12]. These research works demonstrate that the
optimal scheduling strategy can effectively reduce system
energy consumption.

Many bio-inspired meta-heuristic evolutionary algorithms
are also applied in dealing with such multi-objective schedul-
ing problem [21]–[24], [27]. For example, Deng et al. pro-
posed an improved Ant Colony Optimization (ACO) algo-
rithm to effectively solve the traveling salesmen problem
and the actual gate assignment problem [21]. Xiong et al.
proposed a Johnson’s-rule-based Genetic Algorithm (GA) to
solve task scheduling problem of cloud data-centers [22].
In our previous work [23], we proposed a task schedul-
ing strategy based on Genetic Algorithm with budget

VOLUME 8, 2020 58949



X. Tang, Z. Fu: CPU–GPU Utilization Aware Energy- Efficient Scheduling Algorithm on Heterogeneous Computing Systems

constraint for heterogeneous cloud systems. Reference [24]
used the strength pareto evolutionary algorithm (SPEA) and
non-dominated sorting genetic algorithm (NSGA) to opti-
mize the performance of energy and temperature. In recent
years, some improved and hybrid particle swarm optimiza-
tion (PSO) algorithms have been applied in computing
systems job scheduling problem and have shown good per-
formance [25], [26]. Kumar and Sharma first defined the
fitness function based on execution time, makespan, cost,
energy consumption, task rejection ratio, and throughput.
Then, they developed a PSO-COGENT algorithm to schedule
jobs in cloud environment while considering deadline as
constraint [27]. However, the efficiency of its multi-objective
fitness function still needs further study.

A few research works also involved system resource uti-
lization. In [28], they presented a two-layer coordinated CPU
utilization control architecture, which the frequency scal-
ing for the CPU utilization of each processor and the rate
adaptation can control the utilizations of all the processors.
Sandokji et al. surveyed the underutilization GPGPU cores
and proposed a warp scheduler to improve GPU utiliza-
tion [38]. Stavrinides and Karatza investigated the impact
of resource utilization and the energy consumption for dis-
tributed system. Their research results reveal that system
resource utilization variability can affect its energy consump-
tion [7]. However, this work assumes a linear relationship
between energy consumption and workload, which is incon-
sistent with the nonlinearity of the actual system. Moreover,
the Max-EAMin scheduling algorithm did not consider jobs’
execution size between CPU andGPU. In this paper, we focus
on the optimizing energy consumption by considering the
system computing node CPU-GPU utilization, which imple-
mented by a heuristic greedy job scheduling algorithm and a
hybrid particle swarm optimization technique.

III. HETEROGENEOUS SYSTEMS MODELS
This section describes the heterogeneous systems architec-
ture and parallel applications model used in our study. For
future reference, we summary the notations introduced in this
section in Table 1.

A. SYSTEMS ARCHITECTURE
In this paper, the heterogeneous systems are considered as
a finite set of m computing nodes, which are supported
by many racks. Generally, these computing nodes based
on DVFS enabled CPU-GPU processors are connected by
high-speed interconnection networks, such as Infiniband and
Myrinet. For example, computing node of Summit consist
of two 22-core IBM Power9 CPUs and six NVIDIA Volta
GV100 GPUs, and these nodes are linked by a dual-rail
Mellanox EDR InfiniBand [3]. For heterogeneous systems,
the number and type of computing nodes’ CPU, GPU
are different. Therefore, each node has its own multi-core
CPU and manycore GPU computation capacity (the amount
of computation that can be performed in a unit of time,

TABLE 1. Definitions of the heterogeneous systems notations.

FIGURE 1. Heterogeneous computing systems.

such as TFLOPS). Figure 1 depicts a large-scale heteroge-
neous computing systems architecture.

In this study, the computing node set of heterogeneous
systems is expressed as 2 = {cn1, cn2, · · · , cnm}. It is
assumed that each computing node cnj consists of the same
type of CPU and the same type ofGPU.We let cp(cnj) denotes
CPU computation capacity, cm(cnj) is the number of CPUs,
and gp(cnj) denotes GPU computation capacity, gm(cnj) is
the number of GPUs. The system computing node CPU-GPU
utilization is defined as the ratio of the local queue actual
computational requirement (such as the total execution size)
to the aggregate computation capacity of such computing
resources. Here, we let cu(cnj) denotes computing node cnj
CPU utilization, and gu(cnj) represents its GPU utilization.
The heterogeneous systems also maintain a global parallel

58950 VOLUME 8, 2020



X. Tang, Z. Fu: CPU–GPU Utilization Aware Energy- Efficient Scheduling Algorithm on Heterogeneous Computing Systems

FIGURE 2. An example of computing node job execution.

applications (or jobs) queue (GQ) and computing nodes’
local queue (LQ). The symbol nd(cnj) represents the latest
execution finish time for all jobs in the local queue of the
computing node cnj.

B. PARALLEL APPLICATIONS
User parallel applications (or jobs) are first submitted to het-
erogeneous systems and entered the global queue. Then, these
applications are partitioned into n bag-of-tasks (BoT) parallel
jobs 3 = J1, J2, · · · , Jn, which can be dispatched to com-
puting node’s local queue according to the scheduling policy.
Typically, for heterogeneous systems based on CPU-GPU,
the parallel portions of jobs execute on the GPU, and the
serial portions will be processed by CPU [29]. Therefore,
each job Ji is associated with a three tuple representation
< CE,GE,RD >, where CE(Ji) denotes job Ji CPU exe-
cution size (such as Tera Operations), and GE(Ji) is GPU
execution size, which can be estimated by code profiling,
historic table, or statistical prediction techniques [30].We use
RD(Ji) to represent job Ji deadline. We also assume that all
jobs are ready at the scheduling point, and regardless of their
arrival time in this study.

Generally speaking, due to the different of job parallel por-
tions execution size and precedence constraints, the execution
time of job parallel portions execution on GPUs are also dif-
ferent [31]. Therefore, the largest parallel portions execution
time is considered as the application GPU execution time.
In such case, some GPUs will be idle in some time intervals.
Similarly, the computing node CPU will also be idle waiting
for the result of the parallel portions to continue the serial
portions. Figure 2 shows an example of jobs execution on
computing node CPU and GPU. From these phenomena and
analysis, we can conclude that the system computing node
cannot work at full load in most time.

Here, we let CP(Ji) as the execution size of the critical
path of parallel job. Therefore, the job Ji GPU execution time
GET (Ji, ncj) on computing node ncj can be defined as

GET (Ji, ncj) = Max
{
CP(Ji)
gp(cnj)

,
GE(Ji)

gp(cnj)× gm(cnj)

}
. (1)

And, the job Ji execution time ET (Ji, ncj) on node ncj is
the maximum of its GPU execution time and CPU execution
time, which is expressed as

ET (Ji, ncj)=Max
{
GET (Ji, ncj),

CE(Ji)
cp(cnj)×cm(cnj)

}
. (2)

IV. CPU-GPU UTILIZATION AND ENERGY MODEL
A. CPU-GPU UTILIZATION
We define the heterogeneous systems computing node
resource (CPU-GPU) utilization cu(Ji, cnj), gu(Ji, cnj) of par-
allel job as

cu(Ji, cnj) =
CE(Ji)

cp(cnj)× cm(cnj)× ET (Ji, ncj)
,

gu(Ji, cnj) =
GE(Ji)

gp(cnj)× gm(cnj)× ET (Ji, ncj)
.

(3)

The system computing node CPU, GPU utilization and its
latest execution finish time nd(cnj) are depended on the jobs
assigned. Here, we assume that this jobs set as 8j, and the
computing node execution finish time nd(cnj) is computed
by

nd(cnj) =
∑
Ji∈8j

ET (Ji, ncj). (4)

Moreover, the computing node CPU and GPU utilization are
cu(cnj) =

∑
Ji∈8j

CE(Ji)

cp(cnj)× cm(cnj)× nd(cnj)
,

gu(cnj) =

∑
Ji∈8j

CE(Ji)

gp(cnj)× gm(cnj)× nd(cnj)
.

(5)

B. SCHEDULING CONSTRAINT
For each job, its execution finish time must before its dead-
line. Therefore, the following condition must be met for all
jobs that are scheduled on corresponding computing nodes.
Condition 1 (Deadline Constraint): For any job Ji ∈ 3 and

computing node cnj ∈ 2

nd(cnj)+ ET (Ji, ncj) ≤ RD(Ji). (6)

As the job and corresponding computing node pair satisfies
the above condition, this pair may be a feasible schedule
solution, and the computing node latest execution finish time
nd(cnj) may be changed as the following

nd(cnj) = nd(cnj)+ ET (Ji, ncj). (7)

C. ENERGY CONSUMPTION MODEL
For heterogeneous systems computing node, we focus on the
energy consumption of CPU and GPU. This is due to the fact
that they are typically consume most energy of computing
node compare to other components [29]. The computing
node power consumption of CPU/GPU based on comple-
mentary metal oxide semiconductor (CMOS) logic circuits
nonlinearly increases as the resource utilization increases [6].
Figure 3 shows the relationship between resource utiliza-
tion and power consumption of computing node, which the
data are measured from a computing node with 2 Xeon
E7-8870 CPUs and 2 Tesla V100 GPUs. From these data,
we can conclude that the power consumption and resource
utilization of the computing node approximately follow the
following rules

y = α + β × log2(1+ x). (8)

VOLUME 8, 2020 58951



X. Tang, Z. Fu: CPU–GPU Utilization Aware Energy- Efficient Scheduling Algorithm on Heterogeneous Computing Systems

FIGURE 3. The relationship between resource utilization and power consumption of computing node.

where α, β are constant, x ∈ [0, 1] is CPU-GPU utilization,
and y is power consumption.

In this study, the α is expressed as symbol Pidle(ncj), which
is the power consumed by computing node cnj resource when
idle. We also assume that symbol Pmax(ncj) denotes comput-
ing node cnj power consumption when the resource at 100%
utilization. Thus, the constant β is defined as

β = Pmax(cnj)− Pidle(cnj). (9)

Consequently, the computing node cnj power consumption
can be defined by

Pc(cnj) = Pcidle(ncj)+ [Pcmax(cnj)− P
c
idle(cnj)]

×log2(1+ cu(cnj)),
Pg(cnj) = Pgidle(ncj)+ [Pgmax(cnj)− P

g
idle(cnj)]

×log2(1+ gu(cnj)).

(10)

where Pc(cnj) and Pg(cnj) are computing node cnj CPU
and GPU power consumption, respectively. Furthermore,
the power consumption of job Ji that is assigned to computing
node cnj is

Pc(Ji, cnj) = Pcidle(ncj)+ [Pcmax(cnj)− P
c
idle(cnj)]

×log2(1+ cu(Ji, cnj)),
Pg(Ji, cnj) = Pgidle(ncj)+ [Pgmax(cnj)− P

g
idle(cnj)]

×log2(1+ gu(Ji, cnj)).

(11)

The energy consumption E(Ji, cnj) of job Ji on computing
node cnj can be defined as an integral of that node’s power
consumption and job execution time, which is

E(Ji, cnj) =
∫ FT (Ji,cnj)

ST (Ji,cnj)
P(Ji, cnj)dt

= P(Ji, cnj)× [FT (Ji, cnj)− ST (Ji, cnj)]

= P(Ji, cnj)× ET (Ji, cnj). (12)

where, the ST (Ji, cnj), FT (Ji, cnj) are the job’s start time and
finish time on computing node. Therefore, the job’s CPU and
GPU energy consumption are{

Ec(Ji, cnj) = Pc(Ji, cnj)× ET (Ji, cnj),
Eg(Ji, cnj) = Pg(Ji, cnj)× ET (Ji, cnj).

(13)

Therefore, the job Ji on computing node cnj energy consump-
tion can be expressed as

E(Ji, cnj) = Ec(Ji, cnj)+ Eg(Ji, cnj)+ Eother . (14)

where the Eother is the energy consumption of other com-
ponents of computing node. Then, the computing node cnj
energy consumption is

E(cnj) =
∑
Ji∈8j

E(Ji, cnj). (15)

The heterogeneous systems average energy consumption of
jobs is defined as

EV =

∑m
j=1 E(cnj)

SJNum
. (16)

where SJNum is the number of jobs that are successfully
scheduled to heterogeneous systems computing nodes. This
paper tries to get the optimal job average energy consumption
with Condition 1 constraint by scheduling jobs.

D. THE OPTIMAL CPU-GPU UTILIZATION
The above energy consumption is not only affected by the
power consumption, but also by the execution time of the job.
They are all related to resource utilization. In fact, the Eq. (3)
can also be expressed as

ET (Ji, ncj) =
CE(Ji)

cp(cnj)× cm(cnj)× cu(Ji, cnj)
,

ET (Ji, ncj) =
GE(Ji)

gp(cnj)× gm(cnj)× gu(Ji, cnj)
.

(17)

Here, we combined Eq. (13) and Eq. (17) as
Ec(Ji, cnj)=Pc(Ji, cnj)×

CE(Ji)
cp(cnj)× cm(cnj)× cu(Ji, cnj)

,

Eg(Ji, cnj)=Pg(Ji, cnj)×
GE(Ji)

gp(cnj)× gm(cnj)× gu(Ji, cnj)
.

(18)

58952 VOLUME 8, 2020



X. Tang, Z. Fu: CPU–GPU Utilization Aware Energy- Efficient Scheduling Algorithm on Heterogeneous Computing Systems

The partial derivative of Eq. (18) for CPU and GPU
utilization are

∂Ec(Ji, cnj)
∂cu(Ji, cnj)

= ∂Pc(Ji, cnj)×
CE(Ji)

cp(cnj)× cm(cnj)× cu(Ji, cnj)

−Pc(Ji, cnj)×
CE(Ji)

cp(cnj)×cm(cnj)× cu2(Ji, cnj)
,

∂Eg(Ji, cnj)
∂gu(Ji, cnj)

= ∂Pg(Ji, cnj)×
GE(Ji)

gp(cnj)× gm(cnj)× gu(Ji, cnj)

−Pg(Ji, cnj)×
GE(Ji)

gp(cnj)×gm(cnj)× gu2(Ji, cnj)
.

(19)

This equations can be approximately solved by assign them
as zero 

∂Ec(Ji, cnj)
∂cu(Ji, cnj)

= 0,

∂Eg(Ji, cnj)
∂gu(Ji, cnj)

= 0.
(20)

Thus, we can get the computing node optimal CPU utilization
cu′(Ji, cnj) and GPU utilization gu′(Ji, cnj) for system energy
consumption saving.

V. THE PROPOSED JOB SCHEDULING ALGORITHM
A. A HEURISTIC GREEDY STRATEGY
In this study, we proposed a heuristic greedy strategy to solve
this heterogeneous systems CPU-GPU utilization aware and
energy-efficient job scheduling problem, which is formalized
inAlgorithm 1 and we name it as UEJS. To improve schedul-
ing performance, we use the following CPU-GPU utilization
condition
Condition 2 (Utilization Constraint): For any job Ji ∈ 3

and computing node cnj ∈ 2{
|cu(Ji, cnj)− cu′(Ji, cnj)| ≤ ε,
|gu(Ji, cnj)− gu′(Ji, cnj)| ≤ ε.

(21)

where the weight ε is used to ensure that the CPU-GPU
utilization of job Ji on computing node cnj as close as possible
to its optimal utilization.

At the beginning, we first initialize the system comput-
ing nodes parameters, such as the computing node latest
execution finish time nd(cnj). Then, for each unscheduled
job Ji, we try to find a computing node cnj that can satisfy
the Condition 1, 2 and with the minimum job execution
energy consumption (Steps 3-12). At last, for all these job
and computing node < Ji, cnj > pairs, the algorithm will
find the optimal pair and assign this job to the corresponding
heterogeneous computing node (Steps 13). The algorithm
removes job Ji from unscheduled job set and updates systems
computing node cnj parameters in Steps 14-16.

The time complexity of this heuristic greedy scheduling
strategy is usually expressed in terms of the number of jobs n,

Algorithm 1 The CPU-GPU Utilization Aware and
Energy-Efficient Heuristic Greedy Algorithm (UEJS)

Input: BoT applications set 3 and system
computing nodes set 2.

Output: Jobs and computing nodes assignment
< Ji, cnj >.

1 Initialize system computing nodes parameters;
2 while there are unscheduled jobs do
3 for each unscheduled job Ji do
4 for each computing node ncj do
5 Use Eq. (2) to compute job execution

time ET (Ji, ncj);
6 Use Eq. (3) to compute job CPU-GPU

utilization;
7 Use Eq. (20) to compute optimal

CPU-GPU utilization;
8 if job Ji and computing node ncj satisfy

Condition 1,2 then
9 Use Eq.(10)-(14) to compute energy

consumption E(Ji, cnj).
10 end
11 end
12 end
13 Find a job and computing node < Ji, cnj > with

the minimum energy consumption E(Ji, cnj);
14 Assign job Ji to computing node cnj;
15 Remove job Ji from unscheduled job set;
16 Update computing node cnj latest execution

finish time nd(cnj).
17 end
18 Use Eq.(15)-(16) to compute job average energy

consumption.

and the system computing nodes m. The time complexity
of our proposed UEJS is analyzed as follows: Initialize sys-
tem computing nodes parameters in Step 1 and compute job
average energy consumption in Step 18 can be done in O(m)
time. The time complexity of optimal job and computing node
< Ji, cnj > pairs searching by Steps 3-12 are O(nm) time.
In this UEJS algorithm, there has n jobs need to repeat Step
3-17, and the overall time complexity is O(n2m).

B. A HYBRID PARTICLE SWARM OPTIMIZATION
ALGORITHM
The above heuristic greedy scheduling algorithm (UEJS) has
good local optimization performance, but the global opti-
mization ability needs to be improved. Therefore, we pro-
posed a hybrid system CPU-GPU utilization aware and
energy-efficient job scheduling algorithm (H-PSO), which
incorporates the heuristic greedy strategy and bio-inspired
search technique. Where, the chosen evolutionary tech-
nique is particle swarm optimization (PSO) that is derived
from the study of simulating social behaviors of flock
birds [26], [32]. The PSO model consists of individuals,

VOLUME 8, 2020 58953



X. Tang, Z. Fu: CPU–GPU Utilization Aware Energy- Efficient Scheduling Algorithm on Heterogeneous Computing Systems

referred to as particles, which each individual represents a
solution of jobs and computing nodes assignment< Ji, cnj >
pairs. In this study, we assume that Xi,j = 1 if job Ji is
scheduled on computing node cnj, and Xi,j = 0 otherwise.
Thus, the individual can be expressed as the followingmatrix:

X =


X1,1 X1,2 · · · X1,m
X2,1 X2,2 · · · X2,m
...

... · · ·
...

Xn,1 Xn,2 · · · Xn,m

 (22)

Accordingly, the PSO individual of such matrix X must
satisfy the following constraints:

n∑
i=1

Xi,j = 1, ∀j. (23)

In our proposed hybrid PSO algorithm, we use a popu-
lation with K individuals to share experience and discovery
knowledge. This algorithm has two phases, the first phase is
tried to find the start position and step of jobs by PSO. Then,
the heuristic greedy strategy is used to find an optimal system
computing node for chosen jobs.

For the first phase, the jobs are stored in the cycle schedul-
ing list, and we try to select jobs by its start position and
step. Here, the start position and step (xkid , s

k
id ) are the PSO

kth particle current position, and (vxkid , vs
k
id ) are the k particle

current velocity. The k particle own best experience position
is denoted as pbestk,x , p

best
k,s , and the PSO global optimal position

of the whole population is represented as gbestx , gbests . During
each PSO iteration i, the following equations are used to
update the velocity and position of particle, which keeps on
finding the optimal solution.

vxkid+1 = ω1 × vxkid + c1 × Rand()× (pbestk,x − x
k
id )

+ c2 × Rand()× (gbestx − xkid ),
xkid+1 = xkid + vx

k
id+1.

(24)


vskid+1 = ω2 × vskid + c1 × Rand()× (pbestk,s − s

k
id )

+ c2 × Rand()× (gbests − skid ),
skid+1 = skid + vs

k
id+1.

(25)

where variable ω is called the inertia weight, and we set
ω1 = 0.4, ω2 = 0.3. c1 is the cognitive coefficient of particle
self-recognition component, and c2 is the social coefficient
based on the whole population experience. Here, we set
c1 = 2, c2 = 2. Rand() is a function that can generate random
numbers from the range of [0, 1]. The fitness function used in
this proposed hybrid PSO algorithm is the job average energy
consumption and is defined in Eq. (16).

At the second phase, the heuristic greedy strategy is used
to find the optimal computing node for each job. The job Ji
is chosen from job list with start position xkid and step skid ,
the heuristic greedy strategy will find a computing node cnj
with theminimum job execution energy consumption. At last,
this algorithm assigns job Ji to the corresponding computing
node cnj and update computing node cnj parameters. The
hybrid PSO algorithm is described as Algorithm 2.

Algorithm 2 The Hybrid PSO Algorithm (H-PSO)
Input: BoT applications set 3 and system

computing nodes set 2.
Output: Jobs and computing nodes assignment

< Ji, cnj >.
1 Initialize system computing nodes parameters;
2 Initialize a population with K particles by random
positions, velocities;

3 while the PSO stop condition is not met do
4 #pragma omp parallel for;
5 for each particle k do
6 for each job Ji chosen from job list with start

position xkid and step s
k
id do

7 for each computing node ncj do
8 Use Eq. (2) to compute job execution

time ET (Ji, ncj);
9 Use Eq. (3) to compute job

CPU-GPU utilization;
10 Use Eq. (20) to compute optimal

CPU-GPU utilization;
11 if job Ji and computing node ncj

satisfy Condition 1,2 then
12 Use Eq.(10)-(14) to compute

energy consumption E(Ji, cnj).
13 end
14 end
15 Find a computing node cnj with the

minimum energy consumption E(Ji, cnj);
16 Assume job Ji to computing node cnj;
17 Update computing node cnj parameters.
18 end
19 Use Eq. (15)-(16) to evaluate the particle

fitness;
20 Update the particle best position pbestk,x , p

best
k,s

and global best position gbestx , gbests ;
21 Update start position of particle by Eq. (24);
22 Update step of particle by Eq. (25).
23 end
24 end
25 Find the optimal particle by global best position
gbestx , gbests ;

26 Assign job Ji to corresponding computing node cnj;
27 Use Eq.(15)-(16) to compute job average energy

consumption.

The time complexity of Steps 6-18 in our proposed H-PSO
algorithm is O(nm) time. We assume that the PSO iteration is
< and the overall time complexity of H-PSO is O(<Knm).
Compared with our proposed heuristic greedy scheduling
algorithm, the time complexity of H-PSO algorithm increases
greatly as the PSO iteration< is much larger than job number.
However, we observe from Algorithm 2 that the particles
(or feasible scheduling solutions) can be computed in par-
allel. In this study, we adopt OpenMP parallel method to

58954 VOLUME 8, 2020



X. Tang, Z. Fu: CPU–GPU Utilization Aware Energy- Efficient Scheduling Algorithm on Heterogeneous Computing Systems

TABLE 2. The heterogeneous systems computing nodes parameters.

FIGURE 4. Various CPU-GPU utilization condition weight ε. (a) job average energy
consumption; (b) system job rejection rate.

accelerate our proposed H-PSO (See line 4). We also conduct
experiments with 400 jobs for this H-PSO algorithm on
a computer with Intel i7 8700 CPU. The parallel H-PSO
algorithm overhead is 1.4s and that of serial algorithm is
9.492. Thus, the speedup of parallel H-PSO can achieve 6.78.

VI. EXPERIMENTAL EVALUATION
In this section, the proposed heuristic greedy strategy UEJS
and hybrid particle swarm optimization algorithm (H-PSO)
are compared with the Max-EAMin [7] and the traditionally
Genetic Algorithm (GA) [22], [23] by CloudSim. The het-
erogeneous computing systems simulator includes 5 type of
computing nodes, and their parameters are listed in Table 2.
These experiments are conducted on a computer with Intel
i7 8700 CPU. The comparison metrics chosen in this paper
are the job average energy consumption (Eq. (16)), system
job rejection rate, and the average CPU, GPU utilization of
computing nodes, which are defined as

sjRR =
n− SJNum

n
,

avCU =

∑m
j=1 cu(cnj)

m
,

avGU =

∑m
j=1 gu(cnj)

m
.

(26)

where sjRR, avCU , avGU are the system job rejection rate,
average CPU utilization, and GPU utilization, respectively.

A. PARALLEL APPLICATIONS
In order to achieve practical insights into the effective-
ness of our proposed CPU-GPU utilization aware and
energy-efficient job scheduling algorithms, we simulate par-
allel applications. The applications characteristics, such as
CPU execution size CE(Ji), GPU execution size GE(Ji), and
critical path execution size CP(Ji). Some of them like the
Parallel Workloads Archive HPC2N trace [33], and some
are come from the actual application execution log file of
Shanghai Supercomputing Center and Changsha National
Supercomputing Center. The others are randomly generated
applications by the uniform distribution within the range of
[500, 3500] tera operations for CPU, and [2000, 210000] tera
operations for GPU, and critical path execution size CP(Ji)
is the [0.2,0.5] times of job GPU execution size. The jobs
relative deadline RD(Ji) is set as the 3 times of job average
execution time.

B. VARIOUS UTILIZATION CONSTRAINT WEIGHT
In the first experiments, we evaluate the performance of
CPU-GPU utilization condition weight ε to our proposed
heuristic greedy strategy UEJS and hybrid PSO (H-PSO)
job scheduling algorithm. Figure 4 plots the experimental
results of job average energy consumption and system job
rejection rate by varying weight ε from 0.02 to 2 with steps
of 0.02. These experiments are conducted on 100 computing

VOLUME 8, 2020 58955



X. Tang, Z. Fu: CPU–GPU Utilization Aware Energy- Efficient Scheduling Algorithm on Heterogeneous Computing Systems

FIGURE 5. Various jobs on heterogeneous systems with 100 computing nodes. (a) energy consumption; (b) rejection
rate; (c) CPU utilization; (d) GPU utilization.

nodes with 400 jobs. From Figure 4, we can conclude that
the optimal utilization condition weight ε is 0.14. This is
mainly because small ε can effectively save the job average
energy consumption, such as job average energy consumption
EV = 965 for H-PSO and EV = 1067 for UEJS as ε = 0.04.
However, when the weight ε is greater than 0.14, the job
average energy consumption of the two algorithms increases
rapidly. On the other hand, when weight ε is lower than 0.12,
the system job rejection rate changes greatly and is high.
And, when ε is greater than or equal to 0.14, the system job
rejection rate is basically stable and will not decrease with the
growth of weight ε. In the following experiments, the UEJS
and hybrid PSO algorithms set the weight ε of Condition 2
to 0.14.

C. COMPARISON RESULTS
In the second set of experiments, we evaluate the performance
of H-PSO, UEJS, and GA on heterogeneous systems with
100 computing nodes. The number of jobs is varied from
300 to 500 with steps of 20. Figure 5 shows the experimental
results of this group of evaluation. From Figure 5(a), we can
conclude that our proposed H-PSO, UEJS are better than
Max-EAMin by 20.6%, 1.9%, and GA by 29.4%, 9.2% in
term of the job average energy consumption, respectively.
This performance improvement is due to the fact that GA is a
job processing time optimization algorithm and not consider
the job execution energy consumption. The power consump-
tion of Max-EAMmin is very simple, and the relationship
between the maximum power consumption and resource
utilization is linear. Moreover, Max-EAMmin derived from

Max-Min mainly focuses on the time optimization and not
the energy consumption.

The job average energy consumption of UEJS, Max-
EAMin, and GA increases as the number of jobs increases.
However, for H-PSO algorithm, the job average energy
consumption slowly decreases as the the number of jobs
increases. In fact, for a large number of jobs, the job average
energy consumption of H-PSO algorithm significantly out-
performs that of UEJS, Max-EAMin, and GA. The example
of 480 jobs is that the job average energy consumption of
UEJS is 1297J, Max-EAMin is 1304J, GA is 1378J, and that
of H-PSO is 919J. We observe from Figure 5(a) that H-PSO
is over UEJS by 36.5%, Max-EAMin by 36.3%, and GA by
46.7% in term of the job average energy consumption with
number of jobs from 440 to 500. In this case, our proposed
hybrid PSO algorithm is much better than UEJS. Actually,
H-PSO performs better thanUEJS by 18.4% in term of the job
average energy consumption. These experimental results also
reveal that the H-PSO algorithm is very suitable for system
with high workload.

The experimental results of system job rejection rate are
shown in Figure 5(b), which shows that the system job rejec-
tion rate increases as the number of jobs increases. However,
the system job rejection rate growth trend is relatively slow
for H-PSO algorithm. In fact, the H-PSO is better than UEJS
by 37%, Max-EAMin by 49.3%, and GA by 47.5% in term
of system job rejection rate, respectively. This experimental
phenomenon also shows that H-PSO can effectively schedule
more jobs. The resource CPU-GPU utilization experimental
results of heterogeneous systems computing nodes are shown

58956 VOLUME 8, 2020



X. Tang, Z. Fu: CPU–GPU Utilization Aware Energy- Efficient Scheduling Algorithm on Heterogeneous Computing Systems

TABLE 3. The time overheads associated with our proposed algorithm UEJS and H-PSO.

FIGURE 6. Various computing nodes with 400 jobs.(a) job average energy consumption; (b) system
job rejection rate.

in Figure 5(c), Figure 5(d), where the GA is higher than
H-PSO by 20%, UEJS by 33.4%, Max-EAMin by 3.7%
for average CPU utilization, and H-PSO by 6.9%, UEJS by
6.2%, Max-EAMin by 2.5% for average GPU utilization,
respectively. This experimental phenomena also demonstrate
that GA can make better use of resources but consume more
energy.

Table 3 lists the time overheads of our proposed heuristic
greedy strategy UEJS and hybrid particle swarm optimization
algorithm (H-PSO). From this table, we can conclude that
the greedy algorithm UEJS is much faster than H-PSO for
systems with a small number of jobs. However, as the job
number increases, their time overheads get closer and closer.

The third group of experiments is conducted for 400 jobs
and shown in Figure 6. Here, we change the number of com-
puting nodes from 60 to 150, at the steps of 10. We observe
from Figure 6(a) that our proposed H-PSO algorithm also
outperforms UEJS by 17.4%, Max-EAMin by 21.6%, and
GA by 37.8% in term of the job average energy consump-
tion. Especially for the system with few nodes and high
workload, such as 80 computing nodes, H-PSO algorithm is
better than UEJS by 41.8%, Max-EAMin by 43.5%, and GA
by 51.4% for job average energy consumption. The system
job rejection rate experimental results of Figure 6(b) also
demonstrate that our proposed H-PSO algorithm has high
successful job schedule rate. Therefore, we can conclude that
the H-PSO is the best systemCPU-GPU utilization aware and
energy-efficient job scheduling algorithm in this study.

VII. CONCLUSION AND FUTURE WORK
Massive energy consumption has become a major chal-
lenge for modern heterogeneous computing systems based
on CPU-GPU. One of good solutions to overcome this

problem is energy-efficient scheduling technique. However,
the dynamic variability of resource utilization in the sys-
tem computing node aggravates the difficulty of solving this
problem. In this paper, we define system computing node
CPU-GPU utilization model, and analyze the relationship
between computing node power consumption and CPU-GPU
utilization. Then, we propose a heuristic greedy job schedul-
ing strategy (UEJS) and a hybrid particle swarm optimiza-
tion algorithm (H-PSO) to reduce energy consumption. The
experimental results show that our proposed H-PSO is better
than UEJS, Max-EAMin, and GA in terms of the average job
energy consumption and system job rejection rate.

We would like to mention two directions in this domain
for further research. First, we shall extend the relationship
between computing node power consumption and CPU-GPU
utilization to improve the accuracy of energy consumption
calculation. Second, we plan to study more complex version
of hybrid particle swarm optimization algorithm, in which the
reliability, cost issues are taken into account.

REFERENCES

[1] E. Yang, S.-H. Kim, T.-W. Kim, M. Jeon, S. Park, and C.-H. Youn, ‘‘An
adaptive batch-orchestration algorithm for the heterogeneous GPU cluster
environment in distributed deep learning system,’’ in Proc. IEEE Int. Conf.
Big Data Smart Comput. (BigComp), Jan. 2018, pp. 725–728.

[2] C. Chen, K. Li, A. Ouyang, Z. Zeng, and K. Li, ‘‘GFlink: An in-memory
computing architecture on heterogeneous CPU-GPU clusters for big
data,’’ IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 6, pp. 1275–1288,
Jun. 2018.

[3] TOP 500 List. Accessed: Feb. 15, 2020. [Online]. Available: https://
www.top500.org/lists/2019/11/

[4] S. Alsubaihi and J.-L. Gaudiot, ‘‘A runtime workload distribution with
resource allocation for CPU-GPU heterogeneous systems,’’ in Proc. IEEE
Int. Parallel Distrib. Process. Symp. Workshops (IPDPSW), May 2017,
pp. 994–1003.

VOLUME 8, 2020 58957



X. Tang, Z. Fu: CPU–GPU Utilization Aware Energy- Efficient Scheduling Algorithm on Heterogeneous Computing Systems

[5] D. Cheng, J. Rao, C. Jiang, and X. Zhou, ‘‘Elastic power-aware resource
provisioning of heterogeneous workloads in self-sustainable datacenters,’’
IEEE Trans. Comput., vol. 65, no. 2, pp. 508–521, Feb. 2016.

[6] A. M. Haywood, J. Sherbeck, P. Phelan, G. Varsamopoulos, and
S. K. S. Gupta, ‘‘The relationship among CPU utilization, temperature,
and thermal power for waste heat utilization,’’ Energy Convers. Manage.,
vol. 95, pp. 297–303, May 2015.

[7] G. L. Stavrinides and H. D. Karatza, ‘‘The impact of workload variability
on the energy efficiency of large-scale heterogeneous distributed systems,’’
Simul. Model. Pract. Theory, vol. 89, pp. 135–143, Dec. 2018.

[8] M. Gary and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness. San Francisco, CA, USA: Freeman, 1979.

[9] Z. Lu and Y. Yao, ‘‘Marginal performance: Formalizing and quantifying
power Over/Under provisioning in NoC DVFS,’’ IEEE Trans. Comput.,
vol. 66, no. 11, pp. 1903–1917, Nov. 2017.

[10] K. Ma, X. Wang, and Y. Wang, ‘‘DPPC: Dynamic power partitioning
and control for improved chip multiprocessor performance,’’ IEEE Trans.
Comput., vol. 63, no. 7, pp. 1736–1750, Jul. 2014.

[11] A. Suyyagh and Z. Zilic, ‘‘Energy and task-aware partitioning on single-
ISA clustered heterogeneous processors,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 31, no. 2, pp. 306–317, Feb. 2020.

[12] Y. Qin, G. Zeng, R. Kurachi, Y. Li, Y. Matsubara, and H. Takada, ‘‘Energy-
efficient intra-task DVFS scheduling using linear programming formula-
tion,’’ IEEE Access, vol. 7, pp. 30536–30547, Mar. 2019.

[13] D. Cheng, X. Zhou, P. Lama, M. Ji, and C. Jiang, ‘‘Energy efficiency
aware task assignment with DVFS in heterogeneous Hadoop clusters,’’
IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 1, pp. 70–82, Jan. 2018.

[14] F. Dong and S. Akl, ‘‘Scheduling algorithms for grid computing: State
of the art and open problems,’’ School Comput., Queens Univ., Kingston,
Kingston, ON, Canada, Tech. Rep. 2006-504, 2006.

[15] X. Tang, X. Liao, J. Zheng, and X. Yang, ‘‘Energy efficient job scheduling
with workload prediction on cloud data center,’’ Cluster Comput., vol. 21,
no. 3, pp. 1581–1593, Sep. 2018.

[16] L. Zhang, K. Li, W. Zheng, and K. Li, ‘‘Contention-aware reliability
efficient scheduling on heterogeneous computing systems,’’ IEEE Trans.
Sustain. Comput., vol. 3, no. 3, pp. 182–194, Jul./Sep. 2018.

[17] W. Chen, G. Xie, R. Li, Y. Bai, C. Fan, and K. Li, ‘‘Efficient task
scheduling for budget constrained parallel applications on heterogeneous
cloud computing systems,’’ Future Gener. Comput. Syst., vol. 74, pp. 1–11,
Sep. 2017.

[18] Z. Zong, A. Manzanares, X. Ruan, and X. Qin, ‘‘EAD and PEBD:
Two energy-aware duplication scheduling algorithms for parallel tasks on
homogeneous clusters,’’ IEEE Trans. Comput., vol. 60, no. 3, pp. 360–374,
Mar. 2011.

[19] S. Chen, Z. Li, B. Yang, and G. Rudolph, ‘‘Quantum-inspired hyper-
heuristics for energy-aware scheduling on heterogeneous computing sys-
tems,’’ IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 6, pp. 1796–1810,
Jun. 2016.

[20] K. Huang, X. Jiang, X. Zhang, R. Yan, K. Wang, D. Xiong, and X. Yan,
‘‘Energy-efficient fault-tolerant mapping and scheduling on heterogeneous
multiprocessor real-time systems,’’ IEEE Access, vol. 6, pp. 57614–57630,
Oct. 2018.

[21] W. Deng, J. Xu, and H. Zhao, ‘‘An improved ant colony optimization algo-
rithm based on hybrid strategies for scheduling problem,’’ IEEE Access,
vol. 7, pp. 20281–20292, 2019.

[22] Y. Xiong, S. Huang, M. Wu, J. She, and K. Jiang, ‘‘A Johnson’s-Rule-
Based genetic algorithm for Two-Stage-Task scheduling problem in data-
centers of cloud computing,’’ IEEE Trans. Cloud Comput., vol. 7, no. 3,
pp. 597–610, Jul./Sep. 2019.

[23] X. Tang, X. Li, and Z. Fu, ‘‘Budget-constraint stochastic task scheduling
on heterogeneous cloud systems,’’ Concurrency Comput., Pract. Exper.,
vol. 29, no. 19, p. e4210, Oct. 2017.

[24] H. F. Sheikh, I. Ahmad, and S. A. Arshad, ‘‘Performance, energy, and tem-
perature enabled task scheduling using evolutionary techniques,’’ Sustain.
Comput., Inform. Syst., vol. 22, pp. 272–286, Jun. 2019.

[25] A. Verma and S. Kaushal, ‘‘A hybrid multi-objective particle swarm opti-
mization for scientific workflow scheduling,’’ Parallel Comput., vol. 62,
pp. 1–19, Feb. 2017.

[26] L.-D. Chou, H.-F. Chen, F.-H. Tseng, H.-C. Chao, and Y.-J. Chang,
‘‘DPRA: Dynamic power-saving resource allocation for cloud data cen-
ter using particle swarm optimization,’’ IEEE Syst. J., vol. 12, no. 2,
pp. 1554–1565, Jun. 2018.

[27] M. Kumar and S. C. Sharma, ‘‘PSO-COGENT: Cost and energy efficient
scheduling in cloud environment with deadline constraint,’’ Sustain. Com-
put., Inform. Syst., vol. 19, pp. 147–164, Sep. 2018.

[28] X. Wang, X. Fu, X. Liu, and Z. Gu, ‘‘Power-aware CPU utilization control
for distributed real-time systems,’’ in Proc. 15th IEEE Real-Time Embed-
ded Technol. Appl. Symp., Apr. 2009, pp. 233–242.

[29] J. Y. Jang, H. Wang, E. Kwon, J. W. Lee, and N. S. Kim, ‘‘Workload-aware
optimal power allocation on single-chip heterogeneous processors,’’ IEEE
Trans. Parallel Distrib. Syst., vol. 27, no. 6, pp. 1838–1851, Jun. 2016.

[30] X. Tang, K. Li, G. Liao, K. Fang, and F. Wu, ‘‘A stochastic scheduling
algorithm for precedence constrained tasks on grid,’’ Future Gener. Com-
put. Syst., vol. 27, no. 8, pp. 1083–1091, Oct. 2011.

[31] G. Xie, G. Zeng, L. Liu, R. Li, and K. Li, ‘‘Mixed real-time scheduling
of multiple DAGs-based applications on heterogeneous multicore proces-
sors,’’ Microprocessors Microsyst., vol. 47, no. A, pp. 93–103, 2016.

[32] Y. Xie, Y. Zhu, Y. Wang, Y. Cheng, R. Xu, A. S. Sani, D. Yuan, and
Y. Yang, ‘‘A novel directional and non-local-convergent particle swarm
optimization based workflow scheduling in cloud–edge environment,’’
Future Gener. Comput. Syst., vol. 97, pp. 361–378, Aug. 2019.

[33] Parallel Workloads Archive. Accessed: Feb. 10, 2020. [Online]. Available:
http://www.cs.huji.ac.il/labs/parallel/workload/

[34] S. K. Roy, R. Devaraj, A. Sarkar, K. Maji, and S. Sinha, ‘‘Contention-
aware optimal scheduling of real-time precedence-constrained task graphs
on heterogeneous distributed systems,’’ J. Syst. Archit., vol. 105,May 2020,
Art. no. 101706.

[35] S. K. Roy, R. Devaraj, and A. Sarkar, ‘‘Optimal scheduling of PTGs with
multiple service levels on heterogeneous distributed systems,’’ in Proc.
Amer. Control Conf. (ACC), Jul. 2019, pp. 157–162.

[36] R. Devaraj, ‘‘A solution to drawbacks in capturing execution requirements
on heterogeneous platforms,’’ J. Supercomput., early access, Jan. 8, 2020,
doi: 10.1007/s11227-020-03145-w.

[37] K. M. Tarplee, R. Friese, A. A. Maciejewski, H. J. Siegel, and
E. K. P. Chong, ‘‘Energy andmakespan tradeoffs in heterogeneous comput-
ing systems using efficient linear programming techniques,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 27, no. 6, pp. 1633–1646, Jun. 2016.

[38] S. Sandokji, F. Essa, and M. Fadel, ‘‘A survey of techniques for warp
scheduling in GPUs,’’ in Proc. IEEE 7th Int. Conf. Intell. Comput. Inf. Syst.
(ICICIS), Dec. 2015, pp. 600–606.

[39] X. Tang and X. Liao, ‘‘Application-aware deadline constraint job schedul-
ing mechanism on large-scale computational grid,’’ PLoS ONE, vol. 13,
no. 11, 2018, Art. no. e0207596.

[40] A. Dogan and F. Özgüner, ‘‘Matching and scheduling algorithms for
minimizing execution time and failure probability of applications in het-
erogeneous computing,’’ IEEE Trans. Parallel Distrib. Syst., vol. 13, no. 3,
pp. 308–323, Mar. 2002.

XIAOYONG TANG received the M.S. and
Ph.D. degrees from Hunan University, China,
in 2007 and 2013, respectively. He is cur-
rently a Professor with the College of Infor-
mation and Intelligence, Hunan Agricultural
University. He has published over 50 research
articles in refereed journals and conference
proceedings, such as the IEEE TRANSACTIONS

ON COMPUTERS (TC), the IEEE TRANSACTIONS

ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS),
the IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS (TII), IEEE ACCESS,
JPDC, FGCS, and ICPP. His research interests include distributed computing
systems scheduling, parallel computing, cloud computing, and parallel
algorithms. He is a Reviewer of TC, TPDS, TSC, TII, JPDC, FGCS, CPE,
IEEE ACCESS, and so on.

ZHUOJUN FU received the M.S. degree from
Hunan Agricultural University, China, in 2010.
He is currently an Associate Professor with the
College of Information and Intelligence, Hunan
Agricultural University. His research interests
include parallel algorithms, intelligence decision
systems, and cloud computing.

58958 VOLUME 8, 2020

http://dx.doi.org/10.1007/s11227-020-03145-w

	INTRODUCTION
	RELATED WORK
	HETEROGENEOUS SYSTEMS MODELS
	SYSTEMS ARCHITECTURE
	PARALLEL APPLICATIONS

	CPU-GPU UTILIZATION AND ENERGY MODEL
	CPU-GPU UTILIZATION
	SCHEDULING CONSTRAINT
	ENERGY CONSUMPTION MODEL
	THE OPTIMAL CPU-GPU UTILIZATION

	THE PROPOSED JOB SCHEDULING ALGORITHM
	A HEURISTIC GREEDY STRATEGY
	A HYBRID PARTICLE SWARM OPTIMIZATION ALGORITHM

	EXPERIMENTAL EVALUATION
	PARALLEL APPLICATIONS
	VARIOUS UTILIZATION CONSTRAINT WEIGHT
	COMPARISON RESULTS

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	XIAOYONG TANG
	ZHUOJUN FU


