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ABSTRACT The electromagnetic wave propagation through plasma medium is one of the most important
research fields in computational electromagnetics. A numerical formulation based on both the auxiliary
differential equation (ADE) and the precise-integration time-domain (PITD) method for solving the plasma
problems is proposed to break through the Courant-Friedrich-Levy (CFL) limit on the time-step size in a
finite-difference time-domain (FDTD) simulation. In this new method, the current density J is introduced
as the auxiliary variable to deal with the complex permittivity of the plasma which is dependent on
the frequency, and the precise integration (PI) technique makes the selectable maximum time-step size
become much larger and removes the impact of the time-step size to the numerical dispersion error.
Numerical experimentations of the typical plasma problems verify and validate the reliability of the proposed
formulation. Through the numerical results, it can be found that the maximum allowable time-step size of the
new method is much larger than that of the CFL limit of the FDTD method, and the calculation error of the
newmethod is nearly independent of the time-step size. As a consequence, the execution time is significantly
reduced by using a larger time-step size.

INDEX TERMS Auxiliary differential equation, computational electromagnetics, numerical solution,
plasma, precise-integration time-domain (PITD) method.

I. INTRODUCTION
Calculation of the electromagnetic wave propagation through
dispersive materials, e.g., plasma, is a complex problem
and has attracted much attention in recent years [1]–[3].
The simulation of these complex media can be applied in
various areas of interest to the electromagnetic compatibil-
ity (EMC) society, such as the complex printed boards (PCSs)
design [4], [5], the analysis of the absorption character-
istics [6], [7], the simulations of metamaterials [8]–[10],
the FDTD chamber model [11] and so on. The most pop-
ular methods for plasma even other dispersion materials
are the algorithms based on the finite-difference time-
domain (FDTD) method. The most frequently used FDTD
methods can be categorized into three types: the recursive
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convolution (RC) method [12]–[14], the auxiliary differential
equation (ADE) method [15]–[17], and the Z-transform (ZT)
method [18]–[21]. These algorithms based on the FDTD
method have two significant problems, the limit of the
Courant-Friedrich-Levy (CFL) condition and the increasing
numerical dispersion error, which have limited the intense
utilization of the FDTD method as the problem size expands.
If the mesh density is very fine, the time-step size becomes
extremely small because of the CFL limit so that it results in
exceedingly high computational memory requirement.

In attempt to improve the efficiency of the popular
FDTD method, Namiki, Zheng, et al propose the alternating-
direction implicit FDTD (ADI-FDTD) method which is an
unconditionally stable time-domain algorithm for solving
Maxwell’s equations [22]–[25]. The ADI-FDTD method
known as the implicit finite-difference algorithm without
the limit of the CFL condition improves the computational
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efficiency by using larger time-step size. Recently, some
researchers have generalized the ADI-FDTD method to the
application of the dispersion materials [26], [27]. How-
ever, the time-step size of the ADI-FDTD method can-
not be selected too large, because of the contradiction
between the time-step size and the numerical dispersion
error. If the time-step size increases, the numerical dispersion
error will be rapidly deteriorative. In addition, the locally-
one-dimensional (LOD) FDTD method is also an uncondi-
tional stable algorithm [28], [29], and it has been widely
used to solve the dispersion problems based on ADE tech-
nique [30]–[32]. Compared with the ADI-FDTD method,
the LOD-FDTD method has better computational efficiency
because of the fewer arithmetic operations required in the
LOD algorithm. Nevertheless, both methods provide the
comparable accuracy.

In recent years, a new 3-D time-domain method,
called precise-integration time-domain (PITD) method, has
attracted much attention for solving Maxwell’s equations
in free space and lossy space [33]–[38], since the PITD
method breaks through the limit of the CFL condition on the
time-step size in a FDTD simulation. The basic idea of the
PITD method is approximating the spatial derivative with
the central finite-difference scheme and reducing Maxwell’s
curl equations to a set of ordinary differential equations
(ODEs), and then solving the ODEs by using the precise-
integration (PI) technique [39]. Compared with the FDTD
method, the most significant advantage of the PITD method
is using a time-step size which is much larger than that of the
CFL stability condition. Furthermore, the numerical disper-
sion errors can be made nearly independent of the time-step
size. In contrast to the ADI-FDTD method, the selection of
the time-step size has no effect to the computational accuracy
in the PITD method. The numerical dispersion error of the
PITD method is also smaller than that of the conventional
ADI-FDTD method.

In this paper, prompted by the above-mentioned reasons,
we consider using the PITD method to solve the electro-
magnetic problems in plasma. By introducing the polar-
ization current density as the auxiliary variable, Maxwell’s
equations in plasma medium are obtained. The accuracy
and efficiency of this new proposed algorithm are verified
by modeling electromagnetic wave propagation through the
infinite plasma space, the plasma slab, the plasma photonic
crystal and 2-D cavity. Furthermore, the numerical experi-
mentations also validate that the PITD method in plasma still
keep its characteristics in free space and lossy space, i.e. using
a larger time-step size and invariable numerical dispersion
errors in any time-step size.

II. FORMULATIONS
For the linear and isotropic plasma, the relative permittivity
can be expressed as

εr (ω) = 1+
ω2
p

jωγ − ω2 (1)

where γ is the collision frequency of the plasma, ωp is the
natural frequency of the plasma.

For the plasma medium, the Ampere’s equation in the time
domain becomes

∇ ×H(t) = ε0
∂E(t)
∂t
+ σE(t)+ Jp(t) (2)

where Jp (t) is the polarization current density which is intro-
duced as the auxiliary variable. The expression of Jp (t) can
be obtained by using the inverse Fourier transformation to
the polarization current density in frequency domain. The
expression of the polarization current density in frequency
domain is expressed as follows:

Jp(ω) = jω
ε0ω

2
p

jωγ − ω2E(ω). (3)

The relationship between Jp (t) and E (t) which is the auxil-
iary differential equation can be obtained by using the inverse
Fourier transformation:

∂Jp(t)
∂t
= −γ Jp(t)+ ε0ω2

pE(t). (4)

Then the resultingMaxwell’s curl equations for the plasma
problem can be obtained as follows:

∂Hx
∂t
=

1
µ0

(
∂Ey
∂z
−
∂Ez
∂y

)
(5)

∂Hy
∂t
=

1
µ0

(
∂Ez
∂x
−
∂Ex
∂z

)
(6)

∂Hz
∂t
=

1
µ0

(
∂Ex
∂y
−
∂Ey
∂x

)
(7)

∂Ex
∂t
=

1
ε0

(
∂Hz
∂y
−
∂Hy
∂z
− σEx − Jpx

)
(8)

∂Ey
∂t
=

1
ε0

(
∂Hx
∂z
−
∂Hz
∂x
− σEy − Jpy

)
(9)

∂Ez
∂t
=

1
ε0

(
∂Hy
∂x
−
∂Hx
∂y
− σEz − Jpz

)
(10)

dJpx
dt
= −γ Jpx + ε0ω2

pEx (11)

dJpy
dt
= −γ Jpy + ε0ω2

pEy (12)

dJpz
dt
= −γ Jpz + ε0ω2

pEz. (13)

In contrast with the conventional FDTD method, the cen-
tral finite-difference scheme is now used to approximate the
spatial derivative only in the PITD method so as to reduce
the resulting Maxwell’s curl equations to a set of ODEs as
follows:

dHx
∣∣i,j+1/2,k+1/2

dt
=

1
µ0

(
Ey
∣∣i,j+1/2,k+1 − Ey ∣∣i,j+1/2,k

1z

−
Ez|i,j+1,k+1/2 − Ez|i,j,k+1/2

1y

)
(14)
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dHy
∣∣i+1/2,j,k+1/2

dt
=

1
µ0

(
Ez
∣∣i+1,j,k+1/2 − Ez ∣∣i,j,k+1/2

1x

−
Ex |i+1/2,j,k+1 − Ex |i+1/2,j,k

1z

)
(15)

dHz
∣∣i+1/2,j+1/2,k

dt
=

1
µ0

(
Ex
∣∣i+1/2,j+1,k − Ez ∣∣i+1/2,j,k

1y

−

Ey
∣∣
i+1,j+1/2,k − Ey
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i,j+1/2,k

1x

)
(16)

dEx |i+1/2,j,k
dt

=
1
ε0

(
Hz|i+1/2,j+1/2,k−Hz|i+1/2,j−1/2,k

1y

−

Hy
∣∣
i+1/2,j,k+1/2 − Hy
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i+1/2,j,k−1/2

1z

− σEx |i+1/2,j,k − Jpx
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i+1/2,j,k

)
(17)

dEy
∣∣
i,j+1/2,k

dt
=

1
ε0

(
Hx |i,j+1/2,k+1/2−Hx|i,j+1/2,k−1/2

1z

−
Hz|i+1/2,j+1/2,k − Hz|i−1/2,j+1/2,k

1x

− σEy
∣∣
i,j+1/2,k − Jpy
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i,j+1/2,k

)
(18)

dEz|i,j,k+1/2
dt

=
1
ε0

(
Hy
∣∣
i+1/2,j,k+1/2−Hy

∣∣
i−1/2,j,k+1/2

1x

−
Hx |i,j+1/2,k+1/2 − Hx |i,j−1/2,k+1/2

1y

− σEz|i,j,k+1/2 − Jpz
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i,j,k+1/2

)
(19)

dJpx
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i+1/2,j,k

dt
=− γ Jpx

∣∣
i+1/2,j,k + ε0ω

2
pEx

∣∣∣
i+1/2,j,k

(20)

dJpy
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i,j+1/2,k

dt
=− γ Jpy

∣∣
i,j+1/2,k + ε0ω

2
pEy

∣∣∣
i,j+1/2,k

(21)
dJpz

∣∣
i,j,k+1/2

dt
=− γ Jpz

∣∣
i,j,k+1/2 + ε0ω

2
pEz

∣∣∣
i,j,k+1/2

(22)

The above ODEs can be rewritten as a matrix form

dX
dt
=MX+ f(t) (23)

where X =
(
Hx ,Hy,Hz,Ex ,Ey,Ez, Jpx , Jpy, Jpz

)T is a
one-column vector containing both all of the electromagnetic
field components and the auxiliary variables, M is a coef-
ficient matrix determined by the spatial-step size and the
medium parameters, and f(t) is a column vector introduced
by the excitations [33].

According to the theory of ODEs, the analytical solution
of the equation (23) can be written as

X (t) = eMtX (0)+
∫ t

0
eM(t−s)f (s) ds (24)

and the discrete form of the equation (24) is

Xk+1 = TXk + Tk+1
∫ tk+1

tk
e−sMf (s) ds (25)

where Xk = X (k1t) and T = exp (M1t) is the exponential
matrix which can be calculated by the PI technique [37].

Moreover, the Gauss integration technique is used to
approximate the integration in the right-hand side of equa-
tion (25). Relying our experiments in this area, two-nodes
Gauss integrand is accurate enough to satisfy the computa-
tional requirement, and the recurrence formula is given by

Xk+1 = TXk +
1t
2

exp

[(
1t
2
+
1t
2

√
1
3

)
M

]

× f

(
tk +

1t
2
−
1t
2

√
1
3

)

+
1t
2

exp

[(
1t
2
−
1t
2

√
1
3

)
M

]

× f

(
tk +

1t
2
+
1t
2

√
1
3

)
. (26)

III. NUMERICAL RESULTS
In order to verify the performance of the proposed method,
four typical plasma examples are simulated in the following
subsection. The numerical results are also compared with
the analytical solution and the results of the JEC-FDTD,
ADE-FDTD, RC-FDTD and PLRC-FDTD methods.

A. INFINITE PLASMA SPACE
As the first example, the electromagnetic wave propagation
through the infinite plasma space is simulated. The natural
frequency of the plasma is ωp = 2π × 107rad/s. The total
number of the computational cells is 1000 with 10-cell thick
PML layers at the both ends of the computation space. For
the JEC-FDTDmethod and the ADE-FDTDmethod, in order
to satisfy the CFL condition, the spatial-step size is set to
1 = 0.125m, the time-step size is set to 1t = 0.208ns
and the number of the computational time step is 2500. For
the proposed PITD method, we simulate the same problem
when the time steps are 1t , 31t and 51t , respectively. The
normalized incident electromagnetic wave is

E = sin2
(
2π × 107t

)
(27)

Fig. 1 gives the waveform of the incident electromag-
netic wave. Fig. 2 compares the simulated values of the
electric field at the 550th grid from the proposed PITD
method, the JEC-FDTDmethod and theADE-FDTDmethod.
As shown in Fig. 2, the results obtained by the proposed
PITD method are overlapped with the results of the other two
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FIGURE 1. The waveform of the incident electromagnetic wave.

FIGURE 2. The computed values of the electric field at the 550th grid
from the JEC-FDTD method, the ADE-FDTD method and the proposed PITD
method. Proposed Method (1), Proposed Method (3) and Proposed
Method (5) mean the time steps of the proposed PITD method being 1t ,
31t and 51t , respectively.

FDTDmethods in 500ns. Thus, the large time-step size of this
method is feasible and effective. Fig. 3 shows the differences
of the results by using the proposed PITD method under
different time steps from the ADE-FDTDmethod. It is clearly
seen that the differences are nearly independent of the time-
step size. Furthermore, the average execution time is 11.85s

FIGURE 3. The differences of the results by using the proposed PITD
method under different time steps from the ADE-FDTD method. Proposed
Method (1), Proposed Method (3) and Proposed Method (5) mean the
time steps of the proposed PITD method being 1t , 31t and 51t ,
respectively.

for the JEC-FDTD method and 12.45s for the ADE-FDTD
method, respectively.When the time-step size is 51t , the exe-
cution time of the proposed PITD method is 5.93s which is
nearly half less than that of the FDTD methods. Therefore,
the new method can provide a significant improvement over
the JEC-FDTD and ADE-FDTD methods in reducing the
simulation times.

B. PLASMA SLAB
To validate the proposed method, the second example is a
plasma slab with 1.5cm thick. The computational spatial-step
size is set to1 = 75µm. The computational domain consists
of 800 grids, with the plasma slab occupying from 300 to
500. In order to reduce the influence of the reflection, 10-cell
thick PML layers are set at the both ends of the computa-
tional domain. The time-step size of the JEC-FDTD method,
ADE-FDTD method, RC-FDTD method and PLRC-FDTD
method is 1t = 0.125ps, and the time-step size of the
proposed PITD method is 31t . The plasma considered has
a plasma frequency of 28.7 GHz (ωp/2π ) and a collision
frequency γ of 20 GHz.

In order to eliminate the energy of the zero-frequency
incident wave, we consider a derivative Gaussian pulse as
the incident wave. The spectrum of the derivative Gaussian
pulse rises sharply but smoothly from zero frequency, peaks
at 50 GHz, and is 10 dB down from this peak at 100 GHz.

Fig. 4(a)-4(c) show the electric field versus cell position
after 900-, 1500- and 1900-time steps, respectively. It is
clearly seen that the reflection and transmission on the bound-
ary surface and the loss in the plasma slab. Fig. 5 and
Fig. 6 show the computational complex reflection coefficients
magnitude and phase of the electromagnetic wave propaga-
tion through the plasma slab, respectively. Fig. 7 and Fig. 8
show the computational complex transmission coefficients
magnitude and phase of the electromagnetic wave propa-
gation through the plasma slab, respectively. It is clearly
seen here that the results of the proposed PITD method
are very close to those of the JEC-FDTD, ADE-FDTD and
PLRC-FDTD method and in agreement with the analytical
results quite well. The numerical error of the RC-FDTD
method is a little larger than the other methods.

C. PLASMA PHOTONIC CRYSTAL
As the third example, we analyze the band gap characteristics
of the plasma photonic crystal. Fig. 9 shows the structure of
the plasma photonic crystal. The number of the periodicity
is N = 8 and a = b = 1.5cm. The plasma density is
n = 5×1016m−3 and the collision frequency is 3.0GHz. The
relative permittivity of the dielectric medium is εr = 5.0.
The computational spatial-step size is set to 1 = 1.5mm,
and the total number of the computational cells is 196 with
10-cell thick PML layers at the both ends of the computation
space. The plasma photonic crystal domain is 18 to 178,
and the rest is vacuum domain. In order to satisfy the CFL
condition, the time-step size of the FDTD method is set to
1t = 2.5ps and the number of the computational time step
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FIGURE 4. The electric field versus cell position after (a) 900-, (b) 1500-,
(c) 1900-time steps.

is 50000. For the proposed PITD method, the time-step size
is set to 1t = 12.5ps which is five times the FDTD method.
Fig. 10 and Fig. 11 show the calculated reflection coef-

ficient magnitude and phase of the plasma photonic crystal,
respectively. Fig. 12 and Fig. 13 show the calculated transmis-
sion coefficient magnitude and phase of the plasma photonic
crystal, respectively. According to the reflection spectrum
and transmission spectrum, we can observe the band gap
characteristics of plasma photonic crystal. The results of the
PITD method are also consistent with the FDTD method.
Moreover, the execution time of the FDTD method is 8.13s.
However, the execution time of the proposed PITD method is
just 4.56s.

FIGURE 5. The complex reflection coefficient magnitude of the
electromagnetic wave propagation through the plasma slab.

FIGURE 6. The complex reflection coefficient phase of the
electromagnetic wave propagation through the plasma slab.

FIGURE 7. The complex transmission coefficient magnitude of the
electromagnetic wave propagation through the plasma slab.

D. 2-D PLASMA FILLED CAVITY
The fourth example is a 2-D plasma filled cavity. The mesh
of the cavity is 20× 20. The spatial-step size is dx = 75µm.
The time-step sizes are 0.1ps for theADE-FDTD, JEC-FDTD
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FIGURE 8. The complex transmission coefficient phase of the
electromagnetic wave propagation through the plasma slab.

FIGURE 9. The structure of the plasma photonic crystal.

FIGURE 10. The reflection coefficient magnitude of the plasma photonic
crystal.

and PLRC-FDTD methods and 0.6ps for the proposed PITD
method, respectively. The parameters of the plasma are same
with the second example.

FIGURE 11. The reflection coefficient phase of the plasma photonic
crystal.

FIGURE 12. The transmission coefficient magnitude of the plasma
photonic crystal.

FIGURE 13. The transmission coefficient phase of the plasma photonic
crystal.

Fig. 14 illustrates the time-domain simulated waveforms
of the proposed ADE-PITD method and the other three
FDTD methods on the same observation point. We can
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FIGURE 14. The simulated waveform of the 2-D plasma filled cavity.

see that very good agreements are observed between the
ADE-PITD method and the other three FDTD methods.
In addition, the average execution time of the four meth-
ods are: (1) JEC-FDTD method: 6.90s; (2) ADE-FDTD
method: 7.15s; (3) PLRC-FDTDmethod: 6.00s; (4) proposed
ADE-PITDmethod: 4.36s. The average execution time of the
ADE-PITD method is about 2/3 of the other methods.

According to the numerical experiments above, it can be
concluded that the PITDmethod is more efficient to solve the
plasma problems due to the larger time-step size. The simu-
lations in above analysis are performed on Intel Celeron-M
380 1.60-GHz PC.

IV. STABILITY ANALYSIS
To analyze the stability of the proposed method, the
distribution of the eigenvalues of the proposed PITD method
is compared with the unit circle. Here, the parameters in
example B are used and l is set to 220 in the PITD method.
The eigenvalues of the numerical update equations of the
proposed PITD method are computed and plotted in the
complex plane. According to Von Neumann criterion, if all
the eigenvalues of the numerical update equations are less
than or equal to unity in magnitude, the recursive scheme is
stable.

Fig. 15 shows the distribution of the eigenvalues of the
PITD method with respect to the unit circle when the
time-step size is changed from 1t to 1061t (according to

FIGURE 15. Distribution of the eigenvalues in the complex plane for the
PITD method when the time-step size is 1t to 1061t .

the numerical stability condition of the PITD method in free
space, the value of the maximum time-step size is about
1061t when l is set to 220,1t is the maximum time-step
size allowed by the CFL stability condition in the FDTD
method). All the eigenvalues of the PITDmethod lie within or
on the unit circle, i.e., the update equations of the proposed
method are stable. Thus, the maximum allowable time-step
size of the proposed ADE-PITD method is also much larger
than that allowed by the CFL stability condition just like the
conventional PITD method.

V. CONCLUSION
In order to break through the CFL stability condition, a modi-
fied PITD method for the plasma medium has been proposed
with the auxiliary differential equation and the PI technique.
Through introducing the polarization current density J as
the auxiliary variable and adding an auxiliary differential
equation, the complex permittivity of the plasma is simpli-
fied skillfully and the resulting Maxwell’s curl equations are
obtained. Then approximating the spatial differential deriva-
tive with the central finite-difference scheme and applying
the PI technique to the temporal operator, we obtain the new
formulation which a larger time-step size can be selected.
The numerical results have confirmed that this newmethod is
effective for the plasma problem. Furthermore, the numerical
results also validate that the selection of the time-step size
can break through the limit of the CFL condition and the
results are independent of the time-step size. In particular, it is
shown that the proposed method is capable of providing the
significant improvement over the FDTDmethods in reducing
the execution times by using a larger time-step size. Thus, this
new proposed algorithm is an efficient approach for solving
the plasma problems.
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