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ABSTRACT In this paper, we show that any λ-constacyclic code over Fqm is a λ-constacyclic code over Fq
under some special maps. Moreover, we show that the images of these λ−constacyclic codes can be put into
the concatenated form.

INDEX TERMS λ-constacyclic codes, images of maps, concatenated codes.

I. INTRODUCTION
Cyclic codes are one of the most interesting families of codes
because of their good algebraic structures. λ-Constacyclic
codes were introduced as an extension of the class of cyclic
codes and form an important class of linear codes in coding
theory [2], [4]. These codes have practical applications such
as mathematics and engineering. They can be encoded by
shift registers. Recently, many coding scholars have done
further research on constructing quantum codes [5], [8], [9].

One interesting research problem of cyclic codes in cod-
ing theory is that the q-image of this class of liner codes
over finite fields. The q-image of cyclic codes over finite
fields can be used to construct good linear codes with long
length. Moreover, q-image of cyclic codes in concatenated
form is relative to the sequences structure, codes coverage
radius and depth distribution, which can be used into the
data compression and transmission [10]. This research issue
was first addressed by Hanan–Palermo [11] and then by
MacWilliams [12]. These papers restricted themselves to the
case q = 2. However, they are hard to be generalized to
Fqm with q a prime power. In [14], Séguin gave a simple
characterization of all q-image of cyclic codes over Fqm .
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As a generalization of cyclic codes, constacyclic codes
were introduced in [1]. Since then, the problem of study-
ing the algebraic structure of constacyclic codes is of great
interest. In the last two decades, there has been much work
on simple-root and repeated-root constacyclic codes of vari-
ous length over finite fields [2], [4], [17]. Recently, consta-
cyclic codes over finite chain rings are extensively studied
including the algebraic structure, cardinality and minimum
distance [3], [7], [13], [18].

Similar to the problem for cyclic codes over the finite field
Fqm , in this paper, we discuss the q-images of λ-constacyclic
codes over Fqm . Further, we give the description on q-images
of λ-constacyclic codes in a concatenated form.

This paper is organized as follows. In Section 2, we mainly
give some basic results on linear codes and λ-constacyclic
codes over finite fields. In Sections 3 and 4, we give some
results on the primary components of λ-constacyclic codes.
In Section 5, we present a concatenated description of
q-images of λ-constacyclic codes over Fqm .

II. PRELIMINARIES
Let Fq be a finite field and λ ∈ F∗q, where q is a prime power
and F∗q is the unit group of Fq. Let C ⊆ Fnq be a linear code,
i.e. a non zero vector subspace ofFnq. The linear codeC is said
to be a λ-constacyclic code if and only if for any codeword
(c0, c1, . . . , cn−1) ∈ C we have (λcn−1, c0, . . . , cn−2) ∈ C .
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In this paper, we always suppose gcd(n, q) = 1. Define a
following Fq-module isomorphism

f : Fnq → Fq[x]/〈xn − λ〉
(c0, c1, . . . , cn−1) 7→ c(x) = c0 + c1x + · · · + cn−1xn−1.

(1)

One can verify thatC is a λ-constacyclic code of length n over
Fq if and only if f (C) is an ideal of Fq[x]/〈xn−λ〉. Moreover,
f (C) = 〈g(x)〉, where g(x) is a monic factor of xn− λ. In this
paper, we identify C with f (C), i.e. the λ-constacyclic code
C of length n over Fq is an ideal of Fq[x]/〈xn − λ〉.
Since gcd(n, q) = 1, then the polynomial xn − λ has roots

β, βξ, . . . , βξn−1 in someGalois extension field ofFq, where
β is an nth root of λ and ξ is a primitive nth root of unity.
Therefore

xn − λ =
n−1∏
t=0

(x − βξ t ).

Let Fqm be a finite field, where q is a prime power and
m ≥ 2. Define a map as follows

F : Fqm [x]/〈xn − λ〉 →
n−1⊕
t=0

Fqm [x]/〈x − βξ t 〉

c(x) = c0 + c1x + · · · + cn−1xn−1 7→

F(c(x)) = (c(β), c(βξ ), . . . , c(βξn−1)). (2)

Then F is a well-defined ring isomorphism.
Let ρt = c(βξ t ) =

∑n−1
k=0 ck (βξ

t )k . Clearly,

(ρ0, ρ1, . . . , ρn−1)

= (c0, c1, . . . , cn−1)

×


1 1 · · · 1
β βξ · · · βξn−1

...
...

...
...

βn−1 (βξ )n−1 · · · (βξn−1)n−1

 , (3)

which implies that

ct =
1
n

n−1∑
k=0

ρk (βξ k )−t , t = 0, 1, . . . , n− 1.

Note that β is an nth root of λ and ξ is a primitive nth root
of unity, then βq−1 = ξ ε, 0 ≤ ε ≤ n − 1, which implies
that βkq = βkξ kε. Let c(x) = c0 + c1x + · · · + cn−1xn−1 ∈
Fq[x]/〈xn − λ〉. Then

ρ
q
t = (c(βξ t ))q =

n−1∑
k=0

cqk (βξ
t )kq

=

n−1∑
k=0

ckβkξ k(tq+ε) = ρtq+ε, (4)

where t = 0, 1, . . . , n − 1. Similarly, we have ρq
2

t =

ρε+qε+tq2 .

Let xn − λ = h1(x)h2(x) · · · hr (x), where hi(x) is a
monic irreducible polynomial with degree di over Fq, for
i = 1, 2, . . . , r . Denote by Ui, i = 1, 2, . . . , r , the
q-cyclotomic coset corresponding to hi(x). Let Fqdi be the
dith Galois extension field of Fq, i.e., Fqdi ∼= Fq[x]/〈hi(x)〉,
where deg(hi(x)) = di, for i = 1, 2, . . . , r . Suppose that µ is
the order of λ in the unit group F∗q and βξui = β1+uiµ, where
1 + uiµ is a complete set of representatives of cyclotomic
cosets of q modulo n. Then for a fixed 1 + uiµ ∈ Ui, ui ∈
{0, 1, . . . , n− 1}, the elements of the set Ui = {1+ uiµ, (1+
uiµ)q, . . . , (1 + uiµ)qki−1)} are the roots of hi(x). It is well
known that the finite field Fq[x]/〈hi(x)〉 is isomorphic to a
minimal constacyclic code of length n over Fq with the parity
check polynomial hi(x). If we denote by θi the generating
primitive idempotent for the minimal constacyclic code, then
the isomorphism is given by the map

χ : 〈θi〉 → Fq[x]/〈hi(x)〉
c(x) 7→ c(β1+uiµ). (5)

Therefore, for any c(x) ∈ 〈θi〉, we have c(βk ) 6= 0, k ∈ Ui,
for i = 1, 2, . . . , r .
Definition 1: Let n be a positive integer and Fqn be an nth

Galois extension field of Fq. Let r be an element of Fqn . Its
trace relative to Fq is defined by

Trn1(r) = r + rq + rq
2
+ · · · + rq

n−1
.

From the above description, we have the following trace
representation of λ-constacyclic codes directly.
Theorem 1: Let C be a λ-constacyclic code of length

n over Fqm with parity check polynomial h(x) =

h1(x)h2(x) · · · hs(x). Suppose c = (c0, c1, . . . , cn−1) ∈ C,
then

ct =
1
n

s∑
i=1

Trdi1 (ρi(βξ
ui )−t ),

where t = 0, 1, . . . , n− 1, di = deg(hi(x)), i = 1, 2, . . . , s.
Let α = {α0, α1, . . . , αm−1} be a basis for Fqm over

Fq. Define the map dα from Fqm [z]/〈zn − λ〉 into Fq[z]/
〈zmn − λ〉 by

dα : Fqm [z]/〈zn − λ〉 → Fq[z]/〈zmn−λ〉

a(z) =
n−1∑
j=0

ajzj 7→
m−1∑
i=0

n−1∑
j=0

ai,jzmj+i, (6)

where aj =
∑m−1

i=0 ai,jαi and ai,j ∈ Fq.
Proposition 1: Let a(z) ∈ Fqm [z]/〈zn − λ〉. From the

definition of dα , we have dα(za(z)) = zmdα(a(z)).
Proof: Let a(z) =

∑n−1
j=0 ajz

j
∈ Fqm [z]/〈zn −

λ〉. Then za(z) mod (zn − λ) = λan−1 +
∑n−2

j=0 ajz
j+1.

Thus, we have dα(za(z)) =
∑m−1

i=0 λai,n−1z
m(n−1)+i

+∑m−1
i=0

∑n−2
j=0 ai,jz

m(j+1)+i. By the equation (6), we can get
dα(a(z)) =

∑m−1
i=0

∑n−1
j=0 ai,jz

mj+i
= a0,0z0 + a1,0z +

· · · + am−1,0zm−1 + · · · + λa0,n−1z−m + λa1,n−1z−m+1 +
· · · + λam−1,n−1z−1, which implies that dα(za(z)) =

zmdα(a(z)). �

VOLUME 8, 2020 58661



J. Gao et al.: Some Results on Images of a Class of λ-Constacyclic Codes Over Finite Fields

Now we suppose that C is a λ-constacyclic code of length
n with dimension k over Fqm . Then by the definition of dα
and Proposition 1, we deduce that dα(C) is a linear code of
length nm with dimension km over Fq. Moreover, dα(C) is a
λ-quasi-twisted code over Fq.

III. THE PRIMARY COMPONENTS OF
λ-CONSTACYCLIC CODES
Let A = Fq[x]/〈xn − λ〉 and Am be the direct prod-
uct of A. Clearly, Am is an A-module. The element
(a0(x), a1(x), . . . , am−1(x)) of Am can also be written as∑m−1

i=0 ai(x)yi =
∑m−1

i=0
∑n−1

j=0 ai,jx
jyi, where ai(x) =∑n−1

j=0 ai,jx
j, for i = 0, 1, . . . ,m− 1.

Firstly, we introduce a map π from Fq[z]/〈zmn − λ〉 into
Am given by

π : Fq[z]/〈zmn − λ〉 → Am

m−1∑
i=0

n−1∑
j=0

ai,jzmj+i 7→
m−1∑
i=0

n−1∑
j=0

ai,jx jyi.

It is easy to see that π is an A-module isomorphism.
Let a(x) ∈ A and b(z) ∈ Fq[z]/〈zmn − λ〉. Suppose

a(x)b(z) = a(zm)b(z), thenwe have the following proposition.
Proposition 2: (i) π (xb(z)) = π (zmb(z)) = xπ (b(z));
(ii) Suppose π (a(z)) = (a0(x), a1(x), . . . , am−1(x)) =

a(x), then π (za(z)) = τ (a(x)), where τ (a(x)) =

(xam−1(x), a0(x), . . . , am−2(x));
(iii) dα(C) is a λ-constacyclic code if and only if π (dα(C))

is invariant under the action of τ .
Proof: (i) By the definition ofπ , we can getπ (zmb(z)) =∑m−1

i=0
∑n−1

j=0 aijx
j+1yi = x

∑m−1
i=0

∑n−1
j=0 aijx

jyi = xπ (b(z)).

(ii) Since

za(z) =
m−1∑
i=0

n−1∑
j=0

aijzmj+i+1

= λam−1,n−1 + a0,0z+ · · · + am−2,0zm−1 + · · ·

+am−1,n−2zmn−m + a0,n−1zmn−m+1 + · · ·

+am−1,n−1zmn−1,

π (za(z)) = (λam−1,n−1 + am−1,0x + · · · + am−1,n−2xn−1,

. . . , am−2,0 + am−2,1x + · · · + am−2,n−1xn−1),

and

(xam−1(x), a0(x), . . . , am−2(x))

= (λam−1,n−1 + am−1,0x + · · · + am−1,n−2xn−1

, . . . , am−2,0 + am−2,1x + · · · + am−2,n−1xn−1),

which implies that

π (za(z)) = (xam−1(x), a0(x), . . . , am−2(x)) = τ (a(x)).

(iii) Let a(x) = (a0(x), a1(x), . . . , am−1(x)) ∈ π (dα(C)).
Then

τ (a(x)) = π (za(z)) = (xam−1(x), a0(x), . . . , am−2(x)).

Assume that a(z) ∈ dα(C), then za(z) ∈ dα(C) since dα(C) is
λ-constacyclic. So π (za(z)) ∈ π (dα(C)). Therefore τ (a(x)) ∈
dα(C). On the other hand, since a(x) ∈ π (dα(C)), which
implies that τ (a(x)) = π (za(z)) ∈ π (dα(C)). Since π is an
A-module isomorphism, then we have that za(z) ∈ dα(C). �
In the following, we define a mapDα from Fqm [z]/〈zn−λ〉

into Am as Dα = π ◦ dα so that

Dα : Fqm [z]/〈zn − λ〉 → Am

n−1∑
i=0

ajzj 7→
n−1∑
i=0

m−1∑
j=0

ai,jx jyi,

where aj is defined by (6).
Our work is to determine the pairs (α,C) for which Dα(C)

is τ -invariant. If C is a λ-constacyclic code over Fqm , then
Dα(C) is a submodule ofAm.We now introduce a few notions.
For any a(x) = (a0(x), a1(x), . . . , am−1(x)) ∈ Am,

the order of a(x) denoted by ord(a(x)) is defined to be a
nonzero monic polynomial f (x) of least degree such that
f (x)a(x) = 0. Set ord(0) = 1. Clearly, if a(x) ∈ A,
then ord(a(x)) = xn−λ

gcd(a(x),xn−λ) . Moreover, ord(a(x)) =
lcm0≤i≤m−1ord(ai(x)). Similarly, ifM is a submodule of Am,
then ord(M ) is the nonzero monic polynomial f (x) of least
degree such that f (x)a(x) = 0, where a(x) ∈ M . If

M =
t⊕
i=1

Mt ,

then ord(M ) = lcm1≤i≤tord(Mi).
Lemma 1: Let gcd(n, q) = 1, h(x) = ord(M ) and

h(x) = h1(x)h2(x) · · · ht (x), where hi(x) are different irre-
ducible polynomials. Then

M =
t⊕
i=1

h(x)
hi(x)

M .

Proof: Since gcd(n, q) = 1, then h(x)
h1(x)

,
h(x)
h2(x)

, . . . ,
h(x)
ht (x)

are pairwise coprime. Thus, there exist a1(x), a2(x), . . . ,
at (x) ∈ Fq[x] such that

h(x)
h1(x)

a1(x)+
h(x)
h2(x)

a2(x)+ · · · +
h(x)
ht (x)

at (x) = 1.

Multiplied by M , we have

h(x)
h1(x)

M +
h(x)
h2(x)

M + · · · +
h(x)
ht (x)

M = M .

If i 6= j, we have hi(x)|
h(x)
hj(x)

. Moreover

gcd
(
h(x)
hj(x)
| j 6= i, j = 1, 2, . . . , t

)
= hi(x)gcd

(
h(x)

hj(x)hi(x)
| j 6= i, j = 1, 2, . . . , t

)
= hi(x)
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and hi(x)M =
∑ h(x)

hj(x)
M . Thus h(x)

hi(x)
M

⋂ ∑
j 6=i

h(x)
hj(x)

M = 0. �
LetMi =

h(x)
hj(x)

M , 1 ≤ i ≤ t . ThenM = M1⊕M2⊕· · ·⊕Mt

and M ′i s are called the primary components of M . Clearly,
ord(Mi) = hi(x). If ord(M ) is an irreducible polynomial, then
M is called a primary submodule.
Lemma 2: Let M ⊂ Am be a submodule. Then M

is τ -invariant if and only if its primary components are
τ -invariant.

Proof: Assume that Mi =
h(x)
hj(x)

M , 1 ≤ i ≤ t . For any
α(x) ∈ M , let

α(x) = {α1(x)+ α2(x)+ · · · + αt (x) | αi(x) ∈ Mi, 1 ≤ i ≤ t}.

Since Mi is τ -invariant, then τ (αi(x)) ∈ Mi. Thus

τ (α(x)) = τ (α1(x))+ τ (α2(x))+ · · · + τ (αt (x)) ∈ M .

Conversely, let a(x) ∈ Mi. Then ord(a(x)) = hi(x) or
ord(a(x)) = 0. Since

τ (a(x)) = (xam−1(x), a0(x), . . . , am−2(x)),

it follows that ord(τ (a(x))) = ord(a(x)) = hi(x). Since
a(x) ∈ Mi and M is τ -invariant, then τ (a(x)) ∈ Mi. �

Let xn − λ = h1(x)h2(x) · · · hr (x). Then, for any i =
1, 2, . . . , r , Pi = xn−λ

hi(x)
Am is a primary component of Am.

Hence if M ⊂ Am is a primary submodule of order hi(x),
then M ⊂ Pi.
Let h(x) be an irreducible factor of xn− λ of degree k , and

P be the primary component of Am of order h(x). Let βξ t be a
root of h(x) and Fqk = Fq(βξ t ). Nowwe define the following
maps

φ : Fqk [ω]/〈ωm − βξ t 〉 → P

a(ω) =
m−1∑
i=0

aiωi 7→
1
n

m−1∑
i=0

n−1∑
j=0

Trk1(ai(βξ
t )−j)x jyi (7)

and

ψ : P → Fqk [ω]/〈ωm − βξ t 〉

a(x) = (a0(x), a1(x), . . . , am−1(x)) 7→
m−1∑
i=0

ai(βξ t )ωi. (8)

It is easy to see that φ is well defined. In other words,
φ(a(ω)) ∈ P. Further, it is easy to verify that φ and ψ are
inverses of each other.

Finally, we make Fqk [ω]/〈ωm−βξ t 〉 into an A-module by
setting

a(x)
m−1∑
i=0

biωi =
m−1∑
i=0

a(βξ t )biωi,

where a(x) ∈ A and
∑m−1

i=0 biωi ∈ Fqk [ω]/〈ωm − βξ t 〉. For
any a(x) ∈ A and a(x) = (a0(x), a1(x), . . . , am−1(x)), b(x) =
(b0(x), b1(x), . . . , bm−1(x)) ∈ P, we have

ψ(a(x)+ b(x)) = ψ(a(x))+ ψ(b(x))

and ψ(a(x)a(x)) =
∑m−1

i=0 a(βξ t )ai(βξ t )ωi = a(x)
∑m−1

i=0
ai(βξ t )ωi = a(x)ψ(a(x)), which implies that ψ is an
A-module isomorphism.
Theorem 2: Let gcd(n, q) = 1, h(x) be a q-ary irreducible

factor of xn − λ of degree k and βξ t ∈ Fqk be a root of h(x).
Let M be a primary submodule of Am of order h(x) and U =
ψ(M ) the corresponding qk -ary submodule of Fqk [ω]/〈ωm−
βξ t 〉. Then M is τ -invariant if and only if U is an ideal of
Fqk [ω]/〈ωm − βξ t 〉.

Proof: Let b(ω) = b0 + b1ω + · · · + bm−1ωm−1 ∈
Fqk [ω]/〈ωm − βξ t 〉. Then

φ(ωb(ω)) = φ(βξ tbm−1 + b0ω + · · · + bm−2ωm−1)

=
1
n

n−1∑
j=0

Trk1((βξ
t )−jbm−1βξ t )x j

+
1
n

m−1∑
i=1

n−1∑
j=0

Trk1(bi−1(βξ
t )−j)x jyi.

Let b(x) = φ(b(ω)). Then we have that

τ (b(x)) = τ (φ(b(ω))

= τ (
1
n

n−1∑
j=0

Trk1(b0(βξ
t )−j)x j,

. . . ,
1
n

n−1∑
j=0

Trk1(bm−1(βξ
t )−j)x j)

=
1
n

n−1∑
j=0

Trk1(bm−1(βξ
t )−j)x j+1

+
1
n

m−1∑
i=1

n−1∑
j=0

Trk1(bi−1(βξ
t )−j)x jyi.

Clearly, 1
n

∑n−1
j=0 Tr

k
1(bm−1(βξ

t )−j+1)x j = 1
n

∑n−1
j=0 Tr

k
1(bm−1

(βξ t )−j)x j+1 implying τ (b(x)) = τ (φ(b(ω)) = φ(ωb(ω)).
Therefore, M is τ -invariant if and only if φ(ωb(ω)) ∈ M ,
and τ (φ(b(ω)) ∈ M if and only if ψτ (φ(b(ω)) ∈ ψ(M ) = U ,
i.e., ψφ(ωb(ω)) = ωb(ω) ∈ ψ(M ) = U . In other words,
dα(C) is λ-constacyclic if and only if π (dα(C)) is τ -invariant
if and only if the submodule of Am is τ -invariant if and only
if U is an ideal. �
In the following, we determine when Dα(C) is a primary

submodule of Am first.
Let C be an irreducible qm-ary λ-constacyclic code of

length n with the parity check polynomial h(x) of degree k .
Let βξ t ∈ Fqmk be a root of h(x). Then, by Theorem 1,
we have

C =

1
n

n−1∑
j=0

Trmkm (ρ(βξ t )−j)zj | ρ ∈ Fqmk

 .
Let α = {α0, α1, . . . , αm−1} be a basis of Fqm over Fq
and γ = {γ0, γ1, . . . , γm−1} be the trace-dual basis of α.
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Then Trmkm (ρ(βξ t )−j) =
∑m−1

i=0 Trm1 (γi)Tr
mk
m (ρ(βξ t )−jαi) =∑m−1

i=0 Trmk1 (ργi(βξ t )−j)αi. Applying the map Dα to C ,
we get

Dα(C) = Dα

1
n

n−1∑
j=0

Trmkm (ρ(βξ t )−jzj)


= Dα

1
n

n−1∑
j=0

m−1∑
i=0

Trmk1 (ργi(βξ t )−jαizj)


=

1
n

n−1∑
j=0

m−1∑
i=0

Trmk1 (ργi(βξ t )−j)x jyi | ρ ∈ Fqmk

 .
Therefore the q-ary code Dα(C) is given by

Dα(C) =

1
n

n−1∑
j=0

m−1∑
i=0

Trmk1 (ργi(βξ t )−j)x jyi | ρ ∈ Fqmk

 .
(9)

Let h0(x) = irr(βξ t ,Fq) be an irreducible polynomial in
Fq[x] and βξ t be one of its roots. Let deg(h0(x)) = k0. Then
Fqk0 = Fq(βξ t ). In addition, Fqk0 = Fq(βξ t ) ⊆ Fqm (βξ t ) =
Fqmk , thus k0 | mk . Decomposing Trmk1 as Trk01 Tr

mk
k0
, the set

(9) becomes

Dα(C)

=

1
n

n−1∑
j=0

m−1∑
i=0

Trk01 ((βξ t )−j)Trmkk0 (ργi)x
jyi | ρ ∈ Fqmk

 .
(10)

Comparing (9) with (7) for φ, we have U = ψ(Dα(C)) ={∑m−1
i=0 Trmkk0 (ργi)ω

i
| ρ ∈ Fmkq

}
⊆ Fqk0 [ω]/〈ω

m
−βξ t 〉} and

ord(Dα(C)) = h0(x).

In the more general case, we can decompose C as the direct
sum of minimal λ-constacyclic codes, i.e.,

C = C1 ⊕ C2 ⊕ · · · ⊕ Cr ,

where

Ci =
〈
xn − λ
hi(x)

〉
,

i = 1, 2, . . . , r and hi(x) is an irreducible factor of xn − λ
having βξ ti as a root in some Galois extension field of Fqm .
Then

Dα(C) =
r⊕
i=1

Dα(Ci)

and Dα(Ci) is a primary submodule with the order hi,0(x) =
irr(βξ ti ,Fq).

From the above discussion, we give some results onDα(C).
The proof process is easy to be verified and we omit it here.
Proposition 3: (i) Dα(C) is primary if and only if

irr(βξ ti ,Fq) = irr(βξ t1 ,Fq), where 1 ≤ i ≤ r;

(ii) Let βξ t = βξ t1 . Suppose Dα(C) is primary, then there
exist integers ui, 1 ≤ i ≤ r, such that βξ ti = (βξ t )q

ui , where
ui ∈ Zk0 ,Zk0 = {0, 1, . . . , k0 − 1}, i = 1, 2, . . . , r;
(iii) Let gcd(n, q) = 1. Then ui belongs to distinct coests

of mZk0 . In other words, | ui |≤ gcd(m, k0);
(iv) Suppose that r = gcd(m, k0), then the parity check

polynomial of C is h(x) = irr(βξ t ,Fq);
(v) If there exists a subspace U of Fm

qk0
such that Dα(C) =

φ(U ), then the dimension of U is er, where e = mk
k0
;

(vi) Let βξ t ∈ Fqmk = Fqm (βξ t ), h0(x) = irr(βξ t ,Fq) and
k0 = deg(h0(x)). If ord(βξ t ) = N, then k = k0

gcd(m,k0)
.

In summary, if C is a λ-constacyclic code of length n over
Fqm , we can decompose C =

⊕r
i=1 Ci, where Ci ⊆ C is a

λ-constacyclic code and Dα(Ci), 1 ≤ i ≤ r , are the primary
submodules of Am with distinct orders. From the above dis-
cussion, we see that the decomposition does not depend on
the basis α and we call Ci is the primary components of C .
If the parity check polynomial ofCi is overFq, then we callCi
a trivial primary component and nontrivial otherwise. We can
group the trivial primary components by obtaining

C = C0 ⊕

(
r⊕
i=1

Ci

)
,

where C0 is the sum of the trivial primary components of C
and Ci, 1 ≤ i ≤ r , are the different nontrivial components
of C . The following example illustrates it.
Example 1: Consider the polynomial x7 − 3 over F5. The

order of 3 in F∗5 is 4. We have x
7
− 3 =

∏6
t=0(x − β

1+4t ) =
(x−β)(x−β5)(x−β9)(x−β13)(x−β17)(x−β21)(x−β25)
where β is a primitive 28th root of unity. The powers of β
that appear in this factorization are 1, 5, 9, 13, 17, 21, 25,
and these are union of two 5-cyclotomic cosets modulo 28.
They are C5(1) = {1, 5, 9, 13, 17, 25} and C5(25) = {21}.
In fact,

x7 − 3 = (x6 + 2x5 + 4x4 + 3x3 + 2x + 4)(x + 3).

Let C be a 625-ary 3-constacyclic code of length 7 with the
parity check polynomial h(x) = (x − β)(x − β5)(x − β9)
(x−β21). Then C = C0⊕C1, where C0 has the parity check
polynomial x + 3 and C1 has the parity check polynomial
(x − β)(x − β5)(x − β9).

From Proposition 3, we can deduce that r ≤ gcd(m, k0).
In the following result, we will see that if r = gcd(m, k0),
then dα(C) is trivial and C0 plays no role in determining
whether dα(C) is
λ-constacyclic or not, and if dα(C) is a λ-constacyclic code
for some basis, then the nontrivial components of C are of a
special type.
Theorem 3: Let Fqmk = Fqm ((βξ t )−1), Fqk0 = Fq

((βξ t )−1) and C be a primary λ-constacyclic code of length
n over Fqm with the parity check polynomial

h(x) =
∏
µ∈S

irr((βξ t )q
µ

,Fqm ),
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where S is a set of r ≤ gcd(m, k0) integers modulo k0.
Then
(i) Suppose r = gcd(m, k0), then dα(C) is λ-constacyclic

for every basis α of Fqm over Fq and dα(C) =
〈
znm−λ
h0(zm)

〉
, where

h0(z) = irr(βξ t ,Fq).
(ii) Suppose r < gcd(m, k0) for some basis α, then k = 1.
Proof: (i) Let r = gcd(m, k0). Then dim(U ) =

er = m which implies that U = Fqk0 [ω]/〈ω
m
− βξ t 〉.

Therefore, by Theorem 2, dα(C) is λ-constacyclic. For any
a(z) ∈ dα(C), since π (xb(z)) = π (zmb(z)) = xπ (b(z)) and
π (a(z)) ∈ Dα(C), ord(Dα(C)) = h0(z), then π (h0(zm)a(z)) =
h0(z)π (a(z)) = 0. Further, by π an A-module isomorphism,
we also have h0(zm)a(z) = 0. Since degh0(zm) = mk0 =
mrk = dim(U ), so we have h0(zm) is the parity check
polynomial of dα(C) and dα(C) =

〈
znm−λ
h0(zm)

〉
.

(ii) If r < gcd(m, k0) and dα(C) is λ-constacyclic, then by
Theorem 2 we have that U is an ideal of Fqk0 [ω]/〈ω

m
−βξ t 〉

and dim(U ) = er < m. Now, let a(ω) = ωt − a1ωt−1 −
· · · − at | (ωm − βξ t ), where t = m − er . Note that U =
ψ(Dα(C)) =

{
Trmkk0 (ργi)ω

i
| ρ ∈ Fqmk

}
, then we can obtain

that U is invariant under the map

ϕ :

m−1∑
i=0

aiωi →
m−1∑
i=0

aq
m

i ω
i

m−1∑
i=0

Tr(ργi)ωi 7→
m−1∑
i=0

Tr(ργi)q
m
ωi, (11)

where

m−1∑
i=0

Tr(ργi)q
m
ωi =

m−1∑
i=0

Tr(ρq
m
γi
qm )ωi.

Let γi ∈ Fqm , then γiq
m
= γi. It follows that U is invariant

under the map. We know that ϕ(a(ω)) = ωt − aq
m

1 ω
t−1
−

· · · − at q
m
∈ U and a(ω) = ωt − a1ωt−1 − · · · − at ∈ U ,

then ϕ(a(ω))− a(ω) ∈ U , i.e.,

ϕ(a(ω))− a(ω) = (aq
m

1 − a1)ω
t−1
+ · · · + (aq

m

t − at ) ∈ U .

Further, since a(ω) is the generator polynomial of U and
deg(a(ω)) = t , then aq

m

i = ai, i = 1, 2, . . . , t . If ρ is a root of
a(ω), then ρq

m
is also a root of a(ω). Since a(ω) | (ωm−βξ t ),

it follows that ρm − βξ t = 0 and (ρm)q
m
= (βξ t )q

m
. Thus,

ρq
m
− βξ t = 0 implying βξ t ∈ Fqm . Therefore k = 1. �

Similar to the proof process of Theorems 5 and 8 in [14],
if dα(C) is λ-constacyclic for some α, then r = |S| = 1 or
k−1, where S ( Zk . Moreover,C has one nontrivial primary
component and the nontrivial primary component C1 must be
one of the following forms〈

xn − λ
x − (βξ t )qµ

〉
;

〈
xn − λ∏

µ∈S (x − (βξ t )qµ )

〉
.

IV. THE NONTRIVIAL PRIMARY COMPONENT
OF A CONSTACYCLIC CODE
In this section, we characterize the nontrivial primary com-
ponent of constacyclic codes.
Theorem 4: Let Fq 6=Fqk = Fq((βξ t )−1) ⊆ Fqm and C be

a λ-constacyclic code of length n over Fqm with the parity
check polynomial h(x) =

∏
µ∈S (x − (βξ t )q

µ
). Let α be a

basis of Fqm over Fq with the trace-dual basis γ . Then dα(C)
is λ-constacyclic over Fq if and only if

I (S)

=

{
m−1∑
i=0

biωi ∈ Fqk [ω]/〈ωm − βξ t 〉 |
m−1∑
i=0

biγiq
m−µ
= 0

}
(12)

is an ideal of Fqk [ω]/〈ωm − (βξ t )−1〉.
Proof: The proof process is similar to that of Theo-

rem 9 in [14]. �
Denote the dual code of constacyclic code C by C⊥, we can
obtain the following result directly.
Lemma 3: Let C be a λ-constacyclic code of length n over

Fqm and C =
⊕r

i=1 Ci, i = 1, 2, . . . , r, where λ ∈ F∗q and
Ci =

〈
xn−λ
fi(x)

〉
. Then C⊥ = C⊥1 ∩ C

⊥

2 ∩ · · · ∩ C
⊥
r .

Lemma 4: For the same conditions as in Theorem 4,
we have

(i) I (S) is an ideal of Fqk [ω]/〈ωm − (βξ t )−1〉 if
and only if In(S) is an ideal of Fqk [ω]/〈ωmn − 1〉,
where In(S) = {

∑m−1
i=0

∑n−1
j=0 aj,iω

jm+i
∈ Fqk [ω] |∑m−1

i=0
∑n−1

j=0 aj,i(βξ
t )−jγiq

m−µ
= 0}.

(ii) In(S) ∩ Fmnq is the dual code of dα(C).
Proof:

(i) The proof process is similar to that of Lemma 2 in [14].
(ii) Since dα is an Fq-module isomorphism and C =⊕
µ∈S Cµ, then dα(C) = dα

(⊕
µ∈S Cµ

)
. From Lemma 3,

dα(C)⊥ = ∩µ∈Sdα(Cµ)⊥. From Theorem 4, we have

Dα(Cµ)

=

1
n

n−1∑
j=0

m−1∑
i=0

Trm1 (ργ
qm−µ

i (βξ t )−j)x jyi | ρ ∈ Fqm

 .
Therefore

dα(Cµ) = π−1(Dα(Cµ))

=

1
n

n−1∑
j=0

m−1∑
i=0

Trm1 (ργ
qm−µ

i (βξ t )−j)ωjm+i | ρ ∈ Fqm

 .
Assume that dα(Cµ)⊥ =

∑n−1
j=0

∑m−1
i=0 ajiωjm+i, then

ajiTrm1 (ργ
qm−µ

i (βξ t )−j) = Trm1 (ajiργ
qm−µ

i (βξ t )−j) = 0.

Thus,
∑n−1

j=0
∑m−1

i=0 ajiγ
qm−µ

i (βξ t )−j = 0 implying dα(C)⊥ =
In(S) ∩ Fmnq . �
Let Fqk = Fq((βξ t )−1) ⊆ Fqm ⊆ Fql , where Fql is some

Galois extension field of Fqm such that ωm − (βξ t )−1 can be
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factored into the product of distinct irreducible polynomials
in Fqm [ω]. Let a(ω) | (ωm − (βξ t )−1) and ρ ∈ Fql be a root
of a(ω). Let a(ω) = irr(ρ,Fqk ) and ā(ω) = irr(ρ,Fq). More
generally, if a(ω) =

∏s
i=1 ai(ω)

εi then ā(ω) = lcm{āi(ω)εi}.
Lemma 5: Let Fqk = Fq((βξ t )−1) and a(ω) =∏s
i=1 ai(ω)

εi | (ωm − (βξ t )−1), where ai(ω) are the distinct
irreducible factors of a(ω) in Fqk [ω]. Then
(i) ā(ω) =

∏s
i=1 āi(ω)

εi ;
(ii) if a(ω) | b(ω), then ā(ω) | b(ω), where b(ω) ∈ Fq[ω];
(iii) deg(ā(ω)) = kdeg(a(ω));
(iv) ωm − (βξ t )−1 = f (ωm), where f (ω) =

irr((βξ t )−1,Fq).
Now, we introduce the main result of this section.
Theorem 5: Let Fq 6= Fqk = Fq((βξ t )−1) ⊆ Fqm and

C =
〈

xn − λ
x − (βξ t )qµ

〉
be a λ-constacyclic code of length n over Fqm . Then
(i) There exists a basis α = {α0, α1, . . . , αm−1} of Fqm over

Fq, for which dα(C) is λ-constacyclic if and only if ωm −
(βξ t )−1 has a monic divisor in Fqk [ω] of degree e = m

k ;
(ii) Ifωm−(βξ t )−1 has a monic divisor in Fqk [ω] of degree

e, then dα(C) is λ-constacyclic if and only if α is the trace-
dual basis of γ = {γ0, γ1, . . . , γm−1}, where γ0, γ1, . . . , γe−1
is a basis of Fqm over Fqk and

γj =

e∑
i=1

aq
µ

i γj−i, e ≤ j < m, (13)

where a(ω) = ωe − a1ωe−1 − · · · − ae ∈ Fqk [ω] and a(ω) |
(ωm − (βξ t )−1). Moreover,

dα(C) =
〈
zmn − λ
ā(z)∗

〉
,

where ā(z)∗ is the reciprocal polynomial of ā(z).
Proof:

(i) It is straightforward from Theorem 5 that dα(C) is
λ-constacyclic if and only if

I (S)

=

{
m−1∑
i=0

aiωi ∈ Fqk [ω]/〈ωm − (βξ t )−1〉 |
m−1∑
i=0

aiγiq
m−µ
=0

}

is an ideal of Fqk [ω]/〈ωm − (βξ t )−1〉. Let a(ω) = ωe −

a1ωe−1 − · · · − ae ∈ Fqk [ω] be the generator polynomial
of I . Since dim(I ) = dim(U⊥) = m− dim(U ) = m− e, then
a(ω) | (ωm − (βξ t )−1) and dega(ω) = e.
(ii)If dα(C) is λ-constacyclic, by (i), we have I (S) =
〈a(ω)〉 = {b(ω)a(ω) | b(ω) ∈ Fqk [ω]/(ωm − (βξ t )−1)},

which implies that
{
γ
qm−µ

0 , γ
qm−µ

1 , . . . , γ
qm−µ

e−1

}
are indepen-

dent over Fqk . Otherwise, we can get a set of numbers

that not all zeros {c0, c1, . . . , ce−1} satisfying c0γ
qm−µ

0 +

c1γ
qm−µ

1 + · · · + ce−1γ
qm−µ

e−1 = 0. Clearly,
∑m−1

i=0 ciωi ∈
I . But, any nonzero polynomial in I (S) has degree ≥e.

Since ωja(ω) ∈ I , 0 ≤ j ≤ m, then γ q
m−µ

j =
∑e

i=1 aiγ
qm−µ

j−i ,

e ≤ j < m. Thus, γ q
m

j =
∑e

i=1 a
qu

i γ
qm

j−i. Since γj ∈ Fqm , then

γj =

e∑
i=1

aq
µ

i γj−i, e ≤ j < m.

Let a(ω) = ωe − a1ωe−1 − · · · − ae ∈ Fqk [ω] be a
factor of ωm − (βξ t )−1 and {γ0, γ1, . . . , γm−1} a basis of
Fqm over Fq. To prove dα(C) is λ-constacyclic, we only need
to show that I given by (12) is an ideal of Fqk [ω]/〈ωm −
(βξ t )−1〉. Let {γ0, γ1, . . . , γe−1} be a basis of Fqm over Fqk
and γj =

∑e
i=1 a

qµ

i γj−i, where e ≤ j < m. Clearly, I is a
vector space over Fqk of dimension m − e. In the following,
we prove that I is an ideal with generator a(ω). In other words,
for any polynomial b(ω) ∈ I , we have a(ω) | b(ω). Let
b(ω) =

∑e
i=0 biω

i. Then

0 =
e∑
i=0

biγ
qm−µ

i

=

e−1∑
i=0

biγ
qm−µ

i + be

(
e∑
i=1

aq
µ

i γe−i

)qm−µ

=

e−1∑
i=0

(bi + beae−i)γ
qm−µ

i .

By the independence of γ q
m−µ

i , 0 ≤ i ≤ e, we conclude that
bi = −beae−i. Thus, b(ω) =

∑e
i=0−beae−iω

i
= bea(ω).

Assume that every polynomial in I of degree ≤ s, where
e < s < m − 1. Let b(ω) =

∑s
i=0 biω

i and ai = 0, where
e < i ≤ s. Then

0 =
s+1∑
i=0

biγ
qm−µ

i

=

s∑
i=0

biγ
qm−µ

i + bs+1
s∑
i=1

aiγ
qm−µ

s+1−i

=

s∑
i=0

biγ
qm−µ

i + bs+1
s∑

i=s+1−e

as+1−iγ
qm−µ

i

=

s∑
i=0

(bi + bs+1as+1−i)γ
qm−µ

i .

Hence
s∑
i=0

(bi + bs+1as+1−i)ωi ∈ I .

By induction hypothesis, a(ω) |
∑s

i=0(bi + bs+1as+1−i)ωi.
Let a(ω)c(ω) =

∑s
i=0(bi + bs+1as+1−i)ω

i. Then

s+1∑
i=0

biωi = a(ω)c(ω)− bs+1
s∑
i=0

as+1−iωi + bs+1ωs+1
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= a(ω)c(ω)− bs+1
e∑
i=1

aiωs+1−i + bs+1ωs+1

= a(ω)(c(ω)+ bs+1ωs+1−e).

Therefore a(ω) |
∑s+1

i=0 biω
i

Finally, we will prove dα(C) =
〈
zmn−λ
ā(z)∗

〉
.

Let I = 〈a(ω)〉. According to Lemma 4, we have I ⊆ In.
Thus, 〈a(ω)〉 ∩ Fmnq ⊆ In ∩ Fmnq . Let b(ω) ∈ 〈a(ω)〉 ∩ Fmnq .
Then a(ω) | b(ω). From Lemma 5 (ii), we have ā(ω) | b(ω),
which implies that b(ω) ∈ 〈ā(ω)〉. Therefore

〈a(ω)〉 ∩ Fmnq ⊆ 〈ā(ω)〉.

Let c(ω) ∈ Fq[ω] and c(ω) ∈ 〈ā(ω)〉, where a(ω) =∏s
i=1 ai(ω)

εi . Since ai(ω) | āi(ω) inFqk [ω] and āi(ω)εi | c(ω),
then ai(ω)εi | c(ω) implying a(ω) | c(ω). Consequently,

ā(ω) ⊆ 〈a(ω)〉 ∩ Fmnq .

Thus ā(ω) = 〈a(ω)〉 ∩ Fmnq . From Lemma 4(ii), we have

dα(C)⊥ = In(S) ∩ Fmnq . To prove dα(C) =
〈
zmn−λ
ā(z)∗

〉
, we only

need to show that dα(C)⊥ = 〈ā(ω)〉. Now, we have known
that 〈ā(ω)〉 ⊆ In∩Fmnq = dα(C)⊥ and | dα(C)⊥ |= qmn−m =|
〈ā(ω)〉 |. Therefore dα(C)⊥ = 〈ā(ω)〉. Thus,

dα(C) =
〈
zmn − λ
ā(z)∗

〉
.

�
Example 2: Consider the polynomial x6 − 4 over F5. The

order of 4 in F∗5 is 2. We have x
6
− 4 =

∏5
t=0(x − β

1+2t ) =
(x − β)(x − β3)(x − β5)(x − β7)(x − β9)(x − β11), where β
is a primitive 12th root of unity. And

(x − β) · (x − β5) = x2 + 2x + 4, x − β3 = x + 3,

(x − β7) · (x − β11) = x2 + 3x + 4, x − β9 = x + 2.

Let q = 5, m = k = 2 and F25 = F5(β). Let C be an [6, 1]
irreducible 25-ary 4-constacyclic code with the parity check
polynomial x − β−1. Then e = m

k = 1. We use the recursion
ρ2 = ρ + 3 generate F25, where ρ is a root of x2 + 4x + 2.
Then we have

F25= {0, 1, ρ, ρ2=ρ + 3, ρ3=4ρ + 3, ρ4=2ρ + 2,

ρ5= 4ρ + 1, ρ6=2, ρ7=2ρ, ρ8=2ρ + 1, ρ9=3ρ + 1,

ρ10= 4ρ+4, ρ11=3ρ + 2, ρ12=4, ρ13=4ρ, ρ14=4ρ+2,

ρ15= ρ + 2, ρ16=3ρ + 3, ρ17=ρ + 4, ρ18=3, ρ19=3ρ,

ρ20= 3ρ + 4, ρ21=2ρ + 4, ρ22=ρ + 1, ρ23=2ρ + 3}.

Let β = ρ2. Then ω2
− β = ω2

− ρ2 = (ω − β)(ω + β).
Thus, a(ω) = (ω − ρ) ∈ F25[ω] is a divisor of ω2

− ρ2. Let
γ0 = 1, γ1 = a1γ0 = ρ. Then we have

B = Tr255 (γiγj) =
(
Tr255 (1) Tr255 (ρ)
Tr255 (ρ) Tr255 (ρ2)

)
=

(
2 1
1 2

)
and

B−1 =

 2
3

1
3

1
3

2
3

 = ( 4 2
2 4

)
.

Therefore

(α0, α1) = (γ0, γ1)B−1 = (ρ20, ρ3)

is the trace-dual basis of γ = (γ0, γ1) and it is a basis of
F25 over F5 for which dα(C) is also a 4-constacyclic code.
Further, we can get ā(ω) = (ω− ρ)(ω− ρ5) = ω2

+ 4ω+ 2
implying ā(ω)∗ = 2ω2

+ 4ω + 1. Therefore, by Theorem 5,
we have

dα(C)

=

〈
x12 − 4

2x2 + 4x + 1

〉
= 〈x10+x8+3x9+4x7+4x6+3x4+4x3+3x2+2x+2〉.

Lemma 6: Let C be a λ-constacycic code overFqm with the
dual code C⊥. Let α be a basis of Fqm over Fq with trace-dual
basis α⊥. Then dα(C)⊥ = dα⊥ (C

⊥).
Proof: Let α⊥ = γ = (γ0, γ1, . . . , γm−1). For any

a(z) ∈ dα⊥ (C
⊥), we need to show a(z) ∈ dα(C)⊥. Let

a(z) =
∑m−1

i=0
∑n−1

j=0 ai,jz
mj+i

∈ dα⊥ (C
⊥). Then a(z) ∈

dγ (C⊥). Thus d−1γ (a(z)) =
∑n−1

j=0 (
∑m−1

i=0 ai,jγi)zj ∈ C⊥.

Then for any b(z) =
∑n−1

j=0 bjz
j
∈ C , where bj =∑m−1

i=0 bi,jγi and bi,j = Trm1 bjγi, from the above descrip-
tion we have

∑n−1
j=0 bj

∑m−1
i=0 ai,jγi = 0. Since dα(b(z)) =∑n−1

j=0
∑m−1

i=0 bi,jzmj+i =
∑n−1

j=0
∑m−1

i=0 Trm1 (bjγi)z
mj+i

∈

dα(C), thenwe getTrm1 (
∑n−1

j=0
∑m−1

i=0 bjai,jγi) =
∑n−1

j=0
∑m−1

i=0

ai,jTrm1 (bjγi) = 0. Thus,
∑n−1

j=0
∑m−1

i=0 ai,jzmj+i ∈ dα(C)⊥.
Therefore, dα⊥ (C

⊥) ⊆ dα(C)⊥.
On the other hand, dα(C)⊥ ⊆ (dα⊥ (C

⊥)⊥)⊥ = dα⊥ (C
⊥).

Consequently, dα(C)⊥ = dα⊥ (C
⊥). �

From Theorem 3, Lemmas 5 and 6, we can get the follow-
ing result.
Theorem 6: Let Fq 6= Fqk = Fq((βξ t )−1) ⊆ Fqm and

C =

〈
xn − λ∏

µ∈S (x − (βξ t )qµ )

〉
be a λ-constacyclic code of length n over Fqm , where S ⊆ Zk
and | S |= k − 1. Then
(i) there exists a basis α of Fqm over Fq for which dα(C) is

λ-constacyclic if and only ifωm−(βξ t )−1 has a monic divisor
in Fqk [ω] of degree e = m

k .
(ii) if ωm − (βξ t )−1 has a monic divisor over Fqk

of degree e, then dα(C) is λ-constacyclic if and only if
αm−1, αm−2, . . . , αm−e are independent and

αj =

e∑
i=1

aq
v

i αj+i, 0 ≤ j < m− e (14)

where a(ω) = ωe − a1ωe−1 − · · · − ae ∈ Fqk [ω] and a(ω) |
(ωm − (βξ t )−1), and v ∈ Zk , v /∈ S. Moreover

dα(C) =
〈
zmn − λ

b̄(z)∗

〉
,

VOLUME 8, 2020 58667



J. Gao et al.: Some Results on Images of a Class of λ-Constacyclic Codes Over Finite Fields

TABLE 1. All the elements of F∗

34 .

where b̄(z)∗ is the reciprocal polynomial of b̄(z) and b(ω) =
ωm−(βξ t )−1

a(ω) .

Proof: This proof process is similar to that of
Theorem 5. �
Example 3: Consider the polynomial x5 − 2 over F3. The

order of 2 in F∗3 is 2. We have x
5
− 2 =

∏4
t=0(x − β

1+2t ) =
(x−β)(x−β3)(x−β5)(x−β7)(x−β9), where β is a primitive
10th root of unity. Let q = 3, k = m = 4, F34 = F3(β)
and C be a 81-ary 2-constacyclic code of length 5 with the
parity check polynomial h(x) = (x−β−1)(x−β−3)(x−β−9).
We generate F34 by means of recursion ρ

4
= ρ3 + 1, where

ρ is a root of x4 + 2x3 + 2.
Let β = ρ8. Then ω4

− β = ω4
− ρ8 = (ω − ρ2)(ω −

ρ22)(ω − ρ42)(ω − ρ62). Now, we choose a(ω) = (ω −
ρ2) ∈ F81[ω] as a divisor of ω4

− β of degree 1. Setting
α3 = 1, then we have that αj = a1αj+i. Thus, α2 = ρ2,
α1 = ρ4, α0 = ρ6. Hence α = {ρ6, ρ4, ρ2, 1} is a basis
of F81 over F3 for which dα(C) is a 2-constacyclic code.

Since b(ω) = ω4
−β

ω−ρ2
= (ω − ρ22)(ω − ρ42)(ω − ρ62),

then b(ω) = irr(ρ22,F3)irr(ρ42,F3)irr(ρ62,F3) = ω12
+

ω11
+ 2ω9

+ ω5
+ 2ω4

+ ω3
+ 2ω2

+ 1. Further b(ω)
∗
=

ω12
+ 2ω10

+ω9
+ 2ω8

+ω7
+ 2ω3

+ω+ 1. Consequently,
we have

dα(C)

=

〈
x20 − 2

x12 + 2x10 + x9 + 2x8 + x7 + 2x3 + x + 1

〉
= 〈x8 + x6 + 2x5 + 2x4 + x2 + 2x + 1〉. (15)

Now, we make a conclusion on the Theorems 3, 5 and 6.

Theorem 7: Let gcd(n, q) = 1 and C be a qm-ary
λ-constacycic code of length n with the parity check polyno-
mial h(x). Then there exists a basis α of Fqm over Fq for which
dα(C) is λ-constacyclic if and only if
(i) Let h(x) ∈ Fq[x], then dα(C) is λ-constacyclic for

every basis α. Further, the parity check polynomial of dα(C)
is h(zm);
(ii) Let h(x) = h0(x)(x − (βξ t )q

µ
), where h0(x) ∈ Fq[x]

and µ ∈ Zk . Let Fq 6= Fqk = Fq((βξ t )−1) ⊆ Fqm , and
ωm− (βξ t )−1 have a divisor over Fqk of degree e = m

k . Then,
dα(C) is λ-constacyclic if and only if α is the trace-dual basis
of γ = {γ0, γ1, . . . , γm−1}, where γ0, γ1, . . . , γe−1 is a basis
of Fqm over Fqk and

γj =

e∑
i=1

aq
µ

i γj−i, e ≤ j < m (16)

with a(ω) = ωe − a1ωe−1 − · · · − ae ∈ Fqk [ω] and a(ω) |
(ωm − (βξ t )−1). Moreover

dα(C) =
〈

zmn − λ
h0(zm)ā(z)∗

〉
,

where ā(z)∗ is the reciprocal polynomial of ā(z);
(iii) Let h(x) = h0(x)

∏
µ∈S (x − (βξ t )q

µ
), where h0(x) ∈

Fq[x] and S ⊆ Zk . Let Fq 6= Fqk = Fq((βξ t )−1) ⊆ Fqm , and
ωm−(βξ t )−1 have amonic divisor overFqk of degree e. Then,
dα(C) is λ-constacyclic if and only if αm−1, αm−2, . . . , αm−e
are independent and

αj =

e∑
i=1

aq
v

i αj+i, 0 ≤ j < m− e

where a(ω) = ωe − a1ωe−1 − · · · − ae ∈ Fqk [ω] is a factor
of ωm − (βξ t )−1 and v ∈ Zk , v /∈ S. Moreover,

dα(C) =
〈
zmn − λ

b̄(z)∗

〉
,

where b̄(z)∗ is the reciprocal polynomial of b̄(z) and b(ω) =
ωm−(βξ t )−1

a(ω) . �

V. CONCATENATED FORM OF q-ARY IMAGES
We have shown that, under certain conditions, the q-ary
images of λ-constacyclic codes are also λ-constacyclic.
In this section, we will give a representation of some
λ-constacyclic q-ary images in concatenated form. To do
this, we will use two related tools in this section. One is an
Fq-ring isomorphism between Fq[z]/〈znm − λ〉 and Fq[x, y]/
〈xn − λ, ym − x〉, the other is the notion of a concatenated
code.

We have introduced the map dα from Fqm [z]/〈zn − λ〉 into
Fq[z]/〈zmn−λ〉 by

dα : Fqm [z]/〈zn − λ〉 → Fq[z]/〈zmn−λ〉

a(z) =
n−1∑
j=0

ajzj 7→
m−1∑
i=0

n−1∑
j=0

ai,jzmj+i,

where aj =
∑m−1

i=0 ai,jαi and ai,j ∈ Fq.
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From the definition of dα , we have a(z) =
∑n−1

j=0
∑m−1

i=0 ai,j
αizj. Now, let ai(z) =

∑n−1
j=0 ai,jz

j. Then ai(zm) =∑n−1
j=0 ai,jz

mj. Thus, dα(a(z)) =
∑m−1

i=0 ai(zm)zi.
Lemma 7: Let dα(c(z)) =

∑m−1
i=0 ci(zm)zi ∈ Fq[z]/

〈zmn − λ〉. Then

d−1α (zdα(c(z))) = α0zcm−1(z)+
m−1∑
i=1

αici−1(z).

Proof: Since

zdα(c(z)) =
m−1∑
i=0

ci(zm)zi+1 =
m∑
i=1

ci−1(zm)zi,

then d−1α (zdα(c(z))) = d−1α (
∑m−1

i=1 ci−1(zm)zi + cm−1(zm)
zm) =

∑m−1
i=1 αici−1(z)+ α0zcm−1(z). �

Define a map as follows

5 : Fq[z]/〈zmn − λ〉 → Fq[x, y]/〈xn − λ, ym − x〉
m−1∑
i=0

n−1∑
j=0

ai,jzmj+i 7→
m−1∑
i=0

n−1∑
j=0

ai,jx jyi.

It is easy to verify that 5 is a ring isomorphism over Fq.
Definition 2: [16] Let C be a linear code over Fqm .

Then Trm1 (C) = {(Trm1 (b1),Tr
m
1 (b2), . . . ,Tr

m
1 (bn)) |

(b1, b2, . . . , bn) ∈ C} is called the trace code of C. It is a
linear code over Fq.
Let α = {α0, α1, . . . , αm−1} be a basis of Fqm over Fq. For

all 0 ≤ i ≤ m− 1, define a map from Fnqm into Fnq by

hi : Fnqm → Fnq
m−1∑
j=0

αjcj 7→ ci, (17)

where cj ∈ Fnq, j = 0, 1, . . . , n− 1.
Clearly, for all 0 ≤ i ≤ m− 1, hi is a Fq-linear map.
Proposition 4: Let C be a λ-constacyclic code of length n

over Fqm . Then, for all 0 ≤ i ≤ m− 1, hi(C) = Trm1 (C).
Proof: Let α = {α0, α1, . . . , αm−1} be a basis of

Fqm over Fq and γ = {γ0, γ1, . . . , γm−1} be its dual
basis. Then we have αiγj = 1 where i = j, otherwise
αiγj = 0. Now, let c =

∑m−1
i=0 hi(c)αi ∈ C . For any

c ∈ C , we have Trm1 (γjc) = Trm1 (γj
∑m−1

i=0 hi(c)αi) =
Trm1

∑m−1
i=0 (hi(c)γjαi) = Trm1 (hi(c)) = hi(c), where

0 ≤ i ≤ m− 1.
For any codeword c of C and γj of Fqm , we have that γjc

runs through C . Consequently, Trm1 (C) ⊆ hi(C). Therefore
hi(c) = Trm1 (hi(c)) = Trm1

∑m−1
i=0 (hi(c)γjαi) = Trm1 (γjc) ⊆

Trm1 (C). Thus, we have that Tr
m
1 (C) = hi(C). �

From the above discussion, we have the following
result.
Theorem 8: Let C be a λ-constacyclic code over Fqm

with the minimal generating set {g1, g2, . . . , gk}. Then,
{hi(gj), 0 ≤ i ≤ m − 1, 1 ≤ j ≤ k} generates Trm1 (C)
over Fq.

Proof: Let c =
∑k

j=1 λjgj ∈ C , where λj ∈ Fqm .
Assume that α = {α0, α1, . . . , αm−1} be a basis of Fqm
over Fq. Then there exist elements λjs ∈ Fq and ρstr ∈
Fq such that λj =

∑m−1
s=0 λjsαs and αsαi =

∑m−1
r=0 ρsirαr .

According to Definition 2, we have gj =
∑m−1

i=0 hi(gj)αi, for
all 1 ≤ j ≤ k . Therefore,

c =
k∑
j=1

λjgj =
k∑
j=1

m−1∑
s=0

λjsαsgj

=

m−1∑
i=0

k∑
j=1

m−1∑
s=0

λjsαshi(gj)αi

=

m−1∑
r=0

k∑
j=1

m−1∑
i=0

m−1∑
s=0

λjsρsirhi(gj)αr .

Consequently, for all 0 ≤ r ≤ m− 1, we have

hr (c) =
m−1∑
r=0

k∑
j=1

m−1∑
s=0

λjsρsirhi(gj),

which implies that {hi(gj), 0 ≤ i ≤ m − 1, 1 ≤ j ≤ k}
generates hr (C). �
Corollary 1: Let α = {α0, α1, . . . , αm−1} be a basis of

Fqm over Fq and C be an [n, k] λ-constacyclic code over
Fqm with the generator polynomial g(x) =

∑m−1
i=0 αigi(x)

for some gi(x) ∈ Fq[x]. Then Tr(C) is generated by
gcd(g0(x), g1(x), . . . , gm−1(x)).

Proof: Since C is a λ-constacyclic code over Fq, then
Tr(C) is also a λ-constacyclic code over Fq. From Theorem 8,
we have that {hi(x jg(x)), 0 ≤ j ≤ k − 1} = {x jgi(x) |
gi(x) ∈ Fq[x], 0 ≤ i ≤ m − 1, 0 ≤ j ≤ k − 1}. Then
Tr(C) = 〈gcd(x jgi(x)) | 0 ≤ i ≤ m − 1, 0 ≤ j ≤ k − 1〉 =
〈gcd(g0(x), g1(x), . . . , gm−1(x))〉. �
From the Eq. (5) in Section 1, the map χ from 〈θi〉 to

Fq[x]/〈hi(x)〉 defined by χ (c(x)) = c(βξ t ) is a field isomor-
phism, where βξ t = β1+uiu is a root of hi(x). Now, let the
inverse χ−1 of χ be defined by χ−1(e) =

∑n−1
i=0 cix

i, where
ci = 1

nTr(e(βξ
t )−i), 0 ≤ i ≤ n− 1.

Definition 3: Let A be an [n, k] λ-constacyclic minimal
code over Fq and B be an ideal of Fqk [y]/〈yN − (βξ t )〉, where
βξ t is a nonzero root of A. Then the linear code A� B =
{
∑N−1

j=0 χ−1(bj)yj |
∑N−1

j=0 bjyj ∈ B} is called a concatenated
code with βξ t -constacyclic outer code B.
Theorem 9: Let A be an [n, k] λ-constacyclic minimal

code over Fq and B be an ideal of Fqk [y]/〈yN − (βξ t )〉,
where βξ t is a nonzero root of A. Then the concatenated code
A� B = {

∑N−1
j=0 χ−1(bj)yj |

∑N−1
j=0 bjyj ∈ B} is an ideal of

Tn,N , where Tn,N = Fq[x, y]/〈xn − λ, yN − x〉.
Proof: Clearly, A� B is a linear code. Let c(x, y) ∈

A� B. Then we need to show that xc(x, y)mod(xn − λ),
yc(x, y)mod(xn−λ, yN−x) are elements of A� B. Let b(y) =∑N−1

j=0 bjyj ∈ B. Then c(x, y) =
∑N−1

j=0 χ−1(bj)yj ∈ A� B.
Since B is a βξ t -constacyclic code, then b1(y) = βξ tb(y) ∈ B
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and b2(y) = yb(y) ∈ B mod(yN − βξ t ). Moreover,

χ−1(βξ tbj)

=
1
n

n−1∑
i=0

Tr(βξ tbj(βξ t )−i)x i

=
1
n

n−1∑
i=0

Tr(bj(βξ t )1−i)x i

=
1
n
(Tr(bjβξ t + Tr(bj)x + · · · + Tr(bj(βξ t )−n+2xn−1)

and

χ−1(bj)

= x
1
n

n−1∑
i=0

Tr((βξ t )−ibj)x i =
1
n
(Tr(bj)x

+Tr((βξ t )−1bj)x2 + · · · + Tr((βξ t )−n+1bj)xn)

=
1
n
(Tr(bjβξ t )+ Tr(bj)x + · · · + Tr(bj(βξ t )−n+2xn−1)

×(mod xn − λ).

Therefore, χ−1(βξ tbj) = xχ−1(bj)(modxn − λ). Let c1(x, y)
and c2(x, y) be two elements of the concatenated code corre-
sponding to b1(y) and b2(y). Then

c1(x, y) =
N−1∑
j=0

χ−1(βξ tbj)yj = xc(x, y)(mod xn − λ)

and

c2(x, y) = χ−1(b0)y+ χ−1(b1)y2 + · · · + χ−1(bN−1)yN

= yc(x, y)(mod xn − λ, yN − x).

�
The following theorem is a fundamental result in this

section.
Theorem 10: Let C be an [n, k] λ-constacyclic code over

Fqm such that dα(C) is also a λ-constacyclic code and
α = {α0, α1, . . . , αm−1} be a basis of Fqm over Fq. Assume
that Tr(C) is a λ-constacyclic minimal code of dimension
s over Fq having a nonzero root η, η ∈ Fqs such that
{1, η, . . . , ηs−1} is a basis of Fqs over Fq, then
(i) Cη = {

∑m−1
i=0 ci(η)yi |

∑m−1
i=0 αici(x) ∈ C} is an ideal

of Fqs [y]/〈ym − η〉.
(ii) 5(dα(C)) = Tr(C)� Cη.
Proof: (i)Suppose that u ∈ Fqs , then u =

∑s−1
t=0 utη

t ,
ut ∈ Fq, for all 0 ≤ t ≤ s−1. Let c(x) =

∑m−1
i=0 αici(x) ∈ C ,

for some ci(x) ∈ Fq[x], and cη(y) =
∑m−1

i=0 ci(η)yi. Then
a(y) = ucη(y) = u

∑m−1
i=0 ci(η)yi =

∑m−1
i=0

∑s−1
t=0 utη

tci(η)yi.
Now, define a map

fη : C → Fqs [y]/〈ym − η〉
m−1∑
i=0

αici(x) 7→
m−1∑
i=0

ci(η)yi.

Since u ∈ Fqs and cη(y) =
∑m−1

i=0 ci(η)yi, then a(y) ∈
Fqs [y]/〈ym − η〉. Moreover, f −1η a(y) = f −1η (

∑m−1
i=0

∑s−1
t=0 ut

ηtci(η)yi) =
∑m−1

i=0
∑s−1

t=0 utx
tci(x)αi ∈ C . Therefore,

uci(η)yi ∈ Cη.
From Lemma 7, α0zcm−1(z)+

∑m−1
i=1 αici−1(z) ∈ C , which

implies that α0ηcm−1(η) +
∑m−1

i=1 ci−1(η)yi ∈ Cη. Thus,
we have α0ηcm−1(η)+

∑m−1
i=1 ci−1(η)yi ≡ y

∑m−1
i=0 ci(η)yi =

ycη(x)mod(ym − η). Therefore Cη is an ideal of Fqs [y]/
〈ym − η〉.

(ii) Clearly, Tr(C)� Cη = {
∑m−1

i=0 χ
−1(ci(η))yi |∑m−1

i=0 ci(η)yi ∈ Cη}, i.e.,

Tr(C)� Cη = {
m−1∑
i=0

χ−1(ci(η))yi |
m−1∑
i=0

αicj(x) ∈ C}.

Since, for all 0 ≤ i ≤ m − 1, χ−1(ci(η)) = χ−1(χci(x)) =
ci(x), then we have Tr(C)� Cη = {

∑m−1
i=0 ci(x)yi |∑m−1

i=0 αici(x) ∈ C}. By the definitions of the maps 5 and
dα , we have 5(dα(C)) = Tr(C)� Cη. �
Example 4: Let F25 = F5(β) be given in Example 2.

Recall that x6− 4 =
∏5

t=0(x −β
1+2t ) = (x2+ 3x + 4)(x2+

2x+ 4)(x+ 3)(x+ 2). Let C be an [6, 1] λ-constacyclic code
with parity check polynomial h(x) = (x − β−1) over F25,
where λ = 4 ∈ F∗5. Clearly, by Example 2, we have that dα(C)
is a 4-constacyclic code over F5, for some basis α = {α0, α1}
of F25 over F5. Since the parity check polynomial of C is
h(x) = x − β−1, then its generator polynomial is g(x) =
(x−β7)(x2+2x+4)(x+3)(x+2). Thus, by Corollary 1, we can
get Tr255 (C) is a minimal 4-constacyclic code of dimension
2 with generator polynomial (x2 + 2x + 4)(x + 3)(x + 2)
over F5. Further, β7 is a nonzero root of Tr255 (C). Therefore,
5(dα(C)) = Tr(C)� Cβ7 , where α = {ρ

20, ρ3}, β7 = ρ14 =
3ρ20 and {1, ρ14} is a basis of F25 over F5.

VI. CONCLUSION
In this paper, we studied some results on the images of a class
of constacyclic codes over finite fields. We determined the
connection between qm-constacyclic codes and the images
codes under some special mappings. Moreover, we have also
shown that the images of these constacyclic codes can be put
into the concatenated form. As some applications, construct-
ing LCD codes and quantum codes from constacyclic codes
may be interesting open problems in future.
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