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ABSTRACT In this paper, we show that any A-constacyclic code over [Fyn is a A-constacyclic code over F,
under some special maps. Moreover, we show that the images of these A—constacyclic codes can be put into

the concatenated form.

INDEX TERMS J-constacyclic codes, images of maps, concatenated codes.

I. INTRODUCTION
Cyclic codes are one of the most interesting families of codes
because of their good algebraic structures. A-Constacyclic
codes were introduced as an extension of the class of cyclic
codes and form an important class of linear codes in coding
theory [2], [4]. These codes have practical applications such
as mathematics and engineering. They can be encoded by
shift registers. Recently, many coding scholars have done
further research on constructing quantum codes [5], [8], [9].
One interesting research problem of cyclic codes in cod-
ing theory is that the g-image of this class of liner codes
over finite fields. The g-image of cyclic codes over finite
fields can be used to construct good linear codes with long
length. Moreover, g-image of cyclic codes in concatenated
form is relative to the sequences structure, codes coverage
radius and depth distribution, which can be used into the
data compression and transmission [10]. This research issue
was first addressed by Hanan—Palermo [11] and then by
MacWilliams [12]. These papers restricted themselves to the
case ¢ = 2. However, they are hard to be generalized to
Fym with g a prime power. In [14], Séguin gave a simple
characterization of all g-image of cyclic codes over Fym.
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As a generalization of cyclic codes, constacyclic codes
were introduced in [1]. Since then, the problem of study-
ing the algebraic structure of constacyclic codes is of great
interest. In the last two decades, there has been much work
on simple-root and repeated-root constacyclic codes of vari-
ous length over finite fields [2], [4], [17]. Recently, consta-
cyclic codes over finite chain rings are extensively studied
including the algebraic structure, cardinality and minimum
distance [3], [7], [13], [18].

Similar to the problem for cyclic codes over the finite field
[F4m, in this paper, we discuss the g-images of A-constacyclic
codes over IFm. Further, we give the description on g-images
of A-constacyclic codes in a concatenated form.

This paper is organized as follows. In Section 2, we mainly
give some basic results on linear codes and A-constacyclic
codes over finite fields. In Sections 3 and 4, we give some
results on the primary components of A-constacyclic codes.
In Section 5, we present a concatenated description of
g-images of A-constacyclic codes over Fm.

Il. PRELIMINARIES

Let I, be a finite field and A € IF;;, where ¢ is a prime power
and ]FZ is the unit group of IF,. Let C C IE‘Z be a linear code,
i.e. anon zero vector subspace of IFZ The linear code C is said
to be a A-constacyclic code if and only if for any codeword
(co,c1,...,cp—1) € C we have (Acy—1,¢0,...,cn—2) € C.
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In this paper, we always suppose gcd(n, q) = 1. Define a
following IF;-module isomorphism

f: IFZ — Fylx]/(x" = &)
CCnel) > c(xX) =co+ x4+ cpo X"

ey

One can verify that C is a A-constacyclic code of length n over
I, if and only if f(C) is an ideal of F[x]/(x" — 1). Moreover,
f(C) = (g(x)), where g(x) is a monic factor of x” — A. In this
paper, we identify C with f(C), i.e. the A-constacyclic code
C of length n over I, is an ideal of IF,[x]/(x" — A).

Since ged(n, g) = 1, then the polynomial x* — A has roots
B, BE, ..., BE™ 1 in some Galois extension field of F,, where
B is an nth root of A and £ is a primitive nth root of unity.
Therefore

(C07 Cl? .

n—1

" —h= o - 8"

t=0

Let F,m be a finite field, where ¢ is a prime power and
m > 2. Define a map as follows

n—1
F: Fgnlx]l/(x" — 1) > @ Fnlx]/(x — BE")
=0
cx)=cotcx+- o
F(c(x)) = (c(B), c(BE), ..., c(BE" ). 2

Then F is a well-defined ring isomorphism.
Let p = c(BE") = Y j—g cx(BE". Clearly,

()007 1017 ) )On—l)
= (C(), Clyevey Cn—l)
1 1 e 1
p BE pe!
x : . . ’ (3)
Bt BE! g™yt

which implies that

1nfl -
==y mBEHY T t=01....n—1
nk=0

Note that 8 is an nth root of A and £ is a primitive nth root
of unity, then g9~! = £°,0 < ¢ < n — 1, which implies
that X4 = BKERe Letc(x) = co+cix + -+ e x" L €
Fylx]/{x" — A). Then

n—1
pi = (c(BENT =D cl(pe

k=0
n—1
=Y aBEN ) = py )
k=0
2
where t = 0,1,...,n — 1. Similarly, we have p] =

p£+q8+tq2'
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Let x" — A = hij(x)hp(x)---h-(x), where h;j(x) is a
monic irreducible polynomial with degree d; over F,, for
i = 1,2,...,r. Denote by U;, i = 1,2,...,r, the
g-cyclotomic coset corresponding to %;(x). Let IFq,zi be the
djth Galois extension field of Fy, i.e., qu,- = Fylxl/(hi(x)),
where deg(hi(x)) = d;, fori = 1,2, ..., r. Suppose that u is
the order of A in the unit group ]F;’; and B = Bltuil where
1 + u;p is a complete set of representatives of cyclotomic
cosets of ¢ modulo n. Then for a fixed 1 + u;u € U, u; €
{0, 1, ..., n— 1}, the elements of the set U; = {1 + u;u, (1 +
uil)g, . .., (1 4+ ui)g5i—1)} are the roots of h;(x). It is well
known that the finite field IF,[x]/(h;(x)) is isomorphic to a
minimal constacyclic code of length n over I, with the parity
check polynomial 4;(x). If we denote by 6; the generating
primitive idempotent for the minimal constacyclic code, then
the isomorphism is given by the map

x o (0i) — Fylx]/(hi(x))
c(x) > c(BTHmy, (5)

Therefore, for any c(x) € (6;), we have c(ﬂk) %0,k € Uj,
fori=1,2,...,r.

Definition 1: Let n be a positive integer and Fyn be an nth
Galois extension field of F,. Let r be an element of Fyn. Its
trace relative to ¥ is defined by

T =+ 10477 g rd

From the above description, we have the following trace
representation of A-constacyclic codes directly.

Theorem 1: Let C be a M\-constacyclic code of length
n over Fgn with parity check polynomial h(x) =
hi(x)ha(x) - - - hs(x). Suppose ¢ = (co,c1,...,¢cn—1) € C,
then

. a _
o= le T (i BE“) ™),
=
wheret =0,1,...,n—1,d; = deg(hi(x)),i=1,2,...,s.
Let o = f{ag,01,..., 0,1} be a basis for Fgm over
F,. Define the map dy from Fyn[z]/(z" — A) into [Fy[z]/
(2" —A) by
dy © Fgnl2l/(" — 1) — Fylzl/ (@™ =)
n—1 m—1n—1
a(z) = ZajZ’ > Z Zai,jZmJH, (6)
=0 i=0 j=0
where aj = Zlm=—01 ai jo and aij € Fq.
Proposition 1: Let a(z) € Fynlz]/(z" — )X). From the
definition of dy, we have dy(za(z)) = 7" dg(a(z)).
Proof: Let a(z) = Z/n;ol a7 € TFymlz]/ (Z"- -
A). Then za(z) mod (7" — X) = Xlap—1 + Z;-l:_(? ajz{H.
Thus, we have dy(za(z)) = Z?:ol Aaj 12D+ 4
P 2;7;02 a; ;z"t D By the equation (6), we can get
dy(a@) = Y0 Y@zt = a0 + aroz +
oot 10" o+ Aag 12"+ Aa oz £
-+ A@p—1,-12"", which implies that dy(za(z)) =
Z"dy(a(2)). O
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Now we suppose that C is a A-constacyclic code of length
n with dimension k over Fyn. Then by the definition of dy
and Proposition 1, we deduce that dy(C) is a linear code of
length nm with dimension km over ;. Moreover, dy(C) is a
A-quasi-twisted code over IF,.

lll. THE PRIMARY COMPONENTS OF

A-CONSTACYCLIC CODES

Let A = TFy[x]/{x" — A) and A™ be the direct prod-

uct of A. Clearly, A™ is an A-module. The element

(ao(x) ay(x), ..., a,y—1(x)) of A™ can also be written as

Y oau» = Yy Yy ailyl, where ai(x) =

ijo ajjx/, fori=0,1,...,
Firstly, we introduce a map 7 from Fy[z]/(z™"

A™ given by

m—1.

— A) into

o Fylz]/ (@™ — 1) — A™

m—1n—1 m—1n—1
2 @@ ) ) aipy
i=0 j=0 i=0 j=0

It is easy to see that 7 is an A-module isomorphism.

Let a(x) € A and b(z) € Fylz]/(z"™ — A). Suppose
a(x)b(z) = a(z™)b(z), then we have the following proposition.

Proposition 2: (i) 7 (xb(2)) = 7 (Z"b(2)) = xm (b(2));

(ii) Suppose m(a(z)) = (ao(x),ai(x),...,am—1(x)) =
a(x), then m(za(z)) = t(a(x)), where t(alx)) =
(Xam—1(x), ap(x), . . ., am—2(x));

(iii) dy (C) is a A-constacyclic code if and only if w(dy(C))
is invariant under the action of T.

Proof: (i) By the definition of 7, we can get 7 (7"'b(z)) =

m—1 n—1 i+1..i m—1 n—1 i i
Yito Ljmo apd Ty =x 30 Yy aydy' = xm(b(2)).

(i1) Since

m—1n—1
za(z) = Z Zaijzm/-l-t-H
i=0 j=0
= Mm—10-1 @002+ +am202" " 4+

+am71,n722mn_m + Cl(),nlemn_m—‘rl 4.

+am—1,n—11mn_1 s

7(za(2)) = A@m—1.n—1 + @u-1,0x + - - !

+ am—l,n—ani ,

-1
=20 + Am—21X + -+ a2 p—1X" ),

and

(xam—1(x), ap(x), ..., ap—2(x))
= (Mam—1-1 + am-1,0% + - + Q1 pox""!

-
s m=2,0 + Am—2,1X + - - F+ ap—2 n—1X"" ),

which implies that

7(za(z)) = (xam—1(x), ap(x), ...,

am—2(x)) = t(a(x)).
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(>iii) Let a(x) = (ap(x), a1(x), ...
Then

,am—1(x)) € ﬂ(dg(c))-

T(a(x)) = 7 (za(z)) = (xam—1(x), ap(x), ..., am—2(x)).

Assume that a(z) € dy(C), then za(z) € dy(C) since dy(C) is
A-constacyclic. So 7 (za(z)) € mw(dy(C)). Therefore t(a(x)) €
dy(C). On the other hand, since a(x) € m(dy(C)), which
implies that 7(a(x)) = 7 (za(z)) € m(dy(C)). Since 7 is an
A-module isomorphism, then we have that za(z) € d,(C). O

In the following, we define a map Dy from Fym([z] /(2" —X)
into A™ as Dy = 7 o dy so that

Dy : ]qu[z]/(z”— Ay — A"
n—1 m—1

Zaﬂn—) ZZa,/xy,

i=0 j=0

where a; is defined by (6).

Our work is to determine the pairs (o, C) for which Dy (C)
is t-invariant. If C is a A-constacyclic code over Fym, then
Dy (C) is asubmodule of A”'. We now introduce a few notions.

For any a(x) = (ao(x),ai(x),...,an—1(x)) € A™,
the order of a(x) denoted by ord(a(x)) is defined to be a
nonzero monic polynomial f(x) of least degree such that
f)ax) = 0. Set ord(0) 1. Clearly, if a(x) € A,
then ord(a(x)) = W. Moreover, ord(a(x)) =
lemp<i<m—10rd(ai(x)). Similarly, if M is a submodule of A™,
then ord(M) is the nonzero monic polynomial f(x) of least
degree such that f'(x)a(x) = 0, where a(x) € M. If

t
M =@Mt,
i=1

then ord(M) = lcm<j<;ord(M;).

Lemma 1: Let gcd(n,q) = 1, h(x) = ord(M) and
h(x) = hi(x)ha(x) - - - he(x), where hi(x) are different irre-
ducible polynomials. Then

h(x)
B GB o™

Proof: Since gcd(n, q) = 1, then }f’l(fx)), }f’z(a)), e :1(();))

are pairwise coprime. Thus, there exist aj(x), az(x), ...,
a;(x) € Fy[x] such that

h(x) h(x) h(x) _
hl(x)al(x)+ hz(x)az(x)-i- cee h,(x)at(X) =1
Multiplied by M, we have
h(x) h(x) h(x)
M PR M f—
mw e T e

If i # j, we have h;(x)| % Moreover

()
ng(mU#,] 2...,t)
. (x)
= hi(x)ged (h( e )IJ#lJ J)
= hi(x)
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and (M = Y M. Thus zdM () 3 5
M = 0. D
LetM; = %M,l <i<t.ThenM = M ®M,®- - -OM,;

and M/s are called the primary components of M. Clearly,
ord(M;) = hi(x).If ord(M) is an irreducible polynomial, then
M is called a primary submodule.

Lemma2: Let M C A™ be a submodule. Then M
is t-invariant if and only if its primary components are
T-invariant.

Proof: Assume that M; = %M , 1 <1i < t. For any
a(x) e M, let '

a(x) = {a1(x) + a2(x) + -+ +or(x) | i(x) e M;, 1 <i <1}

Since M; is t-invariant, then 7(«;(x)) € M;. Thus
T(a(x)) = (a1 (x)) + T(e2(x)) + - - + T(o(x)) € M.

Conversely, let a(x) € M;. Then ord(a(x)) = hi(x) or
ord(a(x)) = 0. Since

t(a(x)) = (xapm—1(x), ag(x), . .., ap—2(x)),

it follows that ord(t(a(x))) = ord(a(x)) = h;(x). Since
a(x) € M; and M is t-invariant, then t(a(x)) € M;. O

Let x" — A = hi(x)hy(x)---h(x). Then, for any i =
,2,...,r, P = );:(;;‘Am is a primary component of A™.
Hence if M C A™ 1s a primary submodule of order /;(x),
then M C P;.

Let h(x) be an irreducible factor of x" — A of degree k, and
P be the primary component of A™ of order h(x). Let & be a
root of 4(x) and Fqk =TF,(BE 1. Now we define the following
maps

¢ Fulol/(@" — BE") > P
m—1 m—1n—1
1 o
a@) =) @' = =3 > TraBE N ()
i=0 i=0 j=0

and

Y P - Flol/(o” — BE)
m—1
a(x) = (apx), a1(x), ..., am—1(0)) > Y _ ai(BENw'. (8)
i=0
It is easy to see that ¢ is well defined. In other words,
¢(a(w)) € P. Further, it is easy to verify that ¢ and  are
inverses of each other.
Finally, we make F « [w]/(w™ — B&') into an A-module by
setting

m—1 m—1
ax) b’ =Y a(BE"bi,
i=0 i=0

where a(x) € A and Y ' bio' € Fylw]/(o™ — p&'). For
any a(x) € A and a(x) = (ap(x), a1(x), - . ., ay—1(x)), b(x) =
(bo(x), b1(x), ..., bu—1(x)) € P, we have

V(a(x) + b(x)) = ¥ (a(x)) + ¥ (b(x))
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and Y(a()a)) = Yo' a(BENai(BENe’ = alx) Y
ai(BENW' = a(x)¥(a(x)), which implies that ¥ is an
A-module isomorphism.

Theorem 2: Let gcd(n, q) = 1, h(x) be a g-ary irreducible
factor of x" — A of degree k and BE' € Fx be a root of h(x).
Let M be a primary submodule of A™ of order h(x) and U =
V(M) the corresponding ¢*-ary submodule of F i lw]/ (0™ —
BE"). Then M is t-invariant if and only if U is an ideal of
Fylol/(@" — BE).

Proof: Let b(w) = by + bijw + -+ + bp_10™ ! €
F i [w]/{w™ — BE'). Then

q
P(wb(®)) = G(BE by + bow + - - - + by_20™ ")

n—1

| , |
= 3 T BE) T B
s
1m—ln—l L
3 Y T (B .
i=1 j=0

Let b(x) = ¢(b(w)). Then we have that
7(b(x)) = T(¢d(b(w))

n—1
= r(% > T (bo(BEN ),

J=0

n—1
1 .
= Y T (b1 (BEN )
n =0
1 n—1
= = Tk (bn1 (BE") /™!
n =0
1 m—1n—1 o
+= )0 > Triia(BEH Ty

i=1 j=0

Clearly, 1 Y"1 Trk (b1 (BE) T = L 30 Tk by
(BEH T implying T(b(x)) = T(@(b(®)) = P(wb(w)).
Therefore, M is t-invariant if and only if ¢p(wb(w)) € M,
and t(¢(b(w)) € M if and only if Y7 (p(b(w)) € Y (M) = U,
ie., Yo(wb(w)) = wb(w) € (M) = U. In other words,
dy(C) is A-constacyclic if and only if 77 (d(C)) is T-invariant
if and only if the submodule of A™ is r-invariant if and only
if U is an ideal. ]

In the following, we determine when Dy (C) is a primary
submodule of A™ first.

Let C be an irreducible ¢™-ary A-constacyclic code of
length n with the parity check polynomial A(x) of degree k.
Let B&! ¢ ]quk be a root of h(x). Then, by Theorem 1,
we have

n—1

1 o
C=1- 2 Tl (p(BENY )T | p € Fyu
=0
Let ¢ = {ag,aq,...,0,1} be a basis of Fym over Fy

and y = {0, v1, ..., Ym—1} be the trace-dual basis of «.
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Then lTrﬁk(,O(ﬁSt)_j) = Z,{n:?)l Trrln()/i)T”%k(P(,Bét)_jai) =
Y T (pyi(BE") V). Applying the map Dy to C,
we get

1 n—1 o
=D T (o(BEH) )

J=0

Dy(C) = Dy

1 n—1m—1 y '
=Dy | > > T (pyi(ps") Teud)
Jj=0 i=0
1 n—1m—1
- Z Z Z Tr?lk(pyi(ﬂst)_])x]yl | p € quk
Jj=0 i=0
Therefore the g-ary code Dy (C) is given by

1 n—1m—1 o
3 B o (BEY Y | p € Fy

j=0 i=0

Dg(c) =

©
Let ho(x) = irr(BE’, F,) be an irreducible polynomial in
Fylx] and B& ’ be one of its roots. Let deg(hp(x)) = k. Then
IE‘ko = F,(B€"). In addition, IFqko =T, (BE") C Fm(BE") =
Fm, thus ko | mk. Decomposing Ter as Trlf0 Trzzk, the set
(9) becomes
Dy (C)
1 n—1m—1 . o
=1 =33 1B HTE oydy | p € F
n
j=0 i=0
(10)
Comparing (9) with (7) for ¢, we have U = ¥(Dy(C)) =
[zt Tk ompel | p e Fyk} € Fyolol/ (B and
ord(Dy (C)) = hp(x).

In the more general case, we can decompose C as the direct
sum of minimal A-constacyclic codes, i.e.,

C=CoCro - C,

C <x” —k>
T\ hx) [

i = 1,2,...,r and h;(x) is an irreducible factor of x" — A
having B&" as a root in some Galois extension field of Fn.
Then

where

Dy(C) = P Du(Ci)
i=1

and Dy (C;) is a primary submodule with the order h; o(x) =
irr(BE", F).
From the above discussion, we give some results on Dy (C).
The proof process is easy to be verified and we omit it here.
Proposition 3: (i) Dg(C) is primary if and only if
irr(BE", Fy) = irr(BE", Fy), where 1 <i <r;

58664

(ii) Let BE' = B&". Suppose Dy (C) is primary, then there
exist integers u;, 1 < i < r, such that BE" = (,35’)’1[{", where
U € Ly, iy =10, 1, ..., ko —1},i=1,2,...,r;

(iii) Let gcd(n, q) = 1. Then u; belongs to distinct coests
of mZy,. In other words, | u; |< ged(m, ko),

(iv) Suppose that r = gcd(m, ko), then the parity check
polynomial of C is h(x) = irr(B&", Fy);

(v) If there exists a subspace U of IF;’;O such that Dy (C) =

@(U), then the dimension of U is er, where e = %’)‘

(vi) Let BE! € Fome = Fygn(BEY), ho(x) = irr(BE', Fy) and
ko = deg(ho(x)). If ord(BE") = N, then k = W

In summary, if C is a A-constacyclic code of length n over
Fym, we can decompose C = @l-r:l Ci, where C; C Cis a
A-constacyclic code and Dy (C;), 1 < i < r, are the primary
submodules of A™ with distinct orders. From the above dis-
cussion, we see that the decomposition does not depend on
the basis o and we call C; is the primary components of C.
If the parity check polynomial of C; is over I, then we call C;
a trivial primary component and nontrivial otherwise. We can
group the trivial primary components by obtaining

c-cro (@)

i=1

where Cy is the sum of the trivial primary components of C
and C;, 1 < i < r, are the different nontrivial components
of C. The following example illustrates it.

Example 1: Consider the polynomial x” — 3 over Fs. The
order of 3 in F% is 4. We have x'=3= ]_[fzo(x — Bl =
@ =B = ) — B — B = B — BN — )
where B is a primitive 28th root of unity. The powers of B
that appear in this factorization are 1, 5, 9, 13, 17, 21, 25,
and these are union of two 5-cyclotomic cosets modulo 28.
They are Cs(1) = {1,5,9, 13, 17,25} and C5(25) = {21}.
In fact,

¥ =3 =G0+ 207 +4x* + 37 + 20 + H(x +3).

Let C be a 625-ary 3-constacyclic code of length 7 with the
parity check polynomial h(x) = (x — B)(x — B)(x — B?)
(x— ,321). Then C = Cy & C1, where Cy has the parity check
polynomial x + 3 and Cy has the parity check polynomial
@ = B — B)x = B7).

From Proposition 3, we can deduce that r < gcd(m, ko).
In the following result, we will see that if » = gcd(m, ko),
then dy(C) is trivial and Cy plays no role in determining
whether dy(C) is
A-constacyclic or not, and if dy(C) is a A-constacyclic code
for some basis, then the nontrivial components of C are of a
special type.

Theorem 3: Let Fom = qu((ﬁéf)*l), ]Fqko = F,
((BEH™Y) and C be a primary A-constacyclic code of length
n over Fm with the parity check polynomial

he) = [ T irr((BEHT", Fygm),

HES

VOLUME 8, 2020



J. Gao et al.: Some Results on Images of a Class of A-Constacyclic Codes Over Finite Fields

IEEE Access

where S is a set of r < gcd(m, ko) integers modulo k.
Then
(i) Suppose r = gcd(m, ko), then dy(C) is A-constacyclic
for every basis o of Fym over Fy and dy (C) = (h (z’")> where
ho(z) = irr(B&' . Fy).
(ii) Suppose r < ged(m, ko) for some basis a, then k = 1.
Proof: (i) Let r = gcd(m,ky). Then dim(U) =
er = m which implies that U = F 4 [o]/{0" — BEN.
Therefore, by Theorem 2, dy(C) is A-constacyclic. For any
a(z) € du(C), since w(xb(z)) = n(Z"b(z)) = xm(b(z)) and
m(a(z)) € Du(C), 0rd(Dy(C)) = ho(z), then 7 (ho(z")a(z)) =
ho(z)m(a(z)) = 0. Further, by 7 an A-module isomorphism,
we also have ho(Z™)a(z) = 0. Since degho(Z"") = mky =
mrk = dim(U), so we have ho(Z") is the parity check

polynomial of do(C) and do(C) = ,;ZZ;%

(i) If r < ged(m, ko) and dy (C) is A-constacyclic, then by
Theorem 2 we have that U is an ideal of P [w]/{w™ — BE")
and dim(U) = er < m. Now, let a(w) = o' — aj0'~! —

- —a; | (0™ — BE), where t = m — er. Note that U =
Y(Dy(C)) = Tri’gk(pyi)wi | o € F e ], then we can obtain

that U is invariant under the map

m—1
PN q" i
ajw — a; w
i=0 i
m—1 m—1

> Tr(pye’ —

i=0 i=0

Tr(py)? o', (11)

where

m—1 m—1
Y Tr(ey)T o' =) Tr(p? v .
i=0 i=0

Let y; € Fym, then vi4" = y;. It follows that U is invariant

under the map. We know that ¢(a(w)) = o' — a‘]’ma)t’1 —

—aq?" eUanda(w) = o' —a10' ' = —q, € U,
then p(a(w)) — a(w) € U, i.e.,
o(a(@) — a(@) = (@] —ap'™' +---+ @ —a)eU.

Further, since a(w) 1s the generator polynomial of U and
deg(a(w)) =1t, thena =a;,i=1,2,...,t.If pisaroot of
a(w), then p9" is also aroot of a(w). Since a(a)) | (0™ — BEY),
it follows that p” — B&' = 0 and (p™)?" = (B£")4". Thus,
p?" — BE' = 0 implying B¢ € Fyn. Thereforek = 1. O

Similar to the proof process of Theorems 5 and 8 in [14],
if dg(C) is A-constacyclic for some ¢, then r = [S| = 1 or
k—1,where S C Zj. Moreover, C has one nontrivial primary
component and the nontrivial primary component C; must be
one of the following forms

< X" — A > x"—A
x —(BEHT [ [1,estxc — (BEH") '

VOLUME 8, 2020

IV. THE NONTRIVIAL PRIMARY COMPONENT
OF A CONSTACYCLIC CODE
In this section, we characterize the nontrivial primary com-
ponent of constacyclic codes.

Theorem 4: Let Fy#F i = Fy((BE")™") € Fyn and C be
a A-constacyclic code of length n over F m with the parity
check polynomial h(x) = ]_[Mes(x — (,BS’)‘/L). Let a be a
basis of Fym over I, with the trace-dual basis y. Then dy(C)
is A-constacyclic over ¥ if and only if B

I(S)

m—1 m—1

B !Z bio' € Fylwl/(™ —BE') | Y biy? " =0
i=0 i=0

(12)

is an ideal of F o]/ (™ — (BE) ™).

Proof: The proof process is similar to that of Theo-
rem 9 in [14]. O
Denote the dual code of constacyclic code C by C*, we can
obtain the following result directly.

Lemma 3: Let C be a A-constacyclic code of length n over
Fgnand C = @;_, Ci, i = 1,2,...,r, where % € F and

— 1l _ ~L 1 1
Ci=(522) Then ¢+ = ¢y n-on e

Lemma 4: For the same conditions as in Theorem 4,
we have

@) I(S) is an ideal of Fqk[w]/(a)m — (,35’)‘1) if
and only if I''(S) is an ideal of ]F [@]/ (@™ — 1),
where 1"(5) = (Xt yrta; lw””“ € Fulo]l |

e Y ag i (BEN Ty w0,
@ re$)n IE‘?” is the dual code of dy(C).
Proof:
(1) The proof process is similar to that of Lemma 2 in [14].
(ii) Since dy is an F,-module isomorphism and C =

Dies Cus then da(C€) = dy (D5 Cp)- From Lemma 3,

dg(C) = ﬂuegdg(cu) . From Theorem 4, we have
Do (Cp)
l n-lm-l m—u . ..
=22 Ty (BENTy | p € By
j=0 i=0
Therefore

dy(Cy) = 71 (De(CL))

1 o —

n—1

m—u . . .

=22 Ty (BEY " | p € Fyn
Jj=0

1
i=0

Assume that dy(C, )t = Z" ! 0 a],a)’”””, then
m— [ .
a,-iTr’”(py,q (ﬂs’)‘-’) = Tr’}’(aﬂpyi “(ge ) = o.
m— . . .
Thus, 7 o S taiyd T (BEDY T = 0implying dy (C)F =
1"(5)019""" O

Let IFqk = IFq((,BE’)_l) C Fgn € Fi, where F i is some
Galois extension field of Fyn such that o™ — (B’ )~! can be
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factored into the product of distinct irreducible polynomials
in Fyn[o]. Let a(w) | (@™ — (B€")~") and p € F, be a root
of a(w). Let a(w) = irr(p, ]Fqk) and a(w) = irr(p, Fy). More
generally, if a(w) = []i_, ai(w)® then a(w) = lemf{a;(w)*}.
Lemma5: Let Fy = TFy (BEH™N) and alw) =
]_[le ai()¥ | (™ — (ﬂgl)_l), where a;j(w) are the distinct
irreducible factors of a(w) in F x[w]. Then
(D) a(w) = [ @(@)™;
(i0) if a(w) | b(w), then a(w) | b(w), where b(w) € Fylw];
(iti) deg(a(w)) = kdeg(a(w));
) o"m—(psH~" =
irr(BEH ™!, Fy).
Now, we introduce the main result of this section.
Theorem 5: Let Fy # F i = Fy((BE')™") C Fyn and

C—< xt— >
C\x —(BENT"

be a L-constacyclic code of length n over Fyn. Then

(i) There exists a basis o = {ap, a1, . . ., Apm—1} of Fygm over
Fy, for which dy(C) is A-constacyclic if and only if ™ —
(BEH™! has a monic divisor in Folw] of degree e = i

(i) If ™ — (BEN) ™" has a monic divisor in Frlw] of degree
e, then dy(C) is A-constacyclic if and only if a is the trace-

f(@™), where f(w) =

dual basis on ={0, V1, -+ Vm—1}, Wwhere Yo, Y1, ..., Ye—1
is a basis of Fgn over F x and
¢ n
yj:Za? Vi-i,e <j<m, (13)

i=1

where a(w) = o° — ajw®™!

— - —ae € Fylo] and a(w) |
(@™ — (BEH)™). Moreover,

7 _ )
dy(C) =
(O < a2)* >
where a(2)* is the reciprocal polynomial of a(2).

Proof:
(1) It is straightforward from Theorem 5 that dy(C) is
A-constacyclic if and only if

1(S)
m—1 m—1
= :Z aw' € F [@]/{@™ — (BEH™N | Z al.yl.q’”‘“ =O}
i=0

i=0

is an ideal of F[w]/(@™ — (BE")™"). Let a(w) = o° —
aqet™l—...—q, € ]Fqk [w] be the generator polynomial
of I. Since dim(I) = dim(U+) = m — dim(U) = m — e, then
a(w) | (@™ — (BEH™!) and dega(w) = e.

(i)If dy(C) is A-constacyclic, by (i), we have I(S) =
(a(@)) = {bwa) | bw) € Filol/(@™ — (BEHH},
M,yl"m “,...,yji”l

} are indepen-
dent over IFqk. Otherwise, we can get a set of numbers

which implies that {VOqW

that not all zeros {cop, c1,...,ce—1} satisfying coy(;’m_“ +
m—p m— _ .
cn/lq + - 4+ ce,lyeq_l = 0. Clearly, Z;n:ol ciw' €
1. But, any nonzero polynomial in I(S) has degree >e.

58666

m—
q ©

i .

Since w/a(w) € I,0 < j < m, then )/qu_# =Y aiy
e <j < m. Thus, yqu =y, a?u yj({;. Since y; € Fyn, then
¢ n
w:Za? Vi—i» e < <m.
i=1

Let a(w) = o° — a0 ' — - —q, € Fqk[w] be a

factor of " — (BE)™! and {y0, ¥1,..., Ym—1} a basis of
Fym over . To prove dy(C) is A-constacyclic, we only need
to show that I given by (12) is an ideal of F[w]/{0™ —
(,35’)_1). Let {y0, Y1, ..., Ye—1} be a basis of Fyn over Fqk
and y; = Zle a?ﬂyj,i, where ¢ < j < m. Clearly, I is a
vector space over I« of dimension m — e. In the following,
we prove that / is an ideal with generator a(w). In other words,
for any polynomial b(w) € I, we have a(w) | b(w). Let
b(w) = > ¢_, biw'. Then

e
m—u
0=2 b
i=0
m—p

e—1 - e B q
T (z y y)
i=0 i=1

e—1
1

= > (i + beac—i)y! .
i=0

By the independence of yl.qm M, 0 < i < e, we conclude that
bi = —bea,—;. Thus, b(w) = Y ¢y —bete—iw’ = bea(w).
Assume that every polynomial in / of degree < s, where
e <s<m—1. Leth(w) = Y i_ybiw and a; = 0, where
e <1 <s.Then

s+1 .
0= Zbi%‘q
i=0

s s

g gnH

= E biVi + bs+1 Zan/ﬁl_i
i=0

i=1

s
g
E As+1-iY;

N
m—pu
= E biyh " + bsyi
i=0 i=s+1—e

s

m—p

= E (bi+bs+1as+lfi)yiq .
i=0

Hence
N
Y (bi+bsyiagpo’ €1.
i=0

By induction hypothesis, a(w) | Zf:o(sz + byp1agp1_ o'
Let a(w)c(w) = Y i_o(bi + bs1as+1—i)w'. Then

s+1 K}

' +1
E biw' = a(w)c(w) — by E Asr1-i0; + bsp10*T
i=0 i=0
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e
— by Z Aiws1—i + by 10!
i=1
= a(@)(c(®) + byy10°' 7).
Therefore a(w) | Zf:é biw

Finally, we will prove dy(C) = ZI;(HT;Z‘

Let I = (a(w)). According to Lemma 4, we have I C I".
Thus, {(a(w)) N IFZ"’ crn JFZ‘". Let b(w) € {(a(w)) N FZ"’
Then a(w) | b(w). From Lemma 5 (ii), we have a(w) | b(w),
which implies that b(w) € (a(w)). Therefore

(a(w)) NFZ" < (a(w)).
Let c(w) € Fylw] and c(w) € (a(w)), where a(w) =
[T2; ai(w)®. Since a;(w) | a;(w) in F[w]and ai(w)® | c(w),
then a;(w)® | c(w) implying a(w) | c(w). Consequently,

a(w) C {a(w)) N ]FZ‘".

= a(w)c(w)

Thus a(w) = (a(w)) N FZ"’. From Lemma 4(ii), we have
do(C) = I"(S) NF™. To prove do(C) = <f——A> we only

a(z)*
need to show that d,(C)* = (a(w)). Now, we have known
that (@(w)) € I"NF" = dy(C)- and | dy(C)* |= g™ =|

(a(w)) |. Therefored (C)F = (@(w)). Thus,
Zmn —_A
dy(C) :< _ >

a(z)*

O
Example 2: Consider the polynomial x® — 4 over Fs. The
order of 4 in F% is 2. We have x0—4= ]_[fzo(x — gty =
(x — B)x — B)x — B)x — B1)(x — B2)(x — B!), where B
is a primitive 12th root of unity. And
x—B)-(x—B)=x>+2x+4, x—p=x+3,
=B - x—BNH =x?+3x+4, x—p =x+2.
Letg=5m=k =2andFy5 = F5(B). Let C bean [6, 1]
irreducible 25-ary 4- constacyclic code with the parity check
polynomial x — B~'. Then e = T = L. We use the recursion
p? = p + 3 generate Fas, where p is a root of x> + 4x + 2.
Then we have
Fas=1{0,1,p,p=p +3, p> =4p +3, p*=2p + 2,
p’=4p+1,0°=2,p"=2p,p°=2p+1,p"=3p +1,

O=dp+4,p" =3p +2,p'2=4,p=dp, p'*=4p+2,

15 542 pl6=3p 13, plT=p+a, 823, p9=3.

0=3p+4,p"=2p+4,pP=p+1,p"=2p+3}.
Let B = p* Then 0* — B = 0* — p* = (0 — B)(@ + B).

Thus, a(w) = (0 — p) € Fas[w] is a divisor of w* — p>. Let
vo = 1, y1 = aryo = p. Then we have

r3(1) Tr25(p)> 2 1
B:Tr25i-=< 3 5 =<

SO =\1de) mPen) T\ 2
and

B! =

W =W N
W NW| —
I
N
[N
A~
N—
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Therefore

(@0, 1) = (vo, yDB™' = (0%, p*)

is the trace-dual basis of y = (y, y1) and it is a basis of
a5 over Fs for which dg(_C ) is also a 4-constacyclic code.
Further, we can get a(w) = (v — p)(w — p5) =’ +40+2
implying a(w)* = 2w? + 4w + 1. Therefore, by Theorem 5,
we have

do(C)

. x12 -4
S\ 2024+ 4x + 1
= (xlo—l—xs—|—3x9+4x7+4x6+3x4+4x3+3x2+2x~|—2).

Lemma 6: Let C be a A-constacycic code over F gn with the
dual code C*. Let o be a basis of Fym over By with trace-dual
basis a. Then dg(C)J- = daL(CJ').

Proof- Let at = y = (y0, V15 - -+ » Ym—1). For any
aiz) € d l(cL) we need to show a(z) € dy(C)*. Let
a@) = Y Y a2t e dyi(C). Then az) €
dy(ChH). Thus dy; l(a(z)) = YO aijvd e CL.
Yiobid e C, where b =
Z;":_Ol bijyi and b;j = Tr'bjy;, from the above descrip-
tion we have Y1) b; Y1 iy = 0. Since dy(b(z)) =
SIS Y g = ) S m e €
dg(C), then we get T+ (Y1 ‘2’" 1bal]yl) =Y
aijTri'(bjys) = 0. Thus, 37" o a2 € dy(C)F.
Therefore, d, L(CJ_) Cd, (C)J‘

On the other hand, dg(C)" € (dy1 (CHYME = d,1(CH).
Consequently, di(C)L d, (C L. O

From Theorem 3, Lemmas 5 and 6, we can get the follow-

ing result.
Theorem 6: Let Fy # By = Fy(BE)™") € Fyn and

Then for any b(z) =

C= x"—A
T\ [pes G — (BENT)

be a A-constacyclic code of length n over Fym, where S C Zy
and | S |=k — 1. Then

(i) there exists a basis o of Fym over F for which dy(C) is
A-constacyclic if and only ifo™—(BEN™! has a monic divisor
in Fi[w] of degree e = k

(ll) if o™ — (BE! Y~' has a monic divisor over T
of degree e, then dy(C) is A-constacyclic if and only if
Op—1, Um—2, - . . , Am—e are independent and

e
ot]:Zal-q‘otj+i,0§j<m—e (14)
i=1
where a(w) = ©° —ajw® ' — .- —a, € Fqk [w] and a(w) |

(™ — (BEH™Y), and v € Zy, v ¢ S. Moreover

2 )
do(C) = (= ,
=(C) < b(z2)* >
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TABLE 1. All the elements of IF; .

.

7 7

9 P % P % P

1 P) 28 p+1 55 pP+2p2+p+2
2 p? 29 P2 +p 56 pP+20+1
3 03 30 3+ p? 57 pP4+2024p
4 PP+ 1 31 2p% +1 58  3p3 +p2+1
5 P +p+1 32 203 +p+2 59 2p% +1

6 pPP4+p2+p+1l 33 208 +p2+20+2 60 pP+p2+1
7 203 4+p2+p+1 34 2p% +2p+2 61 203 +p+1
8 PP4p+2 35 2034202420 62 203 +p2+p+2
9 pP4pP+20 36 205+202+2 63 pP+2p+2
10 203 +2024+1 37 p+1 64 p3+2p%+2p
11 PP 4p+2 38 20% +p 65 20% +1

12 pP+p2+20+1 39 203 + p? 66 20% +p

13 203 +2p2 +p+1 40 2 67 203 +p2+2
14 pP4+p24+p+2 41 2p 68 2p+2

15 208 +p2+2p+1 42 202 69 202 +2p
16 202+p+2 43 2p3 70 2p°% + 202
17 203 +p2+2p 44 20° +2 71 p>+2

18 2p2 4+ 2 45 20842042 T2 pP42p+1
19 203 + 2p 46 2p% +2p2 +2p+2 73 PP+ 202 +p+1
20 203420242 47 pP+202+20+2 T4 PPHp+1
21 pP+20+2 48 2024+ 2p+1 TS pP4pP4p
22 pP4202 4204149 203 4+202+p 76 203 +p+1

23 P +p+1 50 P2+ p% +2 77 p+2

2% 203 4+p24p 51 20242041 T8 pr+2p
25 p?+2 52 20842024+ p+2 79 p3 +2p?
26 p%+2p 53 pP4+p2+2p+2 80 1

27 PP 4+202+1 54 2084202 4+2p+1

where b(2)* is the reciprocal polynomial of b(z) and b(w) =
" —(BE)™!

a(w)

Proof:  This proof process is similar to that of
Theorem 5. U
Example 3: Consider the polynomial x> — 2 over F3. The
order of 2 in F5 is 2. We have X —2= H?:o(x — Bl =
(x—B)x—BH(x—B)x—B7)(x—B°), where B is a primitive
10th root of unity. Let g = 3, k = m = 4, Fyu = F3(8)
and C be a 81-ary 2-constacyclic code of length 5 with the
parity check polynomial h(x) = (x — ,B_I)(x — ﬁ_3)(x —,8_9).
We generate F34 by means of recursion ot = p3 4+ 1, where

p is a root of x* + 2x3 + 2.
Let B = p8. Then o* — B = 0* — p® = (0w — p*)(w —

,022)(a) — ,042)(w — p62). Now, we choose a(w) = (w —
0?) € Fgi[w] as a divisor of ®* — B of degree 1. Setting
a3z = 1, then we have that aj = ayajy;. Thus, oy = ,02,

ar = p* ag = pb Hence a = {p®, p*, p2, 1} is a basis
of Fg1 over 3 for which dy(C) is a 2-constacyclic code.

4
Since b(w) = 275 = (@ = p?)@ — P — o),
then b(@) = irr(p™, Fy)irr(p*, Ey)irr(p?, F3) = 0'? +
ol +20° + 0’ + 20* + @3 + 2w? + 1. Further b(a))* =
0?2 +209 + 0° + 208 + 07 +20° + 0 + 1. Consequently,
we have

do(C)

x0_2
B <x12+2x10+x9+2x8+x7+2x3+x+ 1>
=Sl 2 ot P2+ 1), (15)

Now, we make a conclusion on the Theorems 3, 5 and 6.
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Theorem 7: Let gcd(n,q) = 1 and C be a q™-ary
A-constacycic code of length n with the parity check polyno-
mial h(x). Then there exists a basis o of F g over F, for which
dy(C) is A-constacyclic if and only if

(1) Let h(x) € TFylx], then dy(C) is A-constacyclic for
every basis a. Further, the parity check polynomial of dy(C)
is h(Z™);

(i) Let h(x) = ho(x)(x — (ﬂé’)q#), where ho(x) € Fylx]
and € Zy. Let Fy # Fyo = Fy((BE)™) S Fyn, and
o™ — (BEY ™! have a divisor over Fx of degree e = % Then,
dy(C) is A-constacyclic if and only if o is the trace-dual basis
ofz = {0, V1, -+ +» Vm—1}, Wwhere o, Y1, ..., Ye—1 IS a basis
of Bgm over F jx and

e
yi=Y al ye<j<m (16)
i=1

with a(®) = o — ajw®™!

(™ — (BEH™Y). Moreover
a’g(C) — <Zmn—_)“>,

— - —a, € Fylo] and a(w) |

ho(z"™)a(z)*

where a(z)* is the reciprocal polynomial of a(z);

(iii) Let h(x) = ho(x)l_[ﬂes(x — (ﬁét)qu ), where ho(x) €
Fylx]and S C Zy. Let By # F o = Fy((BE') ™) S Fym, and
™ —(BEN ™! have amonic divisor over F i« of degree e. Then,
dy(C) is A-constacyclic if and only if am—_1, 2, . ..
are independent and

s Om—e

e
vV
aj = E a?aj+i,0§j<m—e
i=1

where a(w) = w° — ajw® - —q, € Fqk [w] is a factor

of o™ — (BEHNVandv € Zy, v ¢ S. Moreover,
Y
dy(C) = < >,

b(z)*
where b(2)* is the reciprocal polynomial of b(z) and b(w) =
wm_(<ﬂit)7l . D
alw

V. CONCATENATED FORM OF q-ARY IMAGES
We have shown that, under certain conditions, the g-ary
images of A-constacyclic codes are also A-constacyclic.
In this section, we will give a representation of some
A-constacyclic g-ary images in concatenated form. To do
this, we will use two related tools in this section. One is an
F,-ring isomorphism between F,[z]/(z"" — A) and Fy[x, y]/
(x™ — A, ¥y™ — x), the other is the notion of a concatenated
code.

We have introduced the map d from Fym[z]/(z" — A) into
Fylz]/ (2™ —1) by

dy : Fgnl2] /(" — 1) — Fylzl/(Z"" =)
n—1 —1n—
=Y 0 YT a
j=0 i=0 j=0
where a; = Z;n:_ol ai jo and aij € Fq.
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From the definition of dy, we have a(z) = Z Zl o0 Gij
a7, Now, let aj(z) = Z;-l:_ol aij@. Then ai(Z") =
Yoo @i, Thus, dy(a(2) = Yreg' aiz™)yz. |

Lemma 7: Let dy(c(z)) = ";?)1 ci(@M7
(™ — A). Then

e Fylzl/

m—1

dy ' (2de(c(2)) = @zem—1(D) + Y eici1(2).
Proof: Since =

m—1 m
wo(c@) = ) @) =) i@,
i=0 i=1

then d '(zdy(c(2)) = dj "7 Yeisi@d + eme1 (")
") = 3 e 1(2) + oz 1 (2). 0
Define a map as follows

I Fylzl/ (@™ = 4) — Fylx, ]/(xn—)» y" —x)

m—1n—1 —1n—
5 St e 55 a0y
i=0 j=0 i=0 j=0

It is easy to verify that IT is a ring isomorphism over F,.

Definition 2:  [16] Let C be a linear code over Fym.
Then Tr'(C) = ((Tr1'(b1), Trl'(b2), ..., Tr{'(by)) |
(b1, b2, ...,by) € C}is called the trace code of C. It is a

linear code over T .
Leta = {ag, a1, ..., o1} be a basis of Fym over F,. For
all0 < i <m — 1, define a map from ]Fg,,, into IE‘Z by

hi . FZm
m—1

Z ajcj > ci, (17)

n
—>Fq

wherecjeIFZ,jzo,l,...,n— 1.
Clearly, for all 0 < i < m — 1, h; is a F;-linear map.
Proposition 4: Let C be a A-constacyclic code of length n
over Fym. Then, forall 0 <i <m — 1, hj(C) = Tr'I"(C).

Proof: Let a = {ag,o1,...,0,—1} be a basis of
Fyn over [F, and y = {vo, 71, ..., Ym—1} be its dual
basis. Then we have «;y; = 1 where i = j, otherwise

aiy; = 0. Now, let ¢ = Z?:ol hi(c)a; € C. For any
¢ € C, we have Tr'(yje) = Tr'(y; 0y hi©a) =
Ir' Z:":_Ol(hi(c)yjai) = Trl'(hi(c)) = hic), where
O0<i<m-—1.

For any codeword ¢ of C and y; of F,», we have that y;c
runs through C. Consequently, Tr’"(C) C hi(C). Therefore
hi(c) = Tr(hi(c)) = T S (hi(e)yjan) = T (ve) €
Tr''(C). Thus, we have that Tr’”(C) = h;i(C). O

From the above discussion, we have the following
result.

Theorem 8: Let C be a A-constacyclic code over Fym
with the minimal generating set {gi,g2,...,8&k}. Then,
{hi(g),0 < i < m—1,1 < j < k} generates Tr{'(C)
over IF,.
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Proof: Let ¢ = Z]]-;] rigi € C, where &; € Fyn.
Assume that ¢ = {ap,a1,...,a,—1} be a basis of Fym
over F,. Then there exist elements Ay € F, and py €
F, such that A; = > "7 Asas and o0 = ern:_()l DsirOlr.
According to Definition 2, we have g; = Zi:()l hi(gj)e;, for
all 1 <j < k. Therefore,

k k m—1
c= higi=) D hsasg
j=1 j=1 s=0
m—1 k m—1
= Z )"jSaShi(gj)al
i=0 j=1 s=0
m—1 m—1m—1

)\jspsirhi(gj)ar-

Il
'M”

=)
~
Il
—
Il
o
“
Il
=)

r=!

Consequently, forall 0 < r <m — 1, we have

m—1 k m—1
hr(©) =D "33 Ajspsirhi(g)).
r=0 j=1 s=0

which implies that {4;(g}),0 < i < m—1,1 <j < k}
generates h,-(C). O

Corollary 1: Let « = {ag, a1, ...,0n—1} be a basis of
Fyn over Fy and C be an [n, k] A-constacyclic code over
Fym with the generator polynomial g(x) = Z;":_O] aigi(x)
for some gi(x) € Fylx]. Then Tr(C) is generated by
ged(go(x), g1(x), - .., gm—1(x)).

Proof: Since C is a A-constacyclic code over F,, then
Tr(C)is also a A-constacyclic code over IF;. From Theorem 8,
we have that {h;(¥/g(x)),0 < j < k — 1} = {¥gi(x) |
gix) € Fy[x],0 < i <m—1,0 <j < k — 1}. Then
Tr(C) = (ged(¥'gi(x)) |0 <i<m—1,0<j<k—1) =
(ged(go(x), g1(x), .. ., gm—1(x))). 0

From the Eq. (5) in Section 1, the map x from (6;) to
Fylx]/{hi(x)) defined by x(c(x)) = c(BE") is a field isomor-
phism, where &’ = 1% is a root of h;(x). Now, let the
inverse x ~! of x be defined by x ~!(e) = Yo Olclx where
ci=;Tr(eBs)™),0<i<n—1.

Definition 3: Let A be an [n, k] A-constacyclic minimal
code over ¥y and B be an ideal of F 1/ N —(BEY)), where
,BET is a nonzero root of A. Then the linear code ALl B =
{Z/ 0 X_l(b | ZN Y, ;¥ € B} is called a concatenated
code with B&' constacyclzc outer code B.

Theorem 9: Let A be an [n, k] A-constacyclic minimal
code over ¥y and B be an ideal of F /N — (BED),
where BE' is a nonzero root of A. Then the concatenated code
AOB = (150" x 71y | XN by € BY is an ideal of
Ty N, where T, v = Fylx, y]/(x" — A,y —x).

Proof: Clearly, AD B is a linear code. Let c(x,y) €
Al B. Then we need to show that xc(x, y)mod(x" — 1),
ye(x, y)mod(x — X, ¥V —x) are elements of AC] B. Let b(y) =
Yo by € B. Then c(x,y) = Yig! x ')y € ADB.
Since B is a B&!-constacyclic code, then b1(y) = BE'b(y) € B
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and by (y)
x‘l(ﬂé’b-)

n—1

=- Z Tr(BE'bi(BE") '

= yb(y) € B mod(y" — BE"). Moreover,

n— 1

=~ Z Tr(bi(BEH' '

;(Tr(bjﬁél + Tr(bpx + -+ Tr(by(BEH) 2"

and
—l(b-)
n—1
=x- ZTr((ﬂs) bt = —(Tr(bj)x
i=0

+Tr((BE) ' bjx’ + -
1

= ;(Tr(bjﬂst) + Tr(bpx + -+
x(mod x" — ).

+Tr((BE) " by
+ Tr(bj(ﬁgt)7n+2xn71 )

Therefore, x ~'(B&'b;) = xx ~!(bj)(modx™ — 1). Let ¢ (x, y)
and c(x, y) be two elements of the concatenated code corre-
sponding to b1(y) and b, (y). Then

N—-1
c1e,y) =Y x " (BE'b)Y = xc(x, y)(mod x" — 1)
j=0
and

200, y) = x ' Bo)y + x By + -+ T v-)yY
= ye(x, y)(mod x" — &,y —x).

O

The following theorem is a fundamental result in this
section.

Theorem 10: Let C be an [n, k] ,A-constacyclic code over
Fyn such that dy(C) is also a A-constacyclic code and
o = {ap, a1, ..., au—1} be a basis of Fym over F,. Assume
that Tr(C) is a A-constacyclic minimal code of dimension
s over Iy having a nonzero root n, n € Iy such that
(1,n,...,7°" Y is a basis of Fys over Fy, then

() Cy = {0 ey’ | 0! aicix) € C) is an ideal
of F Y1/ ™" — ).

(i) M(dx(C)) = Tr(C)T C,,.

Proof: (1)Suppose that u € Fgs, then u = ZI_O um’,
u € Fy,forall0 <7 <s—1.Letc(x) = _? (xc,(x) eC,
for some c¢;(x) € Fq[x] and op(y) = Z o c,(n)y Then
a(y) = ucy(y) = u Y15 cilmy’ = Yrmg! Yoimg uin’ ci(my'.

Now, define a map

foi €= Fgl/O" —n)

m—1

m—1
D aicix) = Y cmy
i=0

i=0
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Since u € Fy and ¢,(y) = Y74 ci(n)y’, then a(y) €
Fye 1/ — n). Moreover, f‘la(y) f N Yy w
Utci(ﬂ))fi) = > u,x Ci (x)al e C. Therefore,
uci(n)y' € Cy.

From Lemma 7, aozcm_l(z)+Z;"=_ll aici—1(z) € C, which
implies that agnc,_1(n) + IZ,m:_ll ci,.l(n)y" € 1C,]. Thus,
we have agne,—1(n) + Y iy cio1(my =y ity ci(my' =

yep(x)mod(y™ — n). Therefore C, is an ideal of Fu[yl/
" —=mn).
(i) Clearly, Tr(O)D C; = {X7% x~'(cmy’ |
oy € Gyl e,
m—1 m—1
Tr(O)D Cy =Y x Ncm)y' | Y eicjx) € C).
i=0 i=0
Since, forall0 <i<m—1, x~ (c,(n)) =¥ 1(xcl(x)) =
ci(x), then we have Tr(C)O C, = {Z —0 c,(x)y |

Z;":_Ol aici(x) € C}. By the definitions of the maps IT and
dy, we have I1(dy(C)) = Tr(C)O C,,. O

Example 4: Let Frs = Fs(B) be given in Example 2.
Recall that x® —4 = [[_g(x — B'12) = (2 4 3x + 4)(x% +
2x +4)(x +3)(x +2). Let C be an [6, 1] L-constacyclic code
with parity check polynomial h(x) = (x — =) over Fas,
where ). = 4 € F5. Clearly, by Example 2, we have that dy (C)
is a 4-constacyclic code over s, for some basis o« = {ag, o1}
of a5 over Fs. Since the parity check polynomial of C is
h(x) = x — B~1, then its generator polynomial is g(x) =
(x—BN)(x2+2x+4)(x+3)(x+2). Thus, by Corollary 1, we can
get Tr525 (C) is a minimal 4-constacyclic code of dimension
2 with generator polynomial 2 4+ 2x + Hx + 3)(x + 2)
over Fs. Further, B7 is a nonzero root of Tr55 ). Therefore
M(dy(C)) = Tr(C)O Cyr, where o = {p*, p*}, 7 = p'* =
3p%0 and {1, p'*} is a basis of F»s over Fs.

VI. CONCLUSION

In this paper, we studied some results on the images of a class
of constacyclic codes over finite fields. We determined the
connection between ¢”'-constacyclic codes and the images
codes under some special mappings. Moreover, we have also
shown that the images of these constacyclic codes can be put
into the concatenated form. As some applications, construct-
ing LCD codes and quantum codes from constacyclic codes
may be interesting open problems in future.
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