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ABSTRACT Indoor environments have abundant presence of high-level semantic information which can
provide a better understanding of the environment for robots to improve the uncertainty in their pose
estimate. Although semantic information has proved to be useful, there are several challenges faced by
the research community to accurately perceive, extract and utilize such semantic information from the
environment. In order to address these challenges, in this paper we present a lightweight and real-time
visual semantic SLAM framework running on board aerial robotic platforms. This novel method combines
low-level visual/visual-inertial odometry (VO/VIO) along with geometrical information corresponding to
planar surfaces extracted from detected semantic objects. Extracting the planar surfaces from selected
semantic objects provides enhanced robustness and makes it possible to precisely improve the metric
estimates rapidly, simultaneously generalizing to several object instances irrespective of their shape and
size. Our graph-based approach can integrate several state of the art VO/VIO algorithms along with
the state of the art object detectors in order to estimate the complete 6DoF pose of the robot while
simultaneously creating a sparse semantic map of the environment. No prior knowledge of the objects is
required, which is a significant advantage over other works. We test our approach on a standard RGB-D
dataset comparing its performance with the state of the art SLAM algorithms. We also perform several
challenging indoor experiments validating our approach in presence of distinct environmental conditions
and furthermore test it on board an aerial robot. Video: https://vimeo.com/368217703 Released Code:
https://bitbucket.org/hridaybavle/semantic_slam.git

INDEX TERMS SLAM, visual SLAM, visual semantic SLAM, autonomous aerial robots, UAVs.

I. INTRODUCTION
Many indoor autonomous missions related to different appli-
cations require the usage of small-size aerial robots, able
to navigate around narrow constrained spaces. This kind of
vehicles cannot carry a lot of weight, so they only can be
equippedwith light sensors, such as RGBor RGB-D cameras,
and processing units with limited computational resources.
To operate in a truly autonomous way, accurate localization
and meaningful mapping results are needed, which is indeed
a challenging problem, especially regarding robustness.

Simultaneous Localization and Mapping (SLAM) using
visual sensors may be feature-based (sparse, semi-dense or
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dense) or intensity-based. Most semi-dense SLAM tech-
niques, like [1]–[3], rely on low level characteristic features
of the environment such as points, lines and planes. This
kind of approaches typically deteriorate in performance in
the presence of illumination changes and repetitive patterns.
On the other hand, other state of the art SLAM based tech-
niques, such as [4]–[6], focus on dense 3D mapping of the
environment, hence requiring high end CPU and GPU hard-
ware in order to achieve real-time operation, which is a clear
limitation on board an aerial robot with low computational
capabilities.

Recent improvements in computer vision algorithms have
made it possible to achieve object based detectors run-
ning real-time on lower end CPUs or GPUs. Combining
such detectors with Visual Odometry (VO)/ Visual Inertial
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FIGURE 1. The aerial robotic platform used for validating the presented visual semantic slam approach with
the frame of references.

Odometry (VIO) systems depending on low-level features
can improve the accuracy of the data associations and pro-
vide more robust loop closures without high computational
requirements, as shown in [7], [8]. Although adding semantic
information to SLAM systems undoubtedly provides addi-
tional knowledge, extracting the accurate 3D position of
the semantic objects is a challenging problem with impor-
tant implications, since errors in the position estimation
can induce errors in the data association and mapping of
such semantic objects. The inaccuracies in estimating the
3D positions of the semantic objects are mainly due to
two factors; (1) Uneven and complex 3D structures of the
different instances of semantic object classes. (2) Errors in the
semantic object detections i.e bounding boxes provided by
the object detectors do not fit accurately around the detected
object.

Several objects in common indoor environments present
vertical and/or horizontal planar surfaces which can be
extracted to improve the relative position estimation of these
objects. Hence, in order to overcome the above mentioned
limitations and to achieve a robust and lightweight SLAM
algorithm, we propose a semantic SLAM approach using
planar objects within the semantic detections.

The proposed algorithm can be divided into two parts.
In the first part, the robot state is propagated using a VO/VIO
estimate. Low-level features from the environment are used
at this stage for the propagation of the robot state. Due to
the inaccuracies in low-level feature detection and matching,
as well as to errors and biases in the IMU measurements
(for VIO systems), the VO/VIO estimations of the robot state
often accumulate errors over time. We address this by asso-
ciating the high-level planar surfaces of the detected seman-
tic objects with the previously mapped semantic planes. To
extract the planar surfaces within the detections, the output
provided by state of the art object detectors is combined
with a carefully applied plane extraction technique. Hence,

the second part of the algorithm corrects the estimation and
builds a sparse semantic map of the planar surfaces extracted
from the semantic detections.

The created semantic map consists of planar surfaces rep-
resented by their centroids and normal orientations alongwith
their class labels and the planar surface type (i.e. horizontal
or vertical), which may be augmented by new detections of
the semantic objects. To summarize, the main contributions
of the presented work are:

• Robust and lightweight semantic SLAM algorithm suit-
able for running on board an aerial robot.

• Incorporation of fast planar extraction inside the seman-
tic detections, for accurate high-level data association
and mapping of the semantic landmarks.

The remainder of this document is organized as follows;
Sect. II explains the current state of the art in geometric as
well as semantic SLAM. Sect. III explains the semantic detec-
tion and planar extraction part along with Sect. IV describing
the graph creation using the VO/VIO measurements and the
extracted semantic information. Sect. V presents the per-
formed experiments and obtained results using a standard
dataset as well as using additional field experiments, compar-
ing the accuracy of our approach with several state of the art
geometric and semantic SLAM approaches. Finally, Sect. VI
discusses the obtained results along with Sect. VII providing
the final conclusions.

II. RELATED WORK
The research community has witnessed a great interest in
visual SLAM based algorithms applied to robotics, so there
is a vast visual SLAM related literature. Recently, SLAM
techniques combining both geometric as well as seman-
tic information have gained popularity and significant rele-
vance [9]. It is now widely recognized that the incorporation
of object-level information for accurate data associations and
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loop closures can increase the quality, robustness and inter-
pretability of the solutions [10]–[12].

Salas-Moreno et al. [13] presented one of the first works
in this direction: a real-time semantic SLAM approach called
SLAM++. SLAM++ was developed for an RGB-D sensor
and it applies the ICP algorithm for 3D camera pose track-
ing, adding the estimates to a pose graph. It then integrates
the relative 3D poses estimated from semantic objects pre-
viously stored in a database, in order to jointly optimize
all the poses. Murali et al. [14] present an approach which
integrates semantic information into a visual SLAM system.
Within a gated factor graph framework, the semantic infor-
mation is used for detecting the inliers/outliers of the system
in order to achieve robust performance in the presence of
dynamic obstacles. A pre-trained deep learning based object
detector provides the semantic information of the objects.
Sunderhauf et al. [15] propose a semantic mapping method
combining ORB-SLAM2 [1] with deep learning based object
detectors and 3D unsupervised segmentation of the planar
information of the object detections. Our proposed approach
is similar to this approach except that the authors only pro-
vide a semantic mapping framework -not a complete SLAM
framework- and they perform time consuming data associ-
ations using euclidean distances between the 3D points of
the detected object-landmark pairs, instead of more accurate
Mahalonobis distance computation using the extracted land-
mark covariances.

Parkhiya et al. [16] present a monocular semantic SLAM
approach. They use a deep network to learn 2D characteristic
features from category specific objects, e.g. chair, and match
it with a 3D CAD model to estimate the relative 3D pose
of the semantic object. These semantic objects are added as
landmarks along with the VO estimated pose of the robot into
a graph optimization framework to obtain a corrected metric
pose of the robot.

Grinvald et al. [17] propose a semantic mapping system
based on a pose acquired from a geometric VIO sensor.
This method utilizes geometric planar segmentation of a
point cloud data and then uses semantic detections for the
data association step and to further refine the segmentation.
McCormac et al. [18] present an object-level SLAM sys-
tem using RBG-D cameras called Fusion++, segmenting
Truncated Signed Distance Function (TSDF) representations
of the objects using the Mask-RCNN object detector. The
objects are used for tracking, re-localization and loop closure,
and their extracted pose is optimized over a pose graph.
Bowman et al. [8] develop an extension to their previous
work [7] thereby using semantic objects such as chairs and
doors in a semantic SLAM approach,. The authors decom-
pose the joint metric semantic SLAM problem into subcat-
egories, namely (1) Continuous optimization of pose and
(2) Discrete optimization of the semantic data association and
semantic labels. The framework tightly couples the inertial,
geometric and semantic information. Atanasov et al. [19]
provide an extension to the framework presented in [8],
extracting descriptive semantic features by using a

convolutional neural network from semantic objects like cars,
in order to tightly couple themwith the geometric and inertial
information.

One of the latest publications on semantic SLAM [10]
proposed to track different possible hypotheses for the data
association, in a robust framework for the context of urban
driving. Also very recently, Yang et al. [12] proposed a
unified SLAM framework including high level objects and
planes based on monocular information. They do not require
prior models and incorporate quite a novel and general object-
to-plane constraint. Besides the fact that depth informa-
tion is not considered, one significant difference from our
approach is that this work uses 2D bounding boxes to rep-
resent the objects. Other innovative approaches have focused
on point-wise semantic labeling for 3D lidar data within the
SLAM framework itself [11]. This work also highlights urban
scenarios for autonomous driving as an important application
area.

Our proposed approach aims towards fast and efficient
extraction of planar surfaces from objects, which can be used
as semantic features, and thus generalizes to several semantic
objects with planar surfaces, creating a sparse optimizable
map of the environment, requiring minimal computational
resources and hence capable of running on board aerial
robotic platforms with low computational resources. Fig. 2
presents a global overview of the system with its distinct
components explained in the following sections.

III. SEMANTICS BASED PLANAR EXTRACTION
A. SEMANTIC OBJECT DETECTION
The semantic object detection can be performed using any
state of the art object based detectors. We select the You
Only Look Once (YOLOv2) ( [20]) object detector, in order
to satisfy the on board computational limitations of the
aerial robots. We select the lightweight Tiny-YOLOv2 model
trained on the COCO dataset ( [21]), providing a real-time
performance with an average GPU consumption of 300 mb.
The object detector is modified in order to provide detec-
tions only of the relevant objects above a certain probability
threshold.

Although Tiny-YOLO does not require high computation,
it requires an on board computer with a GPU support. Hence,
in order to test our approach on board aerial robots without
any GPU support, we also utilize a CPU based implemen-
tation of a shape and color based object detector, which is
capable of detecting in real-time blue as well as red colored
cube shaped objects. The detector first processes the color
based information in HSV colored space in order to filter out
objects based on color. The filtered image is then processed
using a shape image processor which takes into account the
approximate shape of the corresponding object in order to
detect cube shaped objects of the corresponding color. More
details regarding the detector can be found in [22].

The object detection is performed on the images received
from the RGB camera. The detected bounding boxes from the
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FIGURE 2. An overview of the proposed algorithm with all the connected components. (a) The aerial robot with the on
board RGB-D camera. (b) VIO algorithm. (c) Object detector used. (d) Planar segmentation and extraction.

object detectors are then provided to the object segmentation
(Sect. III-B) which segments the planar information from the
3D point clouds generated from the depth image registered
with the RGB image.

B. SEMANTIC OBJECT SEGMENTATION
The received bounding boxes of the semantic objects from
Sect. III-A, which are extracted from the RGB images, are
used to extract the relevant 3D point cloud data of the
semantic object. This 3D point cloud is generated from the
corresponding depth image registered with the RGB image.
As shown in Fig. 7c the received bounding boxes from the
detector can have errors, as the bounding boxes do not fit
the objects perfectly. Taking a median of characteristic 3D
points or all 3D points within the detected bounding boxes
as presented in [8] can cause errors in the calculation of the
relative 3D position of the semantic object inducing errors
in the mapping and data association of the semantic data.
In order to minimize the errors in the mapping of the semantic
objects, inspired from our previous approaches of planar
clustering and segmentation ( [23], [24]), we segment all
the horizontal and vertical planar surfaces present within the
detected bounding boxes with their centroids as well as their
normal orientations in the following manner:

1) NORMAL EXTRACTION
In order to perform fast and real-time extraction of normals
at each 3D point, we use the integral normal estimation
technique ( [25]). Briefly, this technique first converts the
z component of the input 3D point cloud Ii to an integral
image Im, since in an integral image, the sum of all values
within a particular region is calculated, it makes the compu-
tation very fast and efficient. After performing a smoothing,
choosing the appropriate smoothing areas using depth change
maps, a normal np at point p is calculated as: np = ph × pv.
Where ph is the vector of 3D right and left neighbors of point
p and pv is the vector of the 3D top and bottom neighbors of

point p. The matrixNc
p contains all the normal orientations of

each 3D point in the point cloud, and is passed to the centroid
extraction step explained below.

2) CENTROID EXTRACTION
For fast and robust planar surface and centroid extraction,
we use the method proposed in [26]. This approach takes
as input the Nc

p computed from the previous step as well
as all the corresponding 3D points vector. All planes are
represented by the planar equation ax + by + cz + d = 0
and each 3D point is thus represented as a vector consisting
of the euclidean point, its normal and nd :

p = {x, y, z, nx , ny, nz, nd } (1)

where nd = {x, y, z} · {nx , ny, nz}. Euclidean distances
between the normal directions and the distances nd are com-
puted for the neighboring points in order to find all the
connected components. The computed connected compo-
nents are then checked for their curvatures in order to fil-
ter non-planar components. After the extraction of all the
planar surfaces with their centroids and normals, we first
check whether the planar surfaces are horizontal planes as
follows:

dhor = ||np − ng|| (2)

where np is the normal to the extracted planar surface and ng
is the normal of the ground planar surfaces which is known.
If the the dhor is less than thor , then the planar surface np
is labeled as a horizontal plane. If the dhor is greater than
the thor , the planar surface is checked for vertical threshold
as:

dvert = np · ng (3)

If dvert is less than the tvert the planar segment np is labeled
as a vertical plane. The extracted planar surfaces thus contain
the following information:
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• Centroids sp = {px , py, pz}
• Normals sn = {nx , ny, nz, nd }

• Planar type label so =

{
1, if horizontal
0, if vertical

• Class type label sc = corresponding detected class type.

IV. GRAPH SLAM
The pose estimates from the VO/VIO algorithms can accu-
mulate errors in absence of characteristic features in the
environment and as seen from III-B semantic detections can
have errors due to occlusions, insufficient lighting, result-
ing in uncertainties in the 3D position estimates as well.
Due to the presence these uncertainties the use of filtering
techniques like the Extended Kalman Filter (EKF) SLAM
could cause divergence in the estimate of the robots as well
as the landmarks poses. As opposed to filtering techniques
which consider only the most recent previous state of the
robot, graph slam based techniques provide the advantage of
considering all the previous robots states, as well as account
for higher non-linearities. Hence, in order to robustly fuse the
measurements from the VO/VIO and the semantic detections,
we use graph slam based optimization. The algorithm can be
divided into three main stages:

A. VO/VIO ODOMETRY
The advantage of using loosely coupled approach for fusing
VO/VIO estimations with semantic data, allows for integrat-
ing several state of the art VO/VIO systems, into the frame-
work, using the best approach for a particular environment.
In this work we integrate into our framework three different
visual odometry algorithms namely: 1. ROVIO ( [27]) 2. Snap
VIO1 3. RTAB-map odometry ( [28]).

ROVIO is a monocular VIO algorithm based on an
Extended Kalman Filter (EKF). ROVIO uses direct image
intensity errors of image patches in order to achieve robust
tracking. These image intensity errors are used as innova-
tion terms during the update stage of the EKF. These image
intensity measurements are tightly coupled with an IMU to
accurately estimate the pose of the robot with true metric
scale. But due to the noise in the image intensity calculations
as well as the IMU measurements, pose estimates provided
by ROVIO can accumulate huge drift over time and in many
scenarios the pose estimate can diverge without recovery.

During very high angular motions of the aerial robots
and less characteristic features in the environment, the pose
estimated by ROVIO can tend to diverge completely from the
true robot pose. Due to this limitation, for high speed flights
on board the aerial robots, we use the snap VIO algorithm.
The snap VIO algorithm is also a monocular approach which
is able to estimate the pose of the robot, where the robot pose
estimates drift with time but the algorithm does not tend to
diverge completely from its true value as in case of ROVIO.

In order to compare our proposed approach with a standard
RGB-D dataset ( [29]) which does not provide synchronized

1https://github.com/ATLFlight/ros-examples

IMU data, we use the RTAB-map RGB-D based visual odom-
etry module. The odometry algorithm uses Feature to map
(F2M) approach which registers a new keyframe with local
map of features created from the previous keyframe. It uses
the Good Features to Track (GFTT) ( [30]) for extracting
the keypoint features and uses the BRIEF descriptors of the
extracted features to match against those of the local map cre-
ated. The motion estimation is performed using Perspective-
n-Point algorithm (PnP) as presented in the OpenCV library
( [31]). A local bundle adjustment is performed in order to
refine the obtained odometry estimate.

B. GRAPH CONSTRUCTION
The robot state vector x = [xr ,Rr] is propagated over
keyframes k . Where xr = [x, y, z], x, y and z are the robots
position estimates along the x, y and z axis with respect to the
world frame of referenceW respectively (Fig. 1) andRr is the
rotationmatrix of the robot with respect to theworld frameW .
We assume that the initial state of the robot is known.

Each landmark consists of it state and covariance with the
labels for the planar surface type as well as the class type
represented as L = L1, ..,Ln. Where Li = (lzi , lσi , loi , lci ),
lzi being the 3D position of the i-th landmark, lσi is the
covariance of the i-th landmark and loi and lci being the planar
as well as the class type of the i-th landmark.

The front end of the algorithm comprising of VO/VIO
provides the 3D pose estimates in the world frame of refer-
enceW . The estimate of the robot state xr at time t is added to
factor graph as a keyframe node Kt . The constraint between
adjacent keyframes Kt−1 and Kt is added in the form of an
edge using the pose increment between them ur (k). The pose
increment obtained from the the VO/VIO poses at time t − 1
and time t can be derived as:

urt = 	xr (k − 1)⊕ xr (k) (4)

xr (k − 1) and xr (k) are the pose measurements received at
time t − 1 and t respectively. Each keyframe Ki is added to
factor graph depending on time as well as motion constraints
of the robot.

Each detected semantic object Si after undergoing the
process of data association (Sect. IV-C), is either added to
the factor graph as a landmark node augmenting the map
of semantic landmarks L or associated with the currently
mapped semantic landmarks. The relative pose of landmark
observed from the keyframe Ki is added as the constraint
between the landmark and the respective keyframe. Fig. 3
shows the graph constructed using n keyframes and three
semantic landmarks detected with their extracted planar
surfaces.

C. DATA ASSOCIATION
The semantic planar surfaces extracted from section III-B are
received first by the data association stage in the following
manner: Si = {szi , sni , soi , sci}. Si is the first detected and
extracted semantic planar surface i, containing szi and sni
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FIGURE 3. The structure of the graph created, using the VIO and the semantic landmarks. (a) VIO feature extraction and
pose estimation. (b) The semantic detections in the RGB image with the inliers of the planar surfaces in green extracted
from the registered point cloud. (c) The constructed graph, where Ki is the keyframe created for a VIO pose connected with
the relative poses between them.

as the centroids of the detected planar surface and its cor-
responding normal orientations in the camera frame C (see
Fig. 1). soi and sci the planar surface type and the class
labels respectively. The first received semantic object does
not undergo the data association and is directly mapped as
the first semantic landmark which can be represented as:

Li = {lzi , lni , lσi , loi , lci} (5)

where the lzi and lni are the semantic landmark centroids and
normals in the world frame of reference obtained as:

lzi = xr ⊕ wRc · szi (6)

lni =
wRc · sni (7)

where wRc is the rotation matrix from the camera frame to the
world frame. lσi is the uncertainty of the estimated position
of the semantic landmark. The initial value of lσi is decided
based on the number of 3D points contained in planar surface.
Semantic object with lower number of 3D points corresponds
to high certainty of error in it estimated centroids and normal
orientations and will have a higher lσ . After the mapping of
the first semantic landmark, each detected semantic planar
surface Sk undergoes the data association process in the
following three steps:
• First, the received semantic planar surface is checked
for whether its class label matches the class label of the
semantic landmarks, and whether its planar type is equal
to the planar type of the semantic landmark. It further
undergoes a check for whether the number of 3D points
representing the planar surface are greater than a certain
threshold tp and if the area of the semantic planar surface
is greater than a threshold ta. This step ensures exclusion
of erroneous centroids of the planar surfaces extracted

due to the detected bounding boxes fitting incompletely
over a semantic object.

• In the second step the normal orientation of the planar
surface in the camera frame is converted to the world
frame using Eq. 7 and is represented as lnk . The differ-
ence lnk between lni has to be lower than a predefined
threshold tn, for the planar surface to pass to the next
step.

• If the semantic planar surface passes the first step
and the second step, the relative 3D measurements of
the centroids are converted from the camera frame to
the world frame using the Eq. 6. We can then com-
pute the Mahalonobis distance for the detected seman-
tic object with mapped landmarks. If the computed
Mahalonobis distance is greater than a given threshold,
the detected semantic object is mapped as a new land-
mark Lj, else the semantic object Sk is matched with the
current semantic landmark Li.

During the graph optimization step (Sect. IV-D), both the
positions lz as well as the covariance lσ of all the mapped
semantic landmarks are optimized.

D. GRAPH OPTIMIZATION
After the construction of the graph (Sect. IV-B), the graph
optimization step consists of finding a configuration of the
nodes that best fits the given VO/VIO measurements and
the semantic landmarks. x = (x1, . . . , xm)T is the vector of
state of the robot, where xi and xj are the poses of nodes i
and j connected using the edge ẑij, which is the relative pose
between them obtained from the VO/VIO estimates.�ij is the
information matrix between nodes i and j. zij is the semantic
landmark measurement observed by the nodes i and j. The log
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likelihood of the measurement therefore can be given as:

lij = [zij − ẑij(xi, xj)]T ·�ij · [zij − ẑij(xi, xj)] (8)

where,

eij(xi, xj) = zij − ẑij(xi, xj) (9)

is the difference between the expected observations from the
VO/VIO odometry and the received measurements from the
semantic landmarks. For a pair of observations C , the least
square estimation problem thus seeks to find x? that best fits
all the previous observations, given as:

x? = argmin
x

∑
i,j∈C

eTij�ijeij (10)

In order to increase the robustness to possible outliers
present in the semantic detections, Psuedo-Huber cost func-
tion is added to all the semanticmeasurement constraints. The
solution to Eq. 10 can be found by linearizing around the
initial guess x̃, which leads to iteratively solving for the a
linear system with matrix H and right hand vector b as:

H =
∑
i,j∈C

J ij(x̃)T�ijJ ij(x̃) (11)

bT =
∑
i,j∈C

eTij�ijJ ij(x̃) (12)

where, J ij is the Jacobian of the error function computed in x̃.
In this optimization process, the robot pose as well the

semantic landmarks positions are optimized. After the fac-
tor graph optimization we can also recover the updated
covariances of the mapped landmarks, in order to com-
pute the Mahalonobis distance required for data association
(Sect. IV-C). Re-observing the semantic object and correctly
associating it the the mapped landmark results in the loop
closure after the optimization step. For fast and efficient com-
putation of the non-linear optimization problem, G2O ([32])
framework is utilized with Lavenberg-Marquardt solver.
Algorithm. 1 explains the complete working the proposed
algorithm.

V. EXPERIMENTS AND RESULTS
A. STANDARD DATASET
To validate our approach, we test on standard dataset and
compare it with state of the art approaches based on geometric
as well as object based SLAM approaches.

1) RGB-D SLAM TUM DATASET
This dataset2 ([29]) consists of point cloud data provided from
a kinect sensor and a motion capture system for the ground
truth data. The odometry data for the dataset is obtained using
the RTAB map RGB-D visual odometry algorithm ([28])
explained in Sect. IV-A and several semantic objects such
as chairs, tv-monitors, books and keyboard are detected and
mapped as semantic landmarks and used for loop closure

2https://vision.in.tum.de/data/datasets/rgbd-dataset/download

Algorithm 1 Visual Semantic SLAM
Input: VO/VIO estimated ouput of the robots pose x,

along with the detected and segmented semantic
data Sj

Output: Corrected pose of the robot xr and the semantic
landmark map L

1 VO/VIO
2 if time > timethres & dist > distthres then
3 Add estimated pose of the robot from the VO/VIO

as a keyframe node Ki
4 Add an edge between the Ki−1 and Ki using the

relative pose
5 Data Association
6 if first_semantic_data then
7 l i = {lzi , lσi , loi , lci}
8 Add a new landmark node with its relative pose
9 Add an edge between the landmark node and current

keyframe Ki
10 else
11 for i = 1 to numdetections do
12 for j = 1 to numlandmarks do
13 if soi = lok and sci = lck then
14 lσi ← Get the optimized landmark

covariances
15 lσj ← based on the number of 3D points

in the semantic planar surface
16 Calculate the min-Mahalonobis

distance
17 vi = lzi − lzj
18 Q = H · lσi · (H )T + lσj
19 di = vTi · Q · vi
20 else
21 Map a new semantic landmark
22 lσk = lσj & Lk = [lzk , lni , lσk , lok , lck ]
23 Add a new landmark node with its

relative pose
24 Add an edge between the landmark node

and current keyframe Ki
25 end
26 end
27 if min-Mahalonobis distance ≤ thresdist then
28 Add an edge between the mapped landmark

with the current keyframe Ki
29 else
30 Map a new semantic landmark
31 lσk = lσj & Lk = [lzk , lni , lσk , lok , lck ]
32 Add a new landmark node with its relative

pose
33 Add an edge between the landmark node and

current keyframe Ki
34 end
35 end
36 end
37 Back-End
38 Sparse map of the semantic landmarks
39 Optimize the robot pose xr
40 Optimize the landmark poses and covariances lzi and lσi
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FIGURE 4. The trajectory of the camera estimated by the proposed algorithm when comparing it to the ground truth estimated trajectory for
the RGB-D TUM dataset. (a) and (b) present the 3D and 2D trajectories for Freiburg3 Long Office Household sequence. (c) and (d) present the
3D and 2D trajectories for Freiburg2 XYZ, (e) and (f) show the 3D and 2D trajectories for sequence freigburg2 RPY and (g) and (h) shpw the
3D and the 2D trajectories for freigburg2 desk.

FIGURE 5. The freigburg3 long office household sequence presenting the generated 3D point cloud map of the
environment with the estimated trajectory of the camera shown in red, along with detections received from the
yolo detector.

detection. We describe below the experiments performed on
several sequences of the dataset with the obtained results and
discuss their results in Sect. VI.

a: Freiburg3 LONG OFFICE HOUSEHOLD (fr3/office)
In this sequence the kinect RBG-D camera is moved along an
environment consisting of several office materials consisting

of chairs, tables, books, tv-monitors etc. The camera is moved
in different translational motions as well as rotational motions
in order to validate the robustness of the proposed approaches.
Fig. 5 shows the 3D point cloud map generated using the
pose estimated by the semantic SLAM algorithm. Figures 4a
and 4b present the trajectory of the camera estimated by
our proposed algorithm and the ground truth trajectory.

VOLUME 8, 2020 60711



H. Bavle et al.: VPS-SLAM: Visual Planar Semantic SLAM for Aerial Robotic Systems

During the execution of this sequence, the average trajectory
error (ATE) ( [29]) estimated by our proposed algorithm is
0.033 m, whereas the ATE of the VIO algorithm is 0.043 m.

b: Freiburg2 XYZ (fr2/xyz)
In this sequence the kinect camera was moved in translational
motion along with x, y and z axis without any rotational
motion. Only two semantic objects, a TV-monitor and a
keyboardwere used as semantic landmarks. Figures 4c and 4d
present the estimated trajectory by our proposed algorithm
when comparing it to the ground truth trajectory. The ATE of
our proposed algorithm for this sequence is 0.0181m and that
of the VIO is 0.0182 m.

c: Freiburg2 RPY (fr2/rpy)
This sequence is similar to the Freiburg2 XYZ experiment,
with additional rotational motion of the camera along with
with the translational motion. Only two semantic objects,
a TV-monitor and a keyboard were used as semantic land-
marks. Figures 4e and 4f present the estimated trajectory by
our proposed algorithm when comparing it to the ground
truth trajectory. The ATE of our proposed algorithm for this
sequence is 0.019 m and that of the VIO is 0.0202 m.

d: Freiburg2 DESK (fr2/desk)
In this sequence the kinect camera is moved in translational
as well as rotational motion along a desk containing seman-
tic object such as tv-monitors, chairs, keyboard and books.
Figures 4g and 4h compare the trajectory estimated by our
proposed algorithm with the ground truth trajectory. In this
sequence as can be seen from the figure, during several time
instances there is absence of ground truth trajectory estima-
tion. The ATE for the robot pose and the VIO pose are 0.076
m and 0.103 m respectively.

B. FIELD EXPERIMENTS
We evaluate our algorithm on several experiments using dif-
ferent system setups and validate it in different indoor sce-
narios. All the field experiments are compared to the state of
the art ORB-SLAM2 ( [1]) as its one of the widely used open
source SLAM frameworks available. Although our approach
uses VIO, which incorporates additional IMU information,
the aim of this comparison is to evaluate the performance
of our proposed framework which uses higher level semantic
information, against a SLAM framework using only low level
features.

1) SYSTEM SETUP
For the experiments two different system setups were tested
as described below:

a: HAND-HELD SETUP
In this experimental setup, we use a single Intel RealSense
D435i camera.3 This version of the RealSense consists of an

3https://www.intelrealsense.com/depth-camera-d435i/

RGB camera, two infrared cameras providing depth informa-
tion and an IMU sensor. The ROVIO is used for the odometry
information and is executed using the RGB camera and the
IMU. The RGB camera is used for semantic detections along
the depth information for extracting the 3D point cloud data
required for extracting the planar surfaces from the detected
semantic objects.

b: AERIAL ROBOTIC SETUP
In this experimental setup, we use the same Intel RealSense
camera except that, we use the odometry obtained from
Snapdragon VIO4 sensor setup. We use the Snapdragon VIO
as it is optimized for working on board the aerial robots,
hence can achieve high speed flights without the problem of
complete divergence of the VIO algorithm.

2) RESULTS
In this section, we present the results obtained using the
different system setups as explained in the previous section
in several challenging indoor scenarios in order to validate
the accuracy of our proposed approach. Table. 1 presents the
average runtime of each component of the algorithm on board
an Nvidia TX2 computer and Table. 3 presents the ATE with
respect to the ground truth data obtained during the execution
of field experiments described in Sect. V-B2c, Sect. V-B2d
and Sect. V-B2e respectively.

TABLE 1. Average frequencies in hz of each component of the proposed
algorithm on board an Nvidia TX2.

TABLE 2. Absolute Trajectory Error (ATE) m of the compared algorithms
for the TUM dataset.

a: LONG HALL EXPERIMENT
We performed several experiments in an indoor environment
consisting of a long passageway of approximately 22 m in
length and 6m inwidth. The experiments are performed using

4https://github.com/ATLFlight/ros-examples
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FIGURE 6. The results obtained of the field experiments. where (a) and (b) represent the 3D and the 2D plot for the long hall
experiment. (c) and (d) demonstrate te 3D and the 2D plot for the long corridor experiment. (e) and (f) are the 3D and 2D plots
obtained for the repetitive trajectory with several semantic objects experiment. (g) and (h) are the 3D and 2D plots obtained
for the experiment of random trajectory with several semantic experiment. (j) and (k) demonstrate the 3D and 2D plots for the
experiment on board the aerial robot.

TABLE 3. Absolute Trajectory Error (ATE) m obtained during the field tests.

the on board aerial robotic setup explained in Sect. V-B1. Due
to the restrictions of flying in the area, the aerial robotic setup
is moved in a hand held fashion. During this experiment,
a total of 5 rounds are performed, covering an approximate
total trajectory length of 250 m. The idea of this experiment
is to test the robustness of the algorithm in presence of long
trajectories and compare the results with VIO estimates of the
robot. Since no ground truth measurements are present during
this experiment, the 5 rounds are performed in a repetitive
pattern, in order to demonstrate the drift accumulated by the
VIO after each round and the accurate drift free pose estimate

provided by our approach. We present the accuracy of the
algorithm through the 3Dmap of the environment constructed
using the estimated pose estimated by our algorithm.

Planar surfaces extracted from the recycle bins, whichwere
commonly present in the environment, are used as semantic
objects. A total of only 15 of these randomly placed semantic
objects are used for mapping and improving the drift of the
VIO. Fig. 6 shows the 3D and the 2D plots obtained when
performing the experiments and Fig. 7a shows the 3D point
cloud map generated during this experiment along with the
detections of the recycle bins at distinct time intervals.

b: LONG CORRIDOR EXPERIMENT
The aim of this experiment is to validate the robustness of
our algorithm in presence of large errors in estimations of
the VIO/VO algorithms as well as in presence of large clutter
of semantic objects. The experiment is performed in a long
corridor of length 14 m and width 20 m, with challenging

VOLUME 8, 2020 60713



H. Bavle et al.: VPS-SLAM: Visual Planar Semantic SLAM for Aerial Robotic Systems

FIGURE 7. The generated 3D map of the environments along with the detections of the semantic objects during the execution of the
field experiments.

illumination conditions adversely effecting the performance
of the VIO algorithm. This experiment is performed using the
hand held camera setup as explained in Sect. V-B1. The envi-
ronment consists of a clutter of several semantic objects in the
form of chairs and tables. Only the planar surfaces of chairs
are used for the semantic mapping, as the horizontal planes of
the tables do not fit entirely into the bounding boxes, which
cause errors in its relative position estimation. A total of three
repetitive trajectory loops are performed around the corridor,
covering an approximate total trajectory length of 204 m.
Fig. 6c and Fig. 6d present the 3D and the 2D plots obtained
during this experiment, comparing the pose estimated using
our approach and the VIO pose estimate. In order to demon-
strate the accuracy of our algorithm in absence of ground
truth data, we present the 3D map of the corridor (Fig. 7b),

generated using the 3D pose estimated by our approach, also
showing the trajectories estimated by our approach and the
VIO, along with the detections at distinct time instances.

c: REPETITIVE TRAJECTORY WITH SEVERAL SEMANTIC
OBJECTS
In order to validate the approach in presence of several seman-
tic objects of different shapes and sizes, and in presence of
ground truth information, we perform an experiment with
the hand held camera setup explained in Sect. V-B1. Several
semantic objects such as chairs, tv-monitors, keyboards and
books are used, placing them in random positions. A total
of 4 rounds are performed in a repetitive manner during
this experiment with a total approximate trajectory length of
69 m. Fig. 6 shows the 2D and the 3D plots obtained in this
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experiment, comparing the results of output of the algorithm
with the ROVIO, ORB-SLAM2 and ground truth data. Our
proposed approach has an ATE of 0.225 m, whereas ATE of
the VIO algorithm used is 0.312 m. The ORB-SLAM2 algo-
rithm has an ATE of 0.267 m.

d: RANDOM TRAJECTORY WITH SEVERAL SEMANTIC
OBJECTS
The aim of this experiment is to test the robustness of the
proposed approach in presence of random translational as
well as rotational motions of the camera with a random clutter
of several semantic objects. The experiment is performed
using the hand held camera setup explained in Sect. V-B1.
The semantic objects present are chairs, tv-monitors, books
and keyboards. The clutter of the semantic objects induces
errors in the detections of the yolo detector as seen in Fig. 7d.
Fig. 6g and Fig. 6h show the 3D and the 2D plots obtained
during the execution of this experiment. The results obtained
from our approach are compared with the ROVIO, and the
ORB-SLAM2.Our approach has anATE of 0.393m,whereas
the ATE’s of ROVIO and ORB-SLAM2 are 0.550 m and
0.317 m respectively.

e: ON-BOARD AERIAL ROBOT
In order to test the robustness of the algorithm in presence of
high speed motions of an aerial robot, we run it on board an
aerial robot flying at maximum speeds of 2 m/s. The on board
aerial robotic setup explained in Sect. V-B1 is used with the
aerial robot flown manually, performing a squared trajectory
with several loops. The semantic objects used in this scenario
are the blue colored recycle bins. A total of only 6 recycle bins
are used, which proved sufficient along with the VIO data in
order to correctly estimate the trajectory of the aerial robot.
During the take-off phase of the aerial robot, due to its sudden
motion, it can induce huge drift in the z-axis estimate of the
VIO pose which cannot be corrected as no semantic landmark
is mapped during this initial time instant. In order to compen-
sate for this initial drift, we introduce the approximate loca-
tion of the first landmark, which is optimized during the opti-
mization process along with the other semantic landmarks
and the robot poses. Fig. 6 represents the 3D and 2D plots
obtained during this experiment. During this experiment,
our proposed approach has a ATE of 0.280 m and the VIO
algorithm used has an ATE of 0.651 m. ORB-SLAM2 losses
feature tracking during this experiment due to high speed
motions as well as insufficient features in the environment.

VI. DISCUSSIONS
A. STANDARD DATASETS
Sect. V-A1 presents the evaluations for the RGBD TUM
dataset and Table. 2 compares the results obtained using
our proposed algorithm with the VO algorithm as well as
other state of the art techniques. It can be observed from
Freiburg3 Long Office Household (Fig. 4a and Fig. 4b)
and Freiburg2 desk (Fig. 4g and Fig. 4h) experiments that,

the front end VO algorithm using the low level features, accu-
mulates errors as the camera navigates around the environ-
ment and our method combing the VO and a sparsemap of the
semantic landmarks is able ot correct this accumulated error
(see Table. 2). In the Freiburg2 XYZ (Fig. 4c and Fig. 4d) and
Freiburg2 RPY (Fig. 4e and Fig. 4f) experiments, even though
our method provides better results than the VO algorithm,
the pose estimate is improved only by a short margin. This is
due to the fact that, in these experiments the camera performs
very short trajectories hence the VO has less drift.

As it can be seen from Fig. 5, even with errors in the pre-
dicted bounding boxes around the detected semantic objects,
our algorithm is able to estimate the camera pose (see Fig. 4),
accurately extracting, mapping and associating the planar
surfaces of the detected objects. The effect of the noise of the
detections is minimized in the data associations due to the fact
that the extracted planar surfaces are only considered valid if
their area is beyond a certain threshold, which is this case
was set to 15 cm2. Hence the extracted planar surfaces from
the incomplete bounding boxes around the semantic objects,
or due to incomplete semantic objects present in the image
during certain time instances, are rejected as their computed
area is smaller than the threshold.

It can be observed from the Table. 2, that in these sequences
ORB-SLAM2 outperforms in most of them, this is partially
due to the fact that ORB-SLAM2 compensates offline the
scale bias in the depth maps for some of the sequences. As our
framework is intended to work online it uses RTAB-map
odometry as the VO and although in the presence of errors
in the VO estimates as well as the detections, achieves better
results as compared to the object based SLAM techniques
i.e MaskFusion and Fusion++ and comparable results to
the state of the art geometric SLAM techniques based on low
level features of the environment.

B. FIELD EXPERIMENTS
Sect. V-B presents the system setup and the results obtained
from the experiments performed using the our own field tests.
We discuss the obtained results during all these performed
experiments below:

1) LONG HALL EXPERIMENT
Fig. 6 compares the results of our algorithm obtained dur-
ing this experiment with the VIO algorithm. During this
experiment the aerial robotic setup repeated the same
5 rounds around the long hallway. As seen from the 3D plot
Fig. 6a and the 2D plot Fig. 6b the VIO estimates accumulate
an error of over 3 m in the z-axis and x-axis, along with
errors in the orientation. Whereas our proposed approach
which uses these noisy estimates from the VIO, along with
the planar surfaces of the recycle bins is able to correctly
estimate the pose of the robot without any significant drift.
It can also be appreciated from this experiment that even
with presence of huge errors in the pose estimates of the
VIO, our algorithm requires very few semantic features to
accurately estimate the pose of the robot. In order to check the
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accuracy of the pose estimate of the robot, Fig. 7a presents
the 3D map of the environment constructed using the pose
estimated from our algorithm. Visually, it can be observed
that using the pose estimated by our approach, the long hall is
accurately constructed. ORB-SLAM2 was also tested on this
experiment, but since ORB-SLAM2 uses the front RealSense
camera, it looses tracking when moving close to the walls,
as the walls are featureless, whereas since our method can uti-
lize odometry information generated from different sources,
it is not limited to only the odometry generated from the front
camera and can work successfully in such scenarios.

2) LONG CORRIDOR EXPERIMENT
Fig. 6 presents the execution of the proposed long corri-
dor experiment. This proposed experiment is performed in
very challenging indoor scenario, which consists of changing
illumination conditions affecting to a great extend the pose
estimate of the VIO algorithm. This changing illumination
can be observed from Fig. 7b, where the detection images
numbered 3 and 4, present very low illumination as compared
to the detection images numbered 1 and 2. This low illumina-
tion conditions, effect the accuracy of the pose estimated by
the VIO algorithm, accumulating large errors in its x and y
positions and a huge error of around 6 m in its z direction
(see VIO pose estimate in Fig. 6c).

Due to the clutter of semantic objects (chairs), the yolo
object detector, also estimates several inaccurate bounding
boxes around the detected objects (see Fig. 7b). In our
approach this noise in the detections, does not adversely
effect the relative pose estimation of the semantic objects,
due to several safety checks performed before adding it as
a semantic landmark, including the planar surface threshold-
ing, which in this experiment is empirically set to 10 cm2.
Using these high noise VIO pose estimates and the semantic
detections in the corridor, as seen from Fig. 6 our approach
clearly is able to correct the drift present in the VIO esti-
mations, performing accurate loop closures, even in such
challenging indoor environment. We also evaluate the per-
formance of ORB-SLAM2 during this experiment. As seen
from the detection images (Fig. 7b), the environment con-
sists of several featureless white colored walls, because of
which the ORB-SLAM2 which only uses low-level feature
information looses its tracking when passing close to the
surfaces. Whereas, since our proposed framework can easily
integrate bothVOorVIO algorithms, we choose the estimates
from the ROVIO algorithm, which accumulates large drift but
does not loose feature tracking due to the additional inertial
information.

3) REPETITIVE TRAJECTORY WITH SEVERAL SEMANTIC
OBJECTS
Fig. 6 presents the experiment performed using several
semantic objects with different shapes and sizes such as
chairs, tv-monitors, keyboards and books. Even with seman-
tic objects like chairs, which have different complex 3D
structure, the algorithm is able to accurately estimate the 3D

position of such semantic objects andmap them, hence is able
to estimate a drift free trajectory of the robot, when comparing
it with the VIO pose estimates and the ground truth pose.
As seen in Fig. 7c the yolo detector estimates the bounding
boxes around the object with errors.Many times the bounding
boxes do not completely fit the object or overfit the object.
Due to these detection errors, the estimated 3D pose of the
semantic object using a median of the 3D points inside the
bounding boxes can deviate from the true position. Since we
extract the planar surface information from these semantic
objects and allow only for planar surfaces above a certain area
which in this experiment is set to 15 cm2, we can accurately
map and localize using the semantic landmarks, irrespective
of the errors in the detections.

We also compare the results obtained from our experiments
with the with ORB-SLAM2 based on only geometric fea-
tures. Since in this experiment, the camera is tilted towards
the ground around 25◦ and since the floor contains several
repetitive patterns, the ORB-SLAM2 degrades in tracking
performance having a higher ATE of 0.267 m as compared
to our approach which has an ATE of 0.226 m.

4) RANDOM TRAJECTORY WITH SEVERAL SEMANTIC
OBJECTS
Fig. 6 demonstrates the experiment performed in a random
trajectory fashion with a clutter of semantic objects. Due to
insufficient lighting conditions and several rotational as well
as translation motions of the camera, during this experiment
the trajectory estimated by the ROVIO algorithm degrades in
its performance and accumulates huge drifts in its estimations
(see Fig 6g and Fig. 6h). It can also be observed from Fig. 7d
during this experiment the detections received from the yolo
detector have significant errors, for example due to the clutter
of the semantic objects several erroneous bounding boxes are
estimated around a chair. Planar extraction is not effected
to a great extent even with these detection errors as the
planar surfaces are extracted only if they satisfy the 3D points
threshold and the planar area threshold which is this case is
0.15 cm2. Thus, even with the huge drift present in the VIO
estimations as well as errors in the detections, our approach
is able to correct the estimated trajectory of the camera to
the ground truth trajectory, with the ATE estimated by our
algorithm being 0.393 m, whereas as the ATE of ROVIO
accumulating large drift in its estimates, being 0.550 m.

The ATE of the trajectory estimated by the ORB-SLAM2
during this experiment is 0.317 m. The ORB-SLAM2 also
degrades in its performance during this experiment, but does
not diverge as much as the ROVIO. During this experiment
the odometry estimated by the ROVIO diverges as much as
1.5 m from the ground truth trajectory, which is corrected to
a great extent by our algorithm using the semantic landmarks
(see Fig. 6h). But as the front end of our algorithm does
depend on the estimated VIO trajectory, these huge errors in
the VIO estimates results in the performance of our algorithm
in this experiment, being a bit inferior when comparing it with
the ORB-SLAM2.
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5) ON-BOARD AERIAL ROBOT
Fig. 6 represents the plots for the experiment performed on
board the aerial robot. The robot performs several loops flying
at a maximum speeds of 2m/s. Due to high motions of the
aerial robot, the VIO accumulates large drift in its position
as well as orientation. Whereas our approach, as can be seen
from 3D and 2D plots (Fig. 6i and Fig. 6j respectively), even
with such high speeds of the aerial robot and using only a
total of 6 recycle bins does not diverge from the ground truth
pose of the robot. This experiment proves that our proposed
approach is able to correct the position as well as orientation
error present in the VIO algorithm using few semantic fea-
tures and at high speed motions of the aerial robot.

The indoor environment during this experiment consists
of a monochromatic white colored surface with few geomet-
ric features and the aerial robot also performs high speed
angular and translational motions. Due to these reasons, the
ORB-SLAM2 looses the feature tracking and is unable to
estimate the pose of the robot. Since our framework loosely
couples the VIO estimates, it can integrate several VIO algo-
rithms in a loosely coupled fashion, using the VIO algorithms
best suited for the particular application. The Snap VIO being
optimized to run on board an aerial robot is hence used, which
degrades in its performance along with time but does not
loose featuring tracking.

VII. CONCLUSION
In this paper we present a fast, robust and lightweight visual
semantic slam algorithm using commonly available planar
surfaces as high-level semantic information. It is capable
of running on board the aerial robot in order to estimate
its drift free trajectory. We test the algorithm with a stan-
dard dataset available in the literature, showing that the
algorithm is able to provide better results compared to the
state of the art VO/VIO algorithms and object based SLAM
techniques as well as comparable results to the geometric
SLAM techniques. We also perform several experiments in
different challenging indoor scenarios, with hand-held cam-
era setup as well as with an on board aerial robotic setup,
demonstrating the capability of the algorithm to work in
these challenging indoor environments as well as on board
aerial robots flying at velocities of 2 m/s. As the framework
loosely couples VO/VIO estimates and the semantic mapping
approach, we are able to integrate and test our algorithm with
several state of the art VO and VIO approaches, selecting
the best performing algorithm in a given scenario. Video5

demonstrates the working of the algorithm in the proposed
field tests and the source code6 of the algorithm is publicly
available in order for the scientific community to take advan-
tage of the presented work and improve it for adding further
enhancements.

5https://vimeo.com/368217703
6https://bitbucket.org/hridaybavle/semantic_slam.git
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