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ABSTRACT Influential nodes identification in complex networks is vital for understanding and controlling
the propagation process in complex networks. Some existing centrality measures ignore the impacts of
neighbor node. It is well-known that degree is a famous centralitymeasure for influential nodes identification,
and the contributions of neighbors also should be taken into consideration. Furthermore, topological
connections among neighbors will affect nodes’ spreading ability, that is, the denser the connections among
neighbors, the greater the chance of infection. In this paper, we propose a novel centrality, called DCC,
to identify influential nodes by comprehensively considering degree and clustering coefficient as well as
neighbors. The weights of degree and clustering coefficient are calculated by entropy technology. To verify
the feasibility and effectiveness of DCC, the comparisons between DCC and other centrality measures in
four aspects are conducted based on four real networks. The experimental results demonstrate that DCC is
more effective in identifying influential nodes.

INDEX TERMS Complex networks, influential nodes, degree centrality, neighbor node, clustering coeffi-
cient.

I. INTRODUCTION
In recent years, a wide range of real-world complex systems,
such as social network [1], [2], power grids [3]–[5], computer
system [6], [7] and traffic system [8], [9], can be described
by complex networks. Although complex systems bring us
great convenience, the related hazards will also occur, such
as the high speed and large scale of WannaCry’s spread,
the outbreak of infectious diseases, and the North American
blackout. These hazards usually start with a small number
of nodes and can quickly spread to all the network [10].
Therefore, influential nodes identification is of great interest
for the robustness and stability of networks. For example,
the spread of information can be accelerated or prevented
with the help of prominent individuals [11]–[13]. Critical
nodes in infectious disease network are identified to control
and diagnose disease [14]–[16]. Key nodes in power grids
can be identified to prevent power outages [17], [18].

The research of influential nodes identification has
received increasing attention, and many classical
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centrality measures have been proposed. For example, degree
centrality [19], betweenness centrality [20], closeness [21],
eigenvector centrality [22] and K-shell decomposition [23]
have been widely used for influential nodes identification.
The existing centrality measures can be divided into three
categories: local centrality measures, semi-local centrality
measures and global centrality measures [24]. Local cen-
trality measures, such as degree centrality and clustering
coefficient, only make use of the nearest neighbors’ infor-
mation and ignore the global information, resulting in low
accuracy, but they are suitable for large-scale networks due
to low time complexity. On the contrary, global centrality
measures, such as betweenness centrality, closeness centrality
and eigenvector centrality, determine the spreading ability of
nodes based on the information of the entire network and
thus exhibit higher accuracy, but they are not suitable for
large-scale networks. Local and global centrality measures
have their advantages and limitations as wementioned above.
Semi-local centrality measures, which are taken as a trade-
off between local and global centrality measures, have been
developed in recent years, they have high accuracy and
low time complexity with considering more information of
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neighbors. Nowadays, some researchers have proposed to
combine different kinds ofmeasures. Lü et al. [25] considered
global and local information to detect influential nodes, and
proposed M-centrality combining K-core decomposition and
degree variation at a local level. What is more, there are some
methods combining different attributes to identify influential
nodes, such as evidential method [26], the Vlsekriterijumska
Optimizacija I Kompromisno Resenje (VIKOR)method [27],
the Technology for Order Preference by Similarity to an Ideal
Solution (TOPSIS) method [28], etc. Gao et al. [29] pointed
out that multi-attribute methods can make a further enhanced
identification. However, some methods consider the contri-
butions of different attributes equally important, which is not
scientific and unreasonable. In addition, in the field of search
engine, there are also some well-known centrality measures.
PageRank [30] was developed to rank the importance of
web-pages via link structure. LeaderRank [31] was a sim-
ple variant of PageRank and introduced a so-called ground
node connected with every other node by a bidirectional
edge.

In this paper, a novel centrality (abbreviated as DCC)
belonging to semi-local centrality measures is proposed to
identify influential nodes in complex networks. As indicated
in [32], local characteristics including degree and cluster-
ing coefficient play important roles in identifying influential
nodes, but the method in [32] (denoted as NP) does not con-
sider neighbor information comprehensively. In our method,
we take degree and clustering coefficient into consideration
as well as neighbor information. We consider not only the
degree of the target node but also the degree of its neigh-
bors. Besides, clustering coefficient reflects the density of
connections between neighbors and the target node, and it is
an important index to reflect the spreading ability of node.
We consider two aspects of clustering coefficient: clustering
coefficient of the target node and second-level neighbors. It is
well known that a node’s clustering coefficient has negative
effect on the spreading ability (the greater the clustering
coefficient, the less influential the node), while clustering
coefficient of second-level neighbors has positive effects on
the spreading ability (the greater the clustering coefficient
of second-level neighbors, the more influential the node).
In fact, a node with a high degree, high neighbors’ degree,
low clustering coefficient and dense second-level neighbors
can be identified as a structural hole. To verify the feasibility
and efficiency of DCC, Susceptible–Infected (SI) model [33]
is adopted to simulate the spreading process on four real
networks. Some classical centrality measures (degree central-
ity, closeness centrality, betweenness centrality, eigenvector
centrality, K-shell, local centrality and NP) are used for com-
parison. The experimental results indicate the superiority of
DCC.

The rest of the paper is organized as follows. We review
the related work in section II. In section III, the proposed
centrality measure is discussed. Experiments based on four
real networks are conducted in section IV. And we draw a
conclusion in Section V.

II. RELATED WORK
Centrality measures can be divided into three categories,
and we review some classical centrality measures of each
category in this part. Given an undirected and unweighted
network G(V ,E,A) with |V | = n nodes and |E| = m edges.
A =

{
aij
}
is the adjacency matrix, aij has two values, which

is 1 (node i and node j are connected) and 0 (node i and node
j are disconnected).

Degree centrality is the most important and famous cen-
trality belonging to local centrality measures. It only uses the
information of the nearest neighbors and has low accuracy.
Degree centrality [19] of node i is defined as

CD(i) =
∑n

i=1
aij (1)

Betweenness centrality [20] and closeness centrality [21]
are the most essential centrality measures belonging to
global centrality measures, they need the information of the
entire network and are not suitable for large-scale networks.
Betweenness reflects nodes’ ability to control the information
traveling along the shortest path in the network, which is
denoted as

CB(i) =
∑
s,t 6=i

gst (i)
gst

(2)

where gst (i) represents the number of shortest paths between
node s and node t passing through node i, and gst is the
number of all possible shortest paths.

Closeness centrality, which determines the spreading abil-
ity of nodes by the average spreading time of information,
is defined as

CC (i) =
1∑

j∈V/i
dij

(3)

where dij is the shortest distance between node i and node j.
The K-shell decomposition [23] proposed by Kitsak is also

a global centralitymeasure. The outer nodes are stripped layer
by layer, and the inner nodes have high influence. Specifi-
cally, this method begins with removing all the nodes with
degree 1 from the graph, and the removing process continues
until there is no node with degree 1, then the removed nodes
are assigned with ks = 1. A similar process is followed for
nodes with degree 2. Finally, all the nodes in the graph will
be assigned a ks value. It can be regarded as a coarse-grained
ranking method based on nodes’ degree. It is easy to execute
and can be applied to large-scale networks. However, it results
in a poor performance in distinguishing nodes’ centrality
value.

The well-known semi-local centrality measure called local
centrality (LC) [34] considers both the nearest and the next
nearest neighbors. It is defined as

Q(j) =
∑
w∈0j

N (w) (4)

CL(i) =
∑
j∈0i

Q(j) (5)
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FIGURE 1. The example networks. (a) Node i and node j have the same
degree (CD(i ) = CD(j ) = 6) but different clustering coefficient (Ci = 0,
Cj = 0.2667). (b) Degree and clustering coefficient of node 1 and node
8 are the same (CD (1) = CD (8) = 6, C1 = C8 = 0.1333), but the sum of
the second-level neighbors’ clustering coefficient is different (2.6667 for
node 1, 8 for node 8), the spreading ability of node 8 (3.86) is stronger
than that of node 1 (3.80). The spreading ability of nodes is determined at
the spreading probability (0.1 in (a) and 0.04 in (b)) by performing
1000 Monte Carlo simulations of the SI model per seed node.

where 0i represents the set of the nearest neighbors of node i
and N (w) denotes the total number of the nearest and the
next nearest neighbors of node w. LC has its limitations and
ignores the topological connections among the neighbors.
To solve this issue, the local structural centrality (LSC) [35]
considering clustering coefficient was proposed. The LSC is
defined as

CLS (i) =
∑
j∈0i

λN (j)+ (1− λ)
∑
w∈02

j

Cw

 (6)

where Cw denotes clustering coefficient of node w, and
λ ∈ [0, 1] is the adjustment parameter. But the value of
λ in LSC is artificially given, which will lead to different
identification results. Clustering coefficient [36] is denoted as

Ci =
2ei

CD(i)(CD(i)− 1)
(7)

where ei represents the number of connected edges between
all adjacent nodes of node i.

III. THE PROPOSED CENTRALITY
The main purpose of our work is to propose a semi-local
centrality measure, which considers not only degree of the
target node and the neighbors, but also clustering coefficient
of the target node and the second-level neighbors.

Degree and clustering coefficient are two essential cen-
trality measures for influential nodes identification. At the
same time, the effects of neighbors on the target node should
also be considered. Here, we illustrate the problem according
to some examples. Sometimes, nodes may have the same
degree but different clustering coefficient. For example, in
FIGURE 1(a), degree of node i and node j is 6, but
their clustering coefficient is 0 and 0.2667, respectively.
In Susceptible–Infected (SI) model, the spreading ability of
node i and node j is 3.75 and 4.52, respectively. Cluster-
ing coefficient has a negative impact on node’s spreading
ability [37]. In addition, clustering coefficient of the second-
level neighbors plays an important role in identifying influ-
ential nodes. Sometimes, nodes may have the same degree
and clustering coefficient, but the sum of the second-level
neighbors’ clustering coefficient is different. For example,
we compare the spreading ability of node 1 with node 8 in
FIGURE 1(b), they have the same degree (CD (1) = CD(8)
= 6) and the same clustering coefficient (C1 = C8 =

0.1333), nonetheless node 8 has stronger spreading ability
than node 1 since node 8 has higher value of the sum of
the second-level neighbors’ clustering coefficient (2.6667 for
node 1, 8 for node 8). The spreading ability of node 1 and
node 8 estimated by the SI model is 3.80 and 3.86, respec-
tively, and we can find that clustering coefficient of the
second-level neighbors has a positive impact on nodes’
spreading ability. It can be seen from the topological connec-
tions that node 8 is a key connector among the dense areas
and expected to be a structural hole. We consider not only
the degree of target node and neighbors, but also clustering
coefficient of target node and the second-level neighbors,
a novel centrality measure (DCC) is defined as

DCC(i) = αID(i)+ βIC (i), α + β = 1 (8)

where ID(i) = CD(i) +
∑
j∈0i

CD(j) represents the effect of

degree and neighbors’ degree of node i, IC (i) = e−Ci
∑
j∈02

i

Cj

denotes the effect of clustering coefficient and second-level
neighbors’ clustering coefficient of node i, α and β represents
the weight of ID(i) and IC (i), respectively.
Furthermore, we need to determine the values of α and β.

Some multi-attribute decision-making methods assign equal
weights (α = β) to attributes, this will lead to the rank-
ing results being affected by human factors, which is not
scientific and unreasonable. There are many methods to
compute the weights, such as Analytic Hierarchy Process
(AHP) method, Delphi method, principle element analysis
and entropy technology [38]–[40]. Here, we choose entropy
technology to calculate the weights of ID(i) and IC (i) for its
excellent performance [41]. The process of entropy technol-
ogy is represented as follows.

First, we establish a decision matrix D according to the
values of ID(i) and IC (i) of all nodes in the network.

D = d(i, j)2×n =
[
ID(1) ID(2) · · · ID(n)
IC (1) IC (2) · · · IC (n)

]
(9)
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FIGURE 2. The frequency of nodes with the same ranking value in four datasets. (a) Karate club network. (b) Jazz musicians network.
(c) USAir97 network. (d) Email network.

Next, we need to normalize the decisionmatrixD and build
the standard matrix R.

R =
[
r11 r12 · · · r1n
r21 r22 · · · r2n

]
, rij = dij

/√√√√ n∑
j=1

(
dij
)2 (10)

Then, we calculate the entropy of the ith attribute as fol-
lows.

Ei = −
1
ln n

n∑
j=1

rij ln rij, i = 1, 2; j = 1, 2, . . . , n (11)

Finally, we can obtain the weight of the ith attribute.

wi =
1− Ei

2−
∑2

i=1 Ei
, i = 1, 2 (12)

To gain a better understanding of the calculation process of
DCC, we take FIGURE 1(b) as an example to show how to

identify influential nodes. For node 1,

ID(1) = CD(1)+
∑
j∈01

CD(j) = 6

+ (2+ 3+ 2+ 2+ 4+ 4) = 23,

IC (1) = e−C1
∑
j∈01

Cj = e−C1

× (C2 + C3 + C4 + C15 + C17 + C18

+C19 + C20 + C21 + C22) = 2.3338.

And we can obtain the values of ID(i) and IC (i) of all nodes
in the same way. Then we can establish the decision matrix.

D =
[

23 11 · · · 9
2.3338 0.6622 · · · 0.7848

]
.

Next, the standard matrix is built as follows.

R =
[
0.3739 0.1788 · · · 0.1463
0.2035 0.0577 · · · 0.0684

]
.
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TABLE 1. The basic statistics of four real networks. These statistics
include the number of nodes (N), the number of edges (E), the average
degree (< k >), clustering coefficient (C) and average shortest
distance (< d >).

TABLE 2. The comparison of TRF using different centrality measures.

And we calculate the entropy of the first attribute (ID(i)).

E1 = −
1

ln 28

28∑
j=1

r1j ln r1j= 2.4011.

Then, we can obtain the weight of the first attribute.

α =
1− E1

2−(E1 + E2)
= 0.6742.

Finally, the novel centrality value of node 1 is obtained.

DCC(1) = αID(1)+ βIC (1) = 16.2677.

We can calculate the values of all the nodes in the same
way and rank the spreading ability of nodes.

The proposed method is made up with four parts: degree,
neighbors’ degree, clustering coefficient, and second-level
neighbors’ clustering coefficient. The time complexities for
calculating degree and neighbors’ degree of all nodes are
O(n). The time complexity for calculating clustering coeffi-
cient of each node is O(〈k〉), where 〈k〉 is the average degree
of a graph, and calculating second-level neighbors’ clustering
coefficient of each node has time complexity O(〈k〉2). In addi-
tion, the calculation of entropy method has a complexity of
O(2n). Therefore, the time complexity for DCC is O(n〈k〉2).

IV. EXPERIMENTAL ANALYSIS
A. DATASETS
We choose four real networks with varying sizes as the
datasets to conduct experiments.

(1) Karate club [42]. Zachary karate club is a classical
dataset in social networks, which reflects the social relation-
ship among 34 members of the karate club in a university in
the United States.

(2) Jazz musicians [43]. It is also a classical dataset in
social networks. Each node represents a jazz musician and
each edge denotes the cooperation between two musicians.

(3) USAir97. It is a North American transportation net-
work consisting of 332 nodes and 2126 edges. Each node

TABLE 3. The top-5 nodes using different centrality measures in Karate
club network.

TABLE 4. The top-5 nodes using different centrality measures in Jazz
musicians network.

TABLE 5. The top-5 nodes using different centrality measures in
USAir97 network.

TABLE 6. The top-5 nodes using different centrality measures in Email
network.

and edge represent airport and route between airports,
respectively. This dataset is available at http://vlado.fmf.uni-
lj.si/pub/networks/pajek/data/gphs.htm.

(4) Email [44]. It is an email network of the University
at Rovira i Virgili, each node represents a user and an edge
indicates that two users have email exchange.

The basic statistics of four real datasets are presented
in TABLE 1.

B. ANALYSIS AND RESULTS
In order to assess the performance of DCC, four experiments
are conducted based on the four datasets. DC (Degree central-
ity), CC (Closeness centrality), BC (Betweenness centrality),
EC (Eigencentrality), Ks (K-shell centrality), LC (Local cen-
trality) and NP (the centrality proposed in [32]) are applied
to the same datasets for comparison. In addition, SI model is
adopted to simulate the spreading ability.

1) CAPABILITY OF DIFFERENT CENTRALITIES MEASURES TO
DISTINGUISH NODES’ SPREADING ABILITY
We rank the spreading ability of nodes according to their
centrality values in each network using different centrality
measures. When ranking the spreading ability of nodes in a
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FIGURE 3. Comparison of spreading ability of top-1 nodes ranked by different centrality measures. The maximum time step is set
as t = 50 and the simulation runs 1000 Monte Carlo. (a) Karate club network. (b) Jazz musicians network. (c) USAir97 network.
(d) Email network.

network, it usually occurs that some nodes have the same cen-
trality value and thus cannot be distinguished. For a centrality
measure, high frequency of nodes with the same centrality
value indicates that the centrality measure has poor perfor-
mance. Therefore, the frequency of nodes with the same
centrality value can be adopted as an indicator to evaluate
the performance of a centrality measure. In this part, the fre-
quency of nodes with the same centrality value using different
centrality measures is compared in FIGURE 2. Obviously,
in the four networks, the frequency of DC and Ks is higher
than that of other centrality measures, which means that there
are much more nodes with the same centrality value obtained
by DC and Ks than other centrality measures, that is, DC
and Ks have the worst capability of distinguishing nodes’
spreading ability. Comparatively, almost in all cases, DCC,
EC, LC and NP own the least nodes with the same centrality

value, therefore, these measures can better detect the differ-
ences between nodes and they have stronger capability of
distinguishing nodes’ spreading ability.

Moreover, we define a parameter to conduct a further com-
parison between the classical centrality measures and DCC.

TRF(Total Repetition Frequency) =
ns
n

(13)

where ns denotes the total number of nodes with the same
centrality value. The minimum value TRF = 0 represents
that all nodes are assigned different centrality values, while
the maximum value TRF = 1 indicates that all nodes have
the same centrality value.

Obviously, a smaller TRF value indicates a better perfor-
mance of a centrality measure. The TRF values using differ-
ent centrality measures are shown in TABLE 2. In the four
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FIGURE 4. Comparison of average spreading ability of top-L nodes ranked by different centrality measures. The maximum time step
is set as t = 50 and the simulation runs 1000 Monte Carlo. (a) Karate club network. (b) Jazz musicians network. (c) USAir97 network.
(d) Email network.

networks, the TRF value of EC is the smallest, while the TRF
values of DC andKs are almost the greatest. DCC, LC andNP
have similar performance because the TRF values of them are
almost the same. Specifically, DCC owns smaller TRF value
than LC and NP in Jazz musicians, which indicates that DCC
distinguishes nodes’ spreading ability more effectively.

2) CAPABILITY OF DIFFERENT CENTRALITIES MEASURES TO
DISTINGUISH NODES’ SPREADING ABILITY
We can obtain the ranking results using different centrality
measures in four networks, and the top-5 nodes of each
measure in four networks are presented in TABLE 3-6.

The spreading ability of the top-1 node simulated by the
SI model is compared. Nodes in SI model has two states,
one is susceptible state, and the other is infected state. Nodes
in susceptible state will be infected by nodes in infected
state with a certain probability and will never be recovered.

The top-1 nodes obtained by different centrality measures are
chosen as source nodes, and the number of infected nodes will
reach nt after t (t = 1, 2, . . .) time step. Then the spreading
ability of top-1 nodes can be denoted as I (t) = nt/n. The
maximum time step is set as t = 50 and the comparison
results with 1000 Monte Carlo simulations are presented
in FIGURE 3.

We define a symbol ‘‘�’’ which denotes ‘‘more influential
than’’. As shown in FIGURE 3, the number of infected nodes
increases with time step and finally reaches a stable value.
In Karate club network, we can find that node 1 � node
34 slightly, which is consistent with DCC, CC, BC and LC,
but contrary to DC, EC, Ks and NP. As for Jazz musicians
network, the same situation exists that node 136 � node
60 slightly, DC, CC, BC and NP identify node 136 as the
most influential node, which perform slightly better than EC,
Ks, LC and DCC. In USAir97 network, the top-1 nodes with
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FIGURE 5. The Kendall’s tau τ between different centrality measures and the ranking list ε generated by the SI model at t = 10.
(a) Karate club network. (b) Jazz musicians network. (c) USAir97 network. (d) Email network.

eight centrality measures are all the same, therefore, we com-
pare the second influential nodes. We can see that node
261 � node 8, which is contrary to BC. In Email network,
it is clear that node 105 � node 333 � node 578 � node 299,
which proves that DCC, DC, EC and LC perform better than
others. Especially for NP, it performs the worst in identifying
the most influential node. In a word, DCC is more accurate
than the other centrality measures in identifying the most
influential nodes.

3) COMPARISON OF AVERAGE SPREADING ABILITY OF
TOP-L NODES
In the previous section, we approved the superiority of DCC
in identifying the most influential node. In this part, we focus
on the spreading ability of a group of nodes. A node i is
chosen from the top-L list as a source node, and the number of
infected nodes will reach nit after t (t = 1, 2, . . .) time step.
The average spreading ability of top-L nodes can be denoted
as I (t) = (

∑L
i=1 nit

/
L)
/
n. Here, we set L = n × 10% to

pay attention to the centrality measures’ ability to identify a
group of influential nodes. In the same way, the maximum
time step is set as t = 50 and the simulation runs 1000 Monte
Carlo. We show the comparison results in FIGURE 4.

According to the FIGURE 4, in Karate club network,
the average spreading abilities of DC, BC, EC, LC, NP and
DCC are similar because the top-4 nodes of them are all the
same, the average spreading ability of CC is worse than the
mentioned six measures, while Ks has the worst performance.
In Jazz musicians network, DCC and LC have similar perfor-
mances, which are slightly better than that of other central-
ity measures, BC and Ks have the worst average spreading
abilities. In USAir97 network, DCC performs slightly better
than others, and BC has the worst average spreading ability.
As for Email network, DCC shows similar performance with
LC, while they slightly outperform all the other centrality
measures. It is clear that DCC has a marginally better per-
formance than the other centrality measures in all the four
networks.
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4) EVALUATION OF CORRELATION BETWEEN THE SIX
CENTRALITY MEASURES AND THE ACTUAL SPREADING
SITUATION
The Kendall’s tau [45] is adopted as a correlation coefficient
between the six centrality measures and the actual spreading
situation. The ranking list ε at t = 10 simulated by the SI
model is considered as the actual spreading situation, and ε is
compared with the ranking lists using the six centrality mea-
sures. Suppose X and Y are the ranking lists of two centrality
measures, a pair of distinct nodes i and j is concordant if
((Xi > Xj) and (Yi > Yj)) or ((Xi < Xj) and (Yi < Yj)). If
((Xi > Xj) and (Yi < Yj)) or ((Xi < Xj) and (Yi > Yj)),
the pair is discordant. The Kendall’s tau τ is defined as

τ =
nc − nd

0.5× n× (n− 1)
(14)

where nc and nd are the number of concordant pairs and
discordant pairs, respectively. Obviously, better performance
of centrality measure has higher τ value.
We compare the τ value of the correlation between the

eight centrality measures and ε with the increase of spread-
ing probability. As shown in FIGURE 5, all the centrality
measures are positively correlated with ε. In Karate club
network, the τ value of DCC is greater than that of EC and
LC when spreading probability is less than 0.05, as spreading
probability increases, DCC shows a worse performance than
EC and LC. In Jazz musicians network, DCC outperforms
others when spreading probability is small, while DC shows
better performance with the increase of spreading probabil-
ity. In USAir97 network, DCC has similar correlation with
EC, and they perform better than other centrality measures.
As for Email network, DCC performs better than others
almost across the entire range of spreading probability. Over-
all speaking, in these four datasets, BC has the weakest
correlationwith ε, DCC owning the strongest correlationwith
ε is closer to the actual spreading situation than others.

V. CONCLUSION
The identification of influential nodes in complex networks is
an essential and open issue, which is of great significance to
the robustness and stability of networks. There is increasing
attention on this issue using newmeasureswith local informa-
tion. In this paper, a novel centrality, called DCC, considering
the semi-local information is proposed for influential nodes
identification. DCC comprehensively considers four aspects
including degree, neighbors’ degree, clustering coefficient
and second-level neighbors’ clustering coefficient. It is well-
known that degree and neighbors’ degree are positively cor-
related with spreading ability, that is, the higher the degree
and neighbors’ degree, the stronger the spreading ability.
However, clustering coefficient is negatively correlated with
spreading ability. Here, we focus on clustering coefficient
of the second-level neighbors, the larger value of the sum
of the second-level neighbors’ clustering coefficient means
that the second-level neighbors of the target node are in a
denser part in the network. Therefore, a node has a high

degree, high neighbors’ degree, low clustering coefficient and
high second-level neighbors’ clustering coefficient, it is iden-
tified as a structural hole. Furthermore, we divide these four
aspects into two parts: degree effect and clustering coefficient
effect. The entropy technology is adopted to assign weights
to the two parts objectively, and we obtain comprehensive
and reasonable ranking results. We conduct four experiments
to verify the feasibility and efficiency of DCC based on
four real datasets, and seven centrality measures are used
for comparison. The experimental results demonstrate that
DCC performs better. DCC is an effective complement to
influential nodes identification with semi-local information.
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