
Received March 2, 2020, accepted March 19, 2020, date of publication March 24, 2020, date of current version April 9, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2983080

Boosted Metaheuristic Algorithms for QoE-Aware
Server Selection in Multiplayer Cloud Gaming
HOSSEIN EBRAHIMI DINAKI 1, (Member, IEEE),
SHERVIN SHIRMOHAMMADI 1, (Fellow, IEEE),
AND MAHMOUD REZA HASHEMI 2, (Senior Member, IEEE)
1School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada
2School of Electrical and Computer Engineering, University of Tehran, Tehran 1439957131, Iran

Corresponding author: Hossein Ebrahimi Dinaki (hebra056@uottawa.ca)

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) Strategic Project under Grant
STPGP 506890.

ABSTRACT Cloud Gaming (CG) provides a high performance and cost-effective solution where players
with low-end devices can play high-end games without the need for advanced hardware. A cloud-based
video game system offloads all the computational tasks to the cloud. Considering the dynamic nature of
game workloads and resource capacity, resource management is still a significant challenge. Since CG
is a real-time gaming service, graphics processing units (GPUs) are necessary to accelerate game scene
rendering. GPUs are one of the most expensive resources in a CG platform. Therefore, service providers
have a strong incentive to utilize GPUs efficiently to maximize their economic profit. In addition, players’
quality of game experience (QoE) is a crucial parameter that can directly affect a service provider’s profit and
must be taken into account in any resource scheduling optimization. To satisfy both parties, in this paper we
propose two efficient methods for GPU based server selection in CG. The proposed methods are an improved
version of two well-known metaheuristic algorithms called Particle Swarm Optimization (PSO) and Genetic
Algorithm (GA), which we refer to as Boosted-PSO and Boosted-GA, respectively. The proposed methods
consider service providers’ profits and players’ experience simultaneously. Our objective is to maximize
GPU utilization, which will not only lead to the service provider’s economic benefit, but also increase the
player’s QoE. Our simulation results show that compared to the existing methods to solve such an NP-Hard
optimization problem, our Boosted-PSO method, followed by Boosted-GA, achieves the highest efficiency
in terms of GPU utilization, capacity wastage, and player’s QoE.

INDEX TERMS Cloud gaming, server selection, GPU utilization, genetic algorithm, particle swarm
optimization, quality of experience, cloud resource allocation.

I. INTRODUCTION
According to Newzoo’s report, there were 2.5 billion active
gamers worldwide in 2019, with an expected global games
market of $152.1 Billions [1]. Remarkable advancements in
cloud computing provide inexpensive and flexible opportuni-
ties for game service providers to deploy their games in the
cloud, known as Cloud Gaming (CG). In the CG model, a.k.a
Game as a Service (GaaS), or gaming on demand compu-
tationally intensive tasks such as the game engine, graphics
rendering, encoding the game scenes is performed on remote
servers in the cloud, and the game video is streamed to the
player’s end device [2]. The cloud servers have higher pro-
cessing power and memory compared to the players’ device,
and the only requirement on the client-side is a broadband

The associate editor coordinating the review of this manuscript and

approving it for publication was Xujie Li .

internet connection and ability to play video, not the need
for high-end hardware. These features are attractive for game
providers and have encouraged even big stakeholders such
as Google, Amazon, Verizon, Apple, and Electronic Arts
to develop their own video game streaming services [3].
CG’s global market in 2017was $802million and is estimated
to reach $6.944 billion by 2026 [4]. Onlive, G-cluster, and
Gaikai were few of the pioneer companies of GaaS. Sony
acquired Gaikai in 2012 and an essential part of Onlive
in 2015 when the later discontinued its services. Currently,
Sony’s game video streaming service, PlayStation Now,
is powered by technology from Gaikai. Another company,
Broadmedia GC Corp., has been operating its own version
of CG using its G-cluster technology since July 2016 [5]–[8].
Most recently, Google announced its ownCG service, Google
Stadia [9], with much fanfare. To summarize, several CG
service providers are available in the market e.g. PlayStation

60468 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-5113-9828
https://orcid.org/0000-0002-3973-4445
https://orcid.org/0000-0002-3518-9195
https://orcid.org/0000-0001-5486-5702

H. E. Dinaki et al.: Boosted Metaheuristic Algorithms for QoE-Aware Server Selection in Multiplayer CG

Now [10], Parsec [11], VORTEX [12], GeForce Now [13],
Playkey.net [14] Google Stadia [9].

In CG, players operating on heterogeneous devices; e.g.,
PC, laptop, tablet, game consoles, desktops, set-top boxes,
and smartphones, send their commands to the cloud game
server which runs the game engine and makes the appro-
priate decision to produce the corresponding video frames
rendered using a GPU and encoded by a video codec.
Afterwards, the compressed frames are streamed to players
through the network, and finally decoded and played on user’s
devices [15]. The tasks that need to be performed on the
server-side require a well-organized resource management
system to satisfy both the service provider’s and end-user’s
requirements [16]. This management system would be more
challenging for Multiplayer CG (MCG) cases.

The real-time and interactive nature of MCG makes
response delay a very sensitive factor in the end-user’s quality
of experience, and thereby many works have been done to
address this challenge [17]–[19]. Response delay consists of
network delay, processing delay, and playout delay. Usually,
the playout delay is assumed to be negligible and does not
have a significant impact on player’s game experience [20].
To reduce the network delay, normally a large number of
games are supplied by service providers and replicated in
multiple instances at different datacenters in the cloud, which
are geographically distributed. Processing delay depends on
the available processing power in the cloud server. Processing
power, in turn, is determined by server resources such as
CPU, GPU, memory, and storage, and the workload of the
game sessions that run on the cloud server.

Furthermore, the server selection strategies would be more
complicated, considering that there is heterogeneous com-
putation power of the resources in cloud servers. Further-
more, CG has higher delay sensitivity compared to the other
platforms, such as online games [16]. Since each game,
depending on its genre and pace, has different resource
requirements, assigning the cloud servers to game players in
this distributed network is one of the remaining challenges of
CG platforms [21].

Since in CG systems, the game’s video updates must be
streamed to the player’s devices, the spatial and temporal
quality of the video is a very important parameter to satisfy
player’s perceived video quality [2]. The better the spatial
quality, the higher the resource requirement, e.g., bandwidth
and processing power. Many works have been done to deliver
high-quality video to players while minimizing resource
usage. For example, authors in [22] proposed a method con-
sidering the visual attention and object priority, and achieved
a noticeable bitrate reduction while keeping good enough
player’s game experience. To improve the accuracy of the
predicted attention maps, the effect of game state was con-
sidered in [23]. Authors in [24] conducted a test procedure
to evaluate game performance for Samsung mobile phones.
Regarding their evaluations, video smoothness (i.e., Frame
rate and its stability) and graphic quality are essential factors
for performance benchmarking apart from phones’ battery,

temperature, and swiftness. Also, frame rate contribution on
the QoE and performance depends on the user type (e.g., pas-
sive or active), technology type (e.g., TV, VR . . .), task type,
etc. [25]. Although spatial quality is an important parameter
for player’s QoE in CG, in comparison with the other media,
the frame rate has a crucial impact on game player’s perfor-
mance [26]. Therefore, game players are always looking for
higher frame rates, and rates of up to 120 fps are now being
demanded, depending on the game type. Game developers are
trying to address this demand; for example, Battlefield 4 and
Counter-Strike run at 120 fps with supporting hardware [27].
This demands more resources such as GPU in CG systems
and makes the resource management problem more critical
than before.

In terms of hardware resources, GPU’s necessity is a fun-
damental difference between CG and other applications oper-
ating on cloud datacenters. GPUs play the leading role for fast
video rendering in CG as a real-time service, therefore using
GPU-equipped cloud servers in this platform is an essential
requirement. Also, GPU is the most expensive infrastructure
that CG providers should pay for [21]. Therefore, its max-
imum utilization is vitally important from their profitability
perspective. However, utilization should be efficient to satisfy
more players as well, as they are the primary source of
revenue for the CG provider [21]. Consequently, GPU is a
critical parameter for server selection in the CG platform.

There are two main strategies for server selection, depend-
ing on the type of datacenter: public or private. In public dat-
acenters, such as Amazon EC2, Microsoft, and IBM, tenants
such as CG providers pay for the reserved resources, and there
is no interest in false requests there. Therefore, the resource
management methods emphasize the utilization property
rather than fairness consideration. For example, if 100 servers
can handle 400 requests, the case of 200 requests using
50 servers is rational in this type of cloud. However, for a big
enterprise that owns a private datacenter where the users share
the resources and will not pay for them, focus on fairness
is much more important than utilization, and the trade-off
between these two can be taken into account [28]. In our
work, our emphasis is on utilization rather than fairness.

In our previous work, we proposed a method that optimally
assigns cloud servers to the game sessions requested by game
players [29]. The method assesses the requested game and
its required video quality in terms of frame rate and the
load of the frames while considering the capacity of the
eligible datacenters to allocate an appropriate cloud server
to the player for the requested game session. We modeled the
problem of server selection as an optimization problem focus-
ing on maximizing both the GPU utilization and players’
QoE. Our objective was the maximization of GPU utilization,
which leads to the service provider’s economic benefit, while
increasing the player’s QoE. To determine the priority of the
two objectives, an end-to-end lag model weights them adap-
tively [29]. Then we proposed two efficient methods based on
two metaheuristic algorithms, namely: Particle Swarm Opti-
mization (PSO) and Genetic Algorithm (GA). They worked

VOLUME 8, 2020 60469

H. E. Dinaki et al.: Boosted Metaheuristic Algorithms for QoE-Aware Server Selection in Multiplayer CG

well in terms of maximizing GPU utilization or minimizing
capacity wastage and also improving the QoE.

However, the utilization percentage for small number
of players in [29] is not sufficient enough and needs
to be improved. For example, the results show almost
20 and 40 percent capacity wastage, for 20 players’ case
in PSO and GA-based methods respectively, however for
100 players’ case, these wastages are half of these percent-
ages. This problem shows that in some cases, a premature
convergence takes place, and the algorithm is stuck in a
local minimum. To generalize the algorithm and have almost
a consistent efficiency for the different numbers of play-
ers, we should address this issue adequately. Towards this
goal, in this paper, we propose a new sub-algorithm which
replaces the random regeneration part of the previous algo-
rithms. The idea behind this sub-algorithm is that when the
algorithm understands that it is stuck in a local minimum,
it should boost itself to come out from that local point. This
sub-algorithm plays a reinforcement role when themain algo-
rithm approaches towards premature convergence. Besides,
since it is not always in the main algorithm’s chain, its impact
on the total speed of the main algorithms would be negligible.
We refer to these two new algorithms as Boosted-GA and
Boosted-PSO, hereafter.

There are two placement approaches in cloud literature:
static and dynamic [30], [31]. The static approaches place
the users based on their service demands and the constraints
of the problem statement. Dynamic or online approaches,
in addition to placement, monitor or predict the demand and
update the decision, accordingly. What we present in this
study is a static approach, which is a placement at the initial
step that works very well in terms of utilization with respect
to the constraints.

To measure the improvements of the proposed algorithms,
we have compared them with the conventional GA and PSO
algorithms presented in [29], as well as four well-known and
widely-used bin-packing algorithms called Best Fit Algo-
rithm (BFA), First Fit Algorithm (FFA), Next Fit Algorithm
(NFA) and Worst Fit Algorithm (WFA). The results indicate
that our boosted algorithms achieve a remarkable improve-
ment in terms of utilization and capacity wastage, and that
the Boosted-PSO is the best one among them.

The rest of the paper is organized as follows: Section II
describes the relevant background, and related works.
Section III represents our Utilization, Delay and User Expe-
rience models. Section IV describes the problem statement.
The Metaheuristic algorithms are described in section V,
while section VI presents the performance evaluation results.
Finally, in Section VII, we present the conclusions and future
works.

II. BACKGROUND AND RELATED WORKS
A. BACKGROUND
As mentioned above, CG is a flourishing gaming paradigm
that brings noticeable benefits for both game players

and providers. Three main architectures can be considered
for this cloud-based gaming system [32]: Local Rendering
GaaS, Remote Rendering GaaS, and Cognitive Resource
Allocation.

In Local Rendering GaaS, the rendering operation is per-
formed at the client-side by using the display instructions set,
which represent the gaming graphic and is streamed from the
cloud game server. Therefore, client’s devices require pow-
erful enough hardware to perform rendering. Since this sce-
nario avoids video streaming over the network, it reduces the
burden of the network significantly. However, computational
capability and battery-dependency of the client’s portable
devices are the considerable challenges in this scenario.

The second architecture is called Remote Rendering GaaS
(RR-GaaS), in which all of the computational tasks such as
gaming logic, video rendering and capturing, video encoding
and streaming are performed at the remote servers. In other
words, only decoding and displaying the compressed video
bitstream are performed at the client-side. Clearly, offload-
ing all computational complexities to the cloud server-side
enables players to play high-end games with low-end devices.
However, the selected datacenter and server for remote
rendering must satisfy the player’s tolerable delay and its
required processing capacity for the requested game type and
quality.

The third architecture of cloud gaming is Cognitive
Resource Allocation [33]. In this architecture, depending
on the currently available resources in the client and the
network, the game may be operated at the client-side or
in the cloud server. In other words, this system manages
the game’s computational operation based on its cognitive
capabilities. As gaming is a real-time service and the load of
the requested resources is completely stochastic, providing
an adaptive optimization system for this cognitive system is
a considerable challenge in this scenario.

Among the above architectures, as mentioned earlier, the
RR-GaaS is currently available in the market and was imple-
mented by several CG service providers including OnLive,
StreamMyGame, Gaikai, and G-Cluster and is used by the
new owners of these companies. That is why we consider
RR-GaaS in our model in this paper.

Since in this architecture, all complex computations are
transferred to the cloud server, and only the video is streamed
to the client-side, the quality of the transmitted video and
the end-to-end delay are of vital importance for player’s
experience. To attain a tolerable response delay, both network
delay and processing delay should be taken into account.
The distance of the assigned datacenter and the network’s
traffic conditions are the two important parameters to provide
an appropriate network delay (e.g., 80 msec) [34]. Selecting
a desired rendering server (RS) in cloud datacenters, based
on the game’s load and computational capacity of the server,
has a direct effect on processing delay. Also, there is a
close connection among game genre, its required quality,
and the processing complexity, and also the hardware rented
by the service provider in the cloud server [26], [35].

60470 VOLUME 8, 2020

H. E. Dinaki et al.: Boosted Metaheuristic Algorithms for QoE-Aware Server Selection in Multiplayer CG

Consequently, this architecture involves both player’s QoE
and provider’s benefits and profit and in any resource man-
agement system such as server selection, considering both
parties’ concerns is imperative. Furthermore, all these chal-
lenges will be intensified for the MCG case.

Fig.1 shows how, in a CG system, players can be assigned
to the servers. As shown in the depicted framework, the game
server (GS) is the point that manages the connections between
players and the cloud gaming system. Processing the state of
the game, evaluating the resource requirement of the game,
and allocating the resources to players are the main functions
of the GS to arrange a game session between a group of play-
ers. For each received command, the GS evaluates the state
of the game and the required resources of the game scenes
and then assigns the game player to a server in an eligible
datacenter. It is assumed that the eligible datacenter has the
minimum required delay, bandwidth, and processing power
for the assigned game sessions. Therefore, the player can play
the game in the datacenter where the game is rendered in a
GPU equipped RS, and then the game’s high-quality video
for the new scenes are streamed to the player.

FIGURE 1. Server selection in MCG.

B. RELATED WORKS
There are different approaches to the problem of datacenter
or server assignment to players in the literature. Some try to
reduce the expense of the service provider while others prefer
to increase the player’s quality of experience. In this way, they
employ infrastructure, network, and video parameters in their
optimization problem.

The heuristic game hosting server selection method, pre-
sented in [34], tries to place the game according to the end-
user’s voting-based game-placement strategy. In this method,
players vote for a game to be hosted on a server in order
to serve more players for on-demand gaming. This gives a
significant improvement in the number of served end-users
compared to a random game placement. The server selection
method introduced in [36] is looking for the optimal servers
to serve a group of players’ requests where the players are
located in the same geographical region. The objective is to
assign the servers in such a manner as to minimize latency in

data transfer. The authors in [37] formulate a multi-objective
problem for virtual machines’ provisioning in cloud gaming.
The objective of the problem is tominimize inter-player delay
among interactive gamers and electricity expenses while pro-
viding a good-enough response delay to the gamers. They
present a gray wolf-based algorithm that efficiently solves
the problem. The network parameters such as response delay
and inter-player delay are considered as QoE. In all of the
above papers, the servers have been selected only based on
Round-trip delay time (RTT) or inter-player delay, and the
video quality and computational resources’ capacity have not
been taken into account.

The work in [21] focuses on server acquisition between
available datacenters based on the minimum price to support
MCG. They consider four methods, three of them based on
price: 1) Lowest Server Price Assignment, 2) Lowest Band-
width Price Assignment, 3) Lowest Combined Price Assign-
ment, and one based on wastage: Lowest Capacity Wastage
Assignment. The results show that compared to Random
Assignment and Nearest Assignment, considering wastage is
helpful to achieve cost-effectiveness. Authors of [38] formu-
late theMCGProblem by considering the latency between the
client, game server, rendering server, and the datacenter and
then present several heuristics to address the server allocation
problem for MCG. To solve these NP-Hard problems, they
introduce a combination of price and wastage-based assign-
ment algorithms with a greedy hill-climbing approach, called
Lowest-Amortized-Cost, to take into account three parame-
ters: server cost, bandwidth cost, and capacity wastage. Their
experimental results show that for the same session size
(number of players playing the same game), by increasing
the latency threshold, the normalized cost of their proposed
algorithm remains stable. Another work tries to optimize the
inter-players delay between players who are interacting with
each other by using an optimization algorithm that places all
players’ Virtual Machines (VM) and then adjusting the place-
ment [18]. It presents an optimization algorithm to reduce
inter-player delay while keeping normal absolute response
delay perceived by players, leading to a reduction of up to
30% in inter-player delay. Our approach differs from the
above works since their focus is only on delay and bandwidth
as quality of service (QoS) metrics, but not QoE in their
models and evaluations.

A QoE-aware resource allocation framework is presented
in [39] for a mobile cloud gaming system. The proposed
system, referred to as EdgeGame, offloads computationally
intensive tasks into the edge instead of the remote rendering
server. The EdgeGame optimizes users’ QoE in the edge
using a reinforcement learning method. This system reduces
delay and bandwidth costs. However, as they mentioned,
it forces a noticeable investment to the service providers at
the Edges.

An optimization problem for VM placement in Massively
Multi-player Online Gaming was presented in [30]. The goal
is to minimize the cost of the VM placement under delay
constraints. Toward this goal, they map the problem to a

VOLUME 8, 2020 60471

H. E. Dinaki et al.: Boosted Metaheuristic Algorithms for QoE-Aware Server Selection in Multiplayer CG

multi-knapsack problem and propose a heuristic algorithm
called Cost-aware VMs placement algorithm as a solution.
The results show that their proposed method has higher effec-
tiveness in terms of cost-saving, compared to random, Greedy
Allocation Cost and Minimum Allocation Cost placement
algorithms. In the cloud gaming system, the game’s software
should be installed on the distributed servers to avoid slowing
down the loading and disrupting players’ interaction. Authors
in [40] formulate an optimization problem for server provi-
sioning to minimize the software storage cost and the server
running cost. Among the multiple heuristic algorithms which
are employed to solve the problem, their ordered method and
Genetic Algorithm have the best performance in terms of the
minimum service cost and robustness for dynamic changes.
However, both papers did not consider the impact of their
placement on the client’s quality of experience.

Authors in [41] evaluate QoS parameters and compare
them in two different CG systems, namely OnLive and
StreamMyGame (SMG). Based on their measurements,
OnLive’s downlink bandwidth is between 3 and 5 Mbps
while SMG’s is between 9 and 18 Mbps, showing that the
server traffic is system dependent. Based on their results,
game delays are also game-dependent. Then, they show that
Processing delays (PD) of the two systems is related to the
coding technique and hardware acceleration used in the video
encoder. Their evaluation for the effect of computational
power on PD shows that from a lowest-end to a highest-end
CPU, there is merely a 20% improvement, and they con-
cluded that SMG’s longer PD must be due to the nature of
its architecture/implementation.

The work in [42] proposes two VM placement algorithms
to maximize the provider’s total profit while providing just
good enough QoE to players. They propose their algorithms
for public and closed CGs (e.g., Hotels, Internet Café). The
public algorithm sorts the servers according to the network
latency for that player and then iterates among the sorted
servers to support players based on their required resources.
For closed CG, since maximizing the QoE is more important,
their second algorithm sorts the servers based on quality
degradation levels and then iterates through servers and cre-
ates a VM on the first server that can support the player.
The results show that their heuristic algorithm attains very
good results in terms of profits; however, as specified in
their VM evaluation, considering VMs as utilization units
have a noticeable overhead to the physical machine. Finally,
[43] introduces a cost-effective way of dynamic resource
provisioning for CG in Geo-distributed datacenters from the
service provider’s perspective. It reduces the cost of a CG
service by using adaptive ways to select datacenters. It cat-
egorizes the users based on the game genres to meet the
QoE requirements of different game types and cut down at
least 25% of service costs. Their model is cost-effective from
the service provider’s perspective, and they assign a separate
and dedicated server for each player. However, in our model,
depending on the load of the games, each server can be used

for multiple players simultaneously, which is a more realistic
condition.

Furthermore, to satisfy both parties, we align the service
provider’s benefits and the player’s experiences and try to
optimize these objectives. By efficiently utilizing the GPUs
as the most expensive hardware in CG, we are trying to
maximize the service provider’s economic benefit, while the
end user’s experience is taken into account in our quality
model.

III. UTILIZATION, DELAY, AND USER’S EXPERIENCE
MODELS
A. GPU UTILIZATION MODEL
GPUs play the leading role in speeding up the rendering of
the game’s video and reducing the processing delay of the
CG system and consequently have a considerable effect on
end user’s experience. Besides, they are the most expensive
hardware rented by providers [21]. Furthermore, not all of
the servers in datacenters are equipped with a GPU. For these
reasons, management of this resource is highly significant.
Therefore, we consider its utilization as one dimension of
the proposed server selection method. To this end, we formu-
late the GPU utilization model, and the formulation for the
resource which is utilized by one player is as follows:

Uijl =
TikFik
fjl

∀i ∈ P, ∀j ∈ D, ∀l ∈ G (1)

Tik ≤
1
Fik

(2)

where player i is connected to GPU l in datacenter j. The
proposed GPU utilization model is extracted from [44].
fjl is the GPU frequency located in the server l in datacenter j.
Tik is the processing time of one frame in genre k and must
be equal or less than 1

Fik
where Fik is the frame rate of the

game in genre k selected by player i. And, TikFik is the
processing time for doing the task of the requested game by
player i in one second. In other words, this is the workload
of each player corresponding to the selected game and frame
rate. In our problem statement in section IV, we assume that
each datacenter has L RSs, each of which can serve multiple
players. All notations are summarized in Table 2.

B. RESPONSE DELAY MODEL
The response delay is the time between a player command
issued on the players’ device (e.g., move, run, jump, fire,
press a button, etc.) and watching the corresponding result
on the display. High delay sensitivity of the RR-GaaS is a
serious challenge in this architecture [16], [17]. Intuitively,
in server selection, the server with the shortest distance
to the game player should be selected to do the rendering
operation; however, many other challenges may be involved.
For instance, the server may be already assigned to other
players and not have enough resources for a new game,
or the player is playing with another player, so the location
of the other player should be taken into account to minimize

60472 VOLUME 8, 2020

H. E. Dinaki et al.: Boosted Metaheuristic Algorithms for QoE-Aware Server Selection in Multiplayer CG

the inter-player delay, and hence the closest server selection
is not the only criterion anymore.

For theMCG described in Fig.1, we assume that all players
are in the same cloud region; however, they can be assigned
to different datacenters. Due to the reliability of the game
servers, we assume that the system can assign gamers to
the datacenters that pass the minimum required network
delay; e.g., 80 msec. In this case, authors in [45] investigate
the impact of the frame rate produced at the server on the
response delay in the system, and show the synergy between
the server-side tick rate and the client-side frame rate. The
tick rate is the frequency of the game state update in the
server, and the frame rate is the number of frames per second
displayed to the user. To model the delay, we utilize their end-
to-end lag data from the output of the video game simulation
toolkit in [46], which is written in R. We utilized this data
calculated for six different frame rates. Then we formulate
the response delay based on the frame rate. To this end,
we evaluate the regression model for several functions, such
as
√
x, ax2 + bx + c, log(x) where the logistic sigmoidal

function, Y (F) = 1/
(
1− e(−α−β.F)

)
is the best fit function,

by its R-square value of 0.97, and α and β are the model’s
parameters.

RD (F) = Y(F) = 1/
(
1− e(−α−β.F)

)
(3)

The R-square values indicate how close the sigmoidal
function follows the input data. The response delay data and
the corresponding fit curve of the function have been depicted
in Fig. 2. The curve has a sharper slope for lower frame rates
however, if we compare the response delays for 30fps and
120fps, it is around 70 msec. Moreover,if we compare this
value with the 80msec allowable network delay [36], we real-
ize that selection between the frame rate is still valuable and
has a noticeable effect on the response delay.

FIGURE 2. Regression model curve fitting for logistic sigmoid.

In equation (4), we denote the λ coefficient, acquired from
the derivative of the above sigmoidal function Y (F):

λi=

[
dY (F)
dF

]
F=Fik

= |e(−α−β.F)/
(
1− e(−α−β.F)

)2
|
F=Fik

(4)

As we described above, the frame rate has a noticeable
effect on the response delay [45]. Hence, we use frame rate
as the main variable in our problem statement (described in
section IV), and we use λ as a priority factor, representing
how quickly response delay changes with respect to the
increase or decrease of frame rate. More about this will be
shown in section IV.

C. USER’S EXPERIENCE MODEL
As the user’s satisfaction has a direct connection with the
provider’s profit, in any resource management system, end-
users’ QoE should be taken into account. In RR-GaaS,
the game’s video streams to the player’s device. Compared
with regular video streaming, video games require a higher
frame rate. Due to higher interactivity and reactivity in video
games, this feature would be an essential factor that has a
noticeable impact on the performance of players, especially
for fast-paced games. The study of Claypool et al. in [26]
for first-person-shooter games shows that frame rate and
resolution both have an impact on the perceived quality, but
frame rate has a more significant influence on a player’s
performance than resolution. The tests conducted by [47]
also shows the effects of frame rate on quality of experience.
To consider the effect of frame rate, we modeled the QoE as
a function of frame rate variation. Towards this end, inspired
by the measurement study in [47] that represents some objec-
tive QoE metrics as a good approximation for MOS value,
we deploy Structural SIMilarity (SSIM) as an objective qual-
ity of experience metric and formulate our QoEmodel. In this
way, we chose a dataset of nine games from [35]. They
are in three genres: Real-time strategy (RTS), First Person
Shooter (FPS), and Role-Playing Game (RPG). The videos
were prepared in 6 different frame rates: 15, 30, 45, 60, 90,
and 120 frames per second using the ffmpeg open-source
software suite [48]. Then we employed a regression model
for several functions to find the curve fit for the calculated
quality.

The ‘‘four parameters logistic’’ function in (5) is the best
fit function for the above measurements.

Q(Fik) = d +
a− d

1+ (Fikc)
b (5)

where a, b, c, and d, are model parameters. A sample of the
measurement’s results for three video games, Battlefield V
(BFV), Age of Mythology (AoM), and War, which are rep-
resentatives of three genres, are plotted in Fig. 3. The quality
models obtained from this study apply only to the measured
games. The SSIM values for different genres are different, but
the trend of the curve by altering the frame rates is the same,
and the same model-driven method can be applied to other
genres. We report the R-squared values between the fitted
curve and the collected data for the three genres in Table 1.

IV. PROBLEM STATEMENT
An MCG system assigns multiple servers, between the eligi-
ble datacenters, to multiple players. The eligible datacenters

VOLUME 8, 2020 60473

H. E. Dinaki et al.: Boosted Metaheuristic Algorithms for QoE-Aware Server Selection in Multiplayer CG

TABLE 1. R-squared values of different genres.

TABLE 2. Notation table.

are the datacenters that pass the minimum RTT requirement
concerning the game type. As an eligible datacenter is one
that has enough capacity for processing a new game and
due to the necessity of needing enough bandwidth for an
appropriate QoE [49], we assumed that each server in the dat-
acenter has not only the rendering capacity but also sufficient
bandwidth. Each server can serve multiple players, including
sharing a single physical GPU among multiple users [50],
depending on their game’s load. The cloud server that has
the maximum GPU utilization and still has enough capacity,
would be assigned to the new players. The server selection

FIGURE 3. SSIM values versus Frame rate (f/s) for three games
(a) BFV(FPS), (b) AoM (RTS), (c) War (RPG).

problem is a problem from the bin-packing (BP) problem
family, which is NP-hard [51] with no known solution to be
run in polynomial time. Most of the BP based algorithms
are heuristics, and the four popular ones are First Fit Algo-
rithm (FFA), Best Fit Algorithm (BFA), Next Fit Algorithm
(NFA), and Worst Fit Algorithm [52]. The goal in all of these
BP algorithms is how to efficiently utilize the resources such
that to maximize the utilization and, consequently, the service
provider’s profits. For a server selection problem, physical
machines are bins, and the requests for resources, e.g., CPU,
GPU, or storage, should be managed to attain a relevant
packing result.

60474 VOLUME 8, 2020

H. E. Dinaki et al.: Boosted Metaheuristic Algorithms for QoE-Aware Server Selection in Multiplayer CG

To simultaneously optimize both the player’s QoE and the
game provider’s profits, we propose an optimization problem
to maximize both utilization and the player’s experience.
Fig. 1 illustrates the system architecture of MCG. In our
proposed model, which is a group assignment, the players
request the game video frame rates as a range instead of just
one value; i.e., depending on the genre, the client’s machine
will ask for a minimum and a maximum (desired) frame rate.
The proposed algorithms, which are run in the GS, assign
the players to an eligible cloud server by considering the
requested loads and processing power of the servers. Since in
our formulation the profit of the service providers, in terms of
the maximum utilization of the RS and the users’ QoE, are in
the same line, our proposed algorithms try to maximize GPU
utilization and allocate maximum frame rate to the players
subject to satisfying the constraints of the servers. In the
following section, we explain our problem formulation and
our objective function in detail.

A. PROBLEM FORMULATION
We assume that there are N players = {1, 2, . . . ,N },
M eligible datacenters D = {1, 2, . . . , M}, L GPU included
RSs in each datacenter G = {1, 2, . . . ,L}, and F =
{Fmink, . . .Fik, . . .Fmaxk} is a group of frame rates offered
for each genre k . The processing time of each frame is Tik ,
and fjl = fmax is the maximum processing capacity of the
GPU. The frame rate set contains minimum frame rate Fmink
required for the player’s minimum QoE, the maximum frame
rate Fmaxk beyond which the player can no longer perceive
the higher quality, and other frame rates between these two
bounds. The objective function is then formulated based on
the minimum requirements of the game, in terms of the frame
rate, its corresponding processing time, Tik , the maximum
processing capacity of the GPU, fmax , and the maximum
quality that can be perceived by the player.

Normally, in resource allocation systems, the decision-
maker prefers to utilize smaller loads, in our case frame
rate, to achieve maximum utilization. Nevertheless, as we
discussed in sections III-B and III-C, the smaller frame rate
leads to a perceived higher response delay and also lower
user experience. On the other hand, assigning the highest
frame rates would lead to lower servers’ utilization and more
capacity wastage. To avoid these, we employ a weighted sum
approach, where these weights would adaptively control both
objectives of the problem with respect to random variations
of input variables. In this way, since our quality objective
and the response delay model are aligned, we used λ from
eq. (4) in eq. (6) as a priority factor which reflects the rate
of changes of the response delay curve, regarding the frame
rate. This ratio shows how quickly response delay changes
concerning the increase or decrease of frame rate. By using
this variable weight, the decision-maker can dynamically
determine the preference of the corresponding objective.
Regarding the above definitions, our objective function is

as follows:

O(xijl) :

Max(
∑N

i=1

∑M

j=1

∑L

l=1
((1− λi) .

(
Uijl

)r
m̂.l̂

+ λi.Q (Fik))).xijl
Subject to : a) Fmink ≤ Fik ≤ Fmaxk

∀i ∈ {1, 2, . . . ,N } , ∀k ∈ {1, . . . ,K }

b)
∑N

i=1

∑M

j=1
TikFik .xijl ≤ fjl

∀l ∈ {1, 2, . . . ,L}

c) Tik ≤
1
Fik

∀i ∈ {1, 2, . . . ,N } ,

∀k ∈ {1, . . . ,K }

d)
∑M

j=1

∑L

l=1
xijl = 1, ∀i∈{1, 2, . . . ,N }

e) xijl ∈ {0, 1} ∀i ∈ {1, 2, . . . ,N } ,

∀j∈{1, 2, . . . ,M} , ∀l∈{1, 2, . . . ,L}

f) m̂.l̂ =
∑L

l=1
min(

∑N

i=1

∑M

j=1
xijl, 1) (6)

The above objective function has two parts. The first part
is utilization, where Uijl is derived from section III-A and
represents the utilization of the GPU l in the datacenter j
when player i, playing in genre k, is assigned to server l.
Also, m̂.l̂ is the number of the eligible used servers, and
r > 1 is a constant value [53]. The second part is related
to the player’s QoE concerning the assigned frame rate. The
function of the QoE model is derived from section III-C.
The 0 < λi < 1 is a weighted average coefficient which
increases and decreases with the decrease and increase of the
frame rate, respectively. Constraint (a) bounds the acceptable
range of the frame rate for the genre k, which is played by
player i. Constraint (b) determines the maximum allowable
workload for each GPU. The workload of the RS l must be
equal or less than the maximum processing capacity fmax .
Here we assume that all servers are working at their max-
imum frequency. The processing time of a single frame in
genre k must be equal or less than 1

Fik
which is mentioned in

constraint (c). Moreover, constraint (d) recognizes that only
one server l in only one datacenter j can be assigned to each
player i. The xijl , in constraint (e), is a binary value where
one means that the server l in the datacenter j is assigned
to the player i and zero represents no allocation. Finally,
(f) calculates the number of the used GPUs.

V. PROPOSED METAHEURISTIC ALGORITHMS
In this section, we present the two proposed metaheuristic
algorithms based on Particle Swarm Optimization (PSO)
and Genetic Algorithm (GA) and also our proposed
sub-algorithm for boosting of these two methods.

A. PROPOSED PSO MODEL
PSO, a well-known member of evolutionary algorithms’
family, is first presented by Kennedy, Eberhart in 1995 [54].
Social behaviour of a bird in the flock, a fish in a school,

VOLUME 8, 2020 60475

H. E. Dinaki et al.: Boosted Metaheuristic Algorithms for QoE-Aware Server Selection in Multiplayer CG

or an insect in a swarm, constructs the foundation of the
PSO algorithm. In this algorithm, each single candidate
solution in the search space is called a particle. They pro-
vide individuals of the population in the feasible search-
space. The individuals communicate with each other to move
toward the same regions of problem space. To find the best
direction, they adjust their velocity and position iteratively
by using their own knowledge, and the information comes
from the neighbour swarm members. Fig. 4 shows how
an individual updates its position and velocity in a PSO
algorithm. Each particle tries to update its current position
and velocity regarding the distance between its current posi-
tion and its best-found position in the feasible search-space.
The best-found is updated as the better position found by
the particles, and the distance between its current position
and global-best achieved among all particles in the swarm.
PSO has been successfully deployed in many areas, such as
fuzzy system control, function optimization, artificial neural
network training, etc. [55], [56]. Fig. 4 represents the process
in PSO to update the location of the particles.

FIGURE 4. How a particle finds a new direction and position by
comparing the current position (X t

x) with current local best position
(lbest), global best position (gbest), and velocity (V t

x).

Now, we propose the steps of our PSO based model for the
problem presented at section IV-A:
Step 1: Initial Population: Initialize population of the

individual solutions, contains their position, fitness value,
velocity. In our proposed model, each particle represents
a cloud server allocation outline, X = {x111, x112, . . . ,
x1ML , x211, x212, . . . , xijl, . . . , xNML} where N is the number
of players, M is the number of eligible datacenters, and L is
the number of GPU-equipped servers in each datacenter.
In this particle, M × L binary components assign to each
player an identifier code, and each binary number in this
code represents the cloud server that could be assigned to
this player. Since normally we know the number of servers
in each datacenter, this particle codes the datacenters as well.
We deploy the decimal version of the above binary codes
inside the computation of the algorithm, and then we convert
the decimal number to the binary to determine the server
selection results in the last iteration. So, the definition of
an individual particle is: particle = {P1,P2 . . .Pi . . .PN}.
We set the number of particles for our experiments to 25.

Step 2: Evaluate particles’ fitness: Evaluate the fitness of
individual particles with the fitness function.
Fitness Function: In this paper, our fitness value comes

from the objective function (6) and its constraints. This fitness
value demonstrates the utilization of the GPUs, the players’
QoE, and some penalty values to handle the constraints.

To reflect all of the goals of the problem in the fitness func-
tion, we define some violations’ functions from the above
constraints and add them to the objective function as a penalty
function. The defined violation function v1 (x) and v2 (x)
come from constraints 6(b) and 6(d) respectively:

v1 (x) = max (
∑N

i=1

∑M

j=1

TikFik.xijl
f

− 1, 0) (7)

v2 (x) = max (
∑M

j=1

∑L

l=1
xijl − 1, 0) (8)

Therefore, we define the following fitness function with
respect to the objective function (6) and the punishment
functions (7) and (8):

f (x) = O (x)− C1v1 (x)− C2v2 (x) (9)

where C1 and C2 are penalty coefficients and x = xijl.
Step 3: Update Best particles, lbest, Global Particle, gbest:

lbest ti =

{
X ti if f

(
X ti
)
> f (lbest ti)

lbest ti else
(10)

The gbest is replaced by the best lbest among the particles.
Step 4: Update velocity and move each particle to the new

position:

V t+1
i = ωV t

i + c1∗ϕ1∗(lbest ti − X
t
i)

+ c2∗ϕ2∗(gbest ti − X
t
i) (11)

X t+1i . = X ti + V
t+1
i (12)

where ω is an inertial weight that creates a balance between
global exploration and local exploitation for each particle,
and it will be damped in each iteration. c1 and c2 are the
weights, that manage the particle’s tendency towards its
local best location, lbest, or swarm’s best location, gbest.
To determine the weights during the iterations, we employed
the Time-Varying Acceleration Coefficients (TVAC) pre-
sented in [57], which is an efficient technique to speed up
the algorithm. V t

i is the velocity of the particles, and X ti is
the particles’ current position. Also, ϕ1 and ϕ2 are random
numbers between 0 and 1.
Step 5: Stop, if convergence or Termination condition is

satisfied. Otherwise, go to step 6
Termination condition: The algorithm should stop when it

reaches a plateau. The terminating condition of our algorithm
is: after 100 iterations, there is no progress for the best fitness
value in the last 50 iterations, or the algorithm stops at the
400th iteration.
Step 6: If the sub-algorithm’s condition is satisfied, run the

sub-algorithm (described in the next section), otherwise go to
step 2.

60476 VOLUME 8, 2020

H. E. Dinaki et al.: Boosted Metaheuristic Algorithms for QoE-Aware Server Selection in Multiplayer CG

B. PROPOSED SUB-ALGORITHM
In our previous work [29], the proposed algorithms were
successful in terms of the utilization percentage for a higher
number of players; however, they suffered for a small number
of players. The results show almost 20 percent capacity
wastage, for example, for 20 players’ case. To address this
issue and have more consistent results, we proposed a heuris-
tic algorithm that can boost the main metaheuristic algorithm
and achieve a steady result for various conditions. Since the
main reason for this behaviour is a premature convergence
of the proposed algorithms, we developed the regenera-
tion part of the algorithms to avoid trapping in local mini-
mum or maximum. The use of this re-initialization section
can ensure us that no premature convergence takes place;
however, to avoid increasing the complexity of the total
algorithm we consider some conditions to bring this
sub-algorithm in the main process loop only for some
exceptional cases.

In two cases, this sub-algorithm may come to the calcula-
tion chain. Firstly, for the case that the algorithm is repeating
a single positive fitness value in a large number of iterations.
In this case, the algorithm may trap in a local minimum,
and there is no progress in the results. Therefore, to avoid
premature convergence, the sub-algorithm randomly trans-
fers some loads from the server with high capacity wastage
to the servers with low capacity wastage. It would be sim-
ilar to mutation, but the action is more wisely. Secondly,
the main algorithm is repeating a negative fitness value for
a large number of initial iterations. This is the case that
one or some servers are overloaded, and in this case, this
sub-algorithm transfers part of the load of the overloaded
server to the next servers that have enough capacity to handle
this game’s load. By employing this sub-algorithm, most
likely, the main algorithm comes out from the premature con-
vergence conditions. It is worth noting that this sub-algorithm
is just boosting the main algorithm and is not looking for
an optimum solution. The complexity of the sub-algorithm
explained in the section VI-D shows that it does not increase
the total complexity of the main algorithm. Fig. 5 describes
our Boosted-PSO server selection method. The pseudo-code
of the proposed Algorithm is as follows:

Fig. 6 compares the convergence of the PSO based algo-
rithms with and without sub-algorithm for the same dataset.
For the sake of page limitation, we are not showing the itera-
tions of the algorithm. In this figure, for 20 players, the PSO
starts with a good initial fitness value, and the Boosted-PSO
converges to the higher value at the end. To attain this result,
the sub-algorithm was called nine times into the main chain
of the algorithm in iterations, where five of them created
progress: iterations 30, 50, 60, 80, and 90. However, the pre-
vious PSO version does not experience any changes in fitness
value after iteration 105, and it converges to the lower value.
This comparison shows the behavior of the sub-algorithm
for boosting the PSO and avoiding getting stuck in a local
minimum.

Algorithm 1 Pseudo Code for Sub-Algorithm in Boosted-
PSO
N = Number of Individuals (or Particles)
Iter = Current iteration number
Thrsh = Threshold for entering the sub-algorithm
if Iter > Thrsh && fitness.value (Iter) == fitness.value
(Iter - Thrsh) OR Iter > Thrsh /2 && fitness.value < 0
&& fitness.value (Iter) == fitness.value (Iter – Thrsh /2)
for i = 1 to N
â if fitness.value (individual i) <= 0
� for j = 1 to the number of players in individual i
• if assigned server to the player j is overloaded
q Transfer the player j to the next server with

enough capacity to process the game session
of this player.

q Update capacity of the source and destination
servers after moving.

• end if
� end for

â else if fitness.value (individual i) > 0
� for j = 1 to the number of players in individual i
• if the player j assigned to the server with maxi-
mum capacity wastage.
q Transfer the player j to the next servers with

lower capacity wastage and enough capacity
to process the game sessions of this player.

q Update capacity of the source and destination
servers after moving.
� end if
• end for

â end if
Update position of individual i
Update fitness of individual i
Update velocity of individual i
end for
end if

C. PROPOSED GA MODEL
Genetic Algorithm is an evolutionary algorithm that becomes
popular from the 1990s [58]. In this algorithm, the first
individual chromosomes are created randomly as the initial
population or generation. A fitness function that reflects the
objectives and constraints of the problem will be used to
score the chromosomes. The values of the fitness function
of the current chromosomes determine which chromosomes
are more powerful to be used for producing the next gen-
eration. The weak chromosomes will be eliminated, and
the most powerful ones have a higher chance of staying
alive. The flow chart depicted in Fig. 7 describes our pro-
posed Boosted-GA server selection process, which has the
following steps:

VOLUME 8, 2020 60477

H. E. Dinaki et al.: Boosted Metaheuristic Algorithms for QoE-Aware Server Selection in Multiplayer CG

FIGURE 5. Boosted-PSO for server selection.

FIGURE 6. Convergence comparison between PSO and Boosted-PSO.

Step 1. Initial Population: As with all GA models, we set
the algorithm’s parameters, such as choosing population size,
mutation rate, and stopping condition. To produce an ini-
tial population for the GA model, we followed the same
procedure as PSO, in section V-A, for generating the initial
particles. The definition of a chromosome is Chromosome=
{P1,P2 . . .Pi . . .PN}. Each Pi symbolizes a gene, which is
the basic unit of a genetic operator. We set the initial popula-
tion to 50 and generate the first generation of chromosomes
randomly.
Step 2. Fitness Evaluation: The fitness value should be

allocated to each chromosome and considered in each deci-
sion. For the GA algorithm, we use the same fitness function
presented in equation (9).
Step 3. Selection: After the generation of the initial

population, the stronger chromosomes should be selected.
These strong chromosomes will produce the next generation.
We choose these individuals using a roulette selection oper-
ator, developed by Holland [59]. On this selection wheel,

FIGURE 7. Overall Boosted-GA method for server selection.

the size of the segment for each parent is proportional to
its fitness. Obviously, the larger the fitness, i.e., the larger
the segment size, the higher the selection’s chance. During
each successive generation, the roulette selection operator
keeps both the utilization and the player’s QoE for the next
generation by preferentially selecting the best solutions with
randomization. The probability P, for each individual chro-
mosome i, is defined by:

P (Individual i) =
fi∑PopSize

j=1 fi
(13)

where fi equals the fitness of individual i.
Step 4. Reproduction: This step is to produce a

second-generation population of solutions from those
selected through genetic operators: crossover and mutation.
a) Crossover: We adopt the one-point crossover method

where a gene is a basic unit to form the next generation,
and two parents produce two offsprings (i.e., new solutions)
that inherit information from both. Our algorithm randomly
picks the crossover point in the parents’ chromosomes. Then,
it swaps the ends of the parents, from the crossover point
to the end of the chromosome, to generate two new solu-
tions. The percentage of the crossover in our algorithm is set
to 50%.
b) Mutation: This operator is used to alter the value of a

gene in the selected chromosomes randomly. For our case,
changing the value of a gene turns the combination of the
server assignment in the chromosome and produces a new
solution. This new offspring will be added to the new pop-
ulation. The mutation ratio is the parameter that specifies
the number of mutation chromosomes. The percentage of
mutation in our proposed method is set to 50%.

60478 VOLUME 8, 2020

H. E. Dinaki et al.: Boosted Metaheuristic Algorithms for QoE-Aware Server Selection in Multiplayer CG

Step 5. Termination: The algorithm should stop when it
reaches a plateau. The terminating condition of our algorithm
is: after 100 iterations, there is no progress for the best fitness
value in the last 50 iterations, or the algorithm stops at the
400th iteration. If the termination conditions have not been
met, go to step 6.
Step 6. Check sub-algorithm criteria: If sub-algorithm’s

condition is satisfied, run the sub-algorithm, otherwise go to
step 2.

Since the chromosome in GA and the particle in PSO have
the same concept and structure in our problem, the same
sub-algorithm described in section V-B is deployed in our
proposed GA method. The performance of both proposed
methods will be presented in the next section.

D. COMPUTATIONAL COMPLEXITY
For both algorithms, the complexity of computing the initial
population and the fitness for one individual is O(QMS) and
O(MS), respectively. Where Q is the number of populations,
M is the number of players, and S is the total number of
eligible servers. The maximum value of S is N× L. The
sub-algorithm’s complexity is O(QMS). The computation
complexity to produce the particles in the Boosted-PSO is
O(QMS+QMS); therefore, the total complexity is O(QMS).
Since we limit the number of iterations to ‘I’, the maximum
complexity of the Boosted-PSO will be O(IQMS). For GA,
the computational complexity of selecting Q pairs of parents
is O(QlogQ). The complexity of producing a new generation
is O(QMS). Since the complexity of the sub-algorithm is the
same, the maximum complexity of Boosted-GA would be
O(I(QMS + QlogQ)). For an equal number of DCs, RSs,
and players, since our population’s size of the Boosted-PSO
is half of the Boosted-GA, its maximum complexity would
be around half, too. Consequently, our sub-algorithm does
not increase the maximum complexity of the GA and PSO.
However, as the results in the next section show, it causes a
noticeable improvement in the efficiency of the algorithms.

VI. EXPERIMENTS AND RESULTS
In this section, we evaluate the proposed methods at two
levels. Firstly, we compare them with each other and with
the server selection method introduced in [29], using the
same setting and frame rate set as mentioned there, i.e., F1
= {15, 30, 45, 60}. Secondly, we compare them with four
greedy algorithms called First Fit Algorithm (FFA), Best Fit
Algorithm (BFA), Next-Fit Algorithms (NFA), andWorst-Fit
Algorithm (WFA). These are common and efficient solutions
to the bin-packing NP-Hard problems used in Cloud Gaming
and the other similar contexts. For example, WFA was used
by Onlive for game placement [60]. Also, the concept of the
BFA, FFA, and NFA employed in other cloud gaming stud-
ies [21], [38], [40]. In this part of the experiments, we employ
a new frame rate set, i.e., F2 = {30, 45, 60, 90, 120}, which
includes some higher and realistic frame rates for today’s
games. The simulations run on a Quade core Intel Core i7
3.2 GHz workstation with 12 GB of RAM.

A. COMPARISION WITH GA AND PSO
To compare the proposed algorithms with each other and
with [29], we created four groups of datasets with a different
number of players and processing loads. We assumed that
there are 10 eligible datacenters that can satisfy the player’s
maximum tolerable latency, and only 20 servers in each
datacenter are GPU-equipped to be eligible for using as an
RS. To allocate a range of quality to the players regarding
the problem’s constraints presented in IV-A, we consider four
popular used frame rates [61] in this experiment, F= {15, 30,
45, 60}. Besides, a uniform distribution of the processing load
is randomly assigned to the frame rates to satisfy equation (2)
in the utilization model. Also, we assumed that all GPUs are
working at their maximum frequency, which is considered
500,000 cycles per second. The simulation runs for differ-
ent number of players, P = {20, 40, 60, 80, 100}. As our
problem formulation presented in section IV has two compo-
nents, i.e., utilization and end user’s experience, we consider
both parameters to evaluate the efficiency of the algorithms.
We examine the capacity wastage and utilization percentage,
as comparison criteria in terms of GPU utilization, and the
QoE value as a metric of the end user’s experience. The
evaluation’s results are presented in fig 8 to 10.

Fig 8 (a) and (b) show the progress of both Boosted-GA
and Boosted-PSO algorithms respectively, compared to the
methods presented in [29], in terms of utilization percent-
age. From Fig. 8(a), we can see that compared to our

FIGURE 8. Progress in terms of utilization percentage compared with
results achieved in [29] for (a) Boosted-GA and (b) Boosted-PSO methods.

VOLUME 8, 2020 60479

H. E. Dinaki et al.: Boosted Metaheuristic Algorithms for QoE-Aware Server Selection in Multiplayer CG

FIGURE 9. Capacity wastage of the Boosted-PSO and Boosted-GA
algorithms for different number of players.

FIGURE 10. The number of utilized GPUs by the Boosted-PSO and
Boosted-GA algorithms and corresponding QoE values for different
number of players.

previous work, a considerable improvement happened for
the GA-based method; e.g., around 30% improvement in
utilization for 20 players, and more than 10% for 100 players.
Similarly, the progress for the PSO-based method depicted
in Fig. 8(b) is noticeable, especially for the small number
of players. Another significant improvement is the consis-
tency and steadiness of the utilization curve in the proposed
methods versus the number of players, which makes these
algorithms more reliable than our previous approach in [28].

To compare the proposedmethods with each other, we con-
sider two parameters such as capacity wastage and total QoE
in figures 9 and 10 and show how these two parameters vary
for the different number of players. In Fig. 9, we see that the
Boosted-PSO has lower capacity wastage than the Boosted-
GA. This figure shows the higher efficiency of Boosted-PSO
with a 6.85% average capacity wastage compared to 11.09%
for the Boosted-GA method.

Another evaluation has been done based on QoE and the
number of used GPUs that service providers should pay for.
Fig. 10 depicts the achieved QoE values and the number of
usedGPUs after server assignment for the different number of
players. The curves in this figure show that the Boosted-PSO
always allocates a smaller number of servers. Moreover,

the close value of its QoE to the Boosted-GAmethod is shown
in Fig. 10. Also, in some cases, e.g., 60 and 100 players,
the QoE of the Boosted-GA is a little bit greater than PSO but
at the expense of using several extra GPUs. For example, for
100 players, the Boosted-GA’s QoE is higher by 4; however,
it utilizes 8 more GPUs. For other cases, i.e., 20, 40, and 80,
Boosted-PSO has the same or higher QoEwhile using a lower
number of GPUs.

B. COMPARISION WITH FOUR COMMON BIN-PACKING
ALGORITHMS
To evaluate the efficiency of these algorithms in terms of
utilization, we compare themwith four greedy algorithms that
are well-known for solving bin-packing problems, FFA, BFA,
NFA, and WFA. We used the server selection’s data of our
proposed algorithms as inputs of the above greedy processes
and compared their results with our proposed metaheuristic
algorithms. Through these experiments, we can notice if
there is a better assignment which is not considered by our
algorithms and perceive how they are weaker or stronger than
these four popular methods.

Fig. 11 to Fig. 14 compare the results of the Boosted-
GA and Boosted-PSO algorithms with all of these greedy
algorithms. We do these evaluations using the frame rates
employed in [29]. The frame rate bounds in [29] are 15 to 60
fps. The 15 fps is used because it is a comparison baseline in
some other studies, such as [25], [61]. Today, however, 30 fps
to 120 fps is more realistic. Therefore, the frame rate set used
in our experiments in this section is F2= {30,45,60,90,120}.
To pass the constraint (b) of the problem statement for F2,
the maximum frequency of the GPUs is set to 1.2GHz. The
setting of this experiment includes the number of eligible
datacenters and servers is the same as section VI-A.

FIGURE 11. Comparison among Boosted-GA, FFA, BFA, NFA and WFA
methods in terms of the Average GPU Utilization and the number of
utilized GPUs, for different number of players. Using F1 frame set.

Fig. 11, and Fig. 12 are the experimental results for F1,
and Fig. 13 and Fig. 14 represent the evaluations for F2.
Fig. 11 shows that the Boosted-GA method’s efficiency is
comparable to BFA and FFA. However, in most of the cases,

60480 VOLUME 8, 2020

H. E. Dinaki et al.: Boosted Metaheuristic Algorithms for QoE-Aware Server Selection in Multiplayer CG

FIGURE 12. Comparison among Boosted-PSO, FFA, BFA, NFA and WFA
methods for different number of players in terms of the Average GPU
Utilization and the number of utilized GPUs. Using F1 frame set.

FIGURE 13. Comparison among Boosted-GA, FFA, BFA, NFA and WFA
methods in terms of the Average GPU Utilization and the number of
utilized GPUs, for different number of players. Using F2 frame set.

FIGURE 14. Comparison among Boosted-PSO, FFA, BFA, NFA and WFA
methods for different number of players in terms of the Average GPU
Utilization and the number of utilized GPUs. Using F2 frame set.

the Boosted-GA outperforms the BFA and FFA. Regarding
Fig. 13, the Boosted-GA shows better efficiency for the new
frame rate set compared to the greedy algorithms.

The results in Fig. 12 show that BFA is more efficient
than FFA, NFA, and WFA. However, none of them can meet
the Boosted-PSO’s results. Similar behavior presented for
F2 results in Fig.14. For all different number of players,
records of the Boosted-PSO are stronger than the four other
algorithms. In summary, the Boosted-PSO method always
has a higher utilization percentage and a lower number of
utilized GPUs. The NFA and WFA represent the lowest
efficiency in these experiments. By increasing the number
of players, the WFA faces noticeable efficiency degradation,
which is compatible with the experiments’ results conducted
by Claypool et al. in [60]. This algorithm suffers from the
over-provisioning of the resources.

The Boosted-PSO algorithm in MATLAB and on the test
computer, which is mentioned in section VI, takes around
55 seconds to converge for 20 players with 200 servers.
By increasing the number of players, this time will increase
linearly. This processing time is based on the said processing
power, which is remarkably less than a professional cloud
server. Furthermore, the programing language and implemen-
tation techniquesmatter. A study on the speed ofmultiple pro-
gramming languages in [62] shows that MATLAB is between
9 to 11 times slower than C++ for computing. Therefore,
to have a practical sense of the convergence time, these points
should be taken into account.

Overall, with these comparisons, the Boosted-PSOmethod
shows its superiority to our previous methods and all
Boosted-GA, BFA, FFA, NFA, and WFA in terms of Utiliza-
tion and the number of utilized GPUs. Also, it has a minimum
fluctuation and shows a higher level of stability to variations
of the number of players.

VII. CONCLUSION
In CG, finding an appropriate resource allocation method
to satisfy the service provider’s profit and the end user’s
quality of experience simultaneously, is still a challenge.
In this work, we address this challenge by presenting a
server selection method that considers the provider’s and
the client’s concerns together. The presented objective max-
imizes GPU utilization while increasing the player’s experi-
ence. To solve the problem, we proposed two metaheuristic
algorithms, Boosted-PSO and Boosted-GA. The proposed
methods considerably compensate for the lack of efficiency in
our previous work, especially for the low number of players.
We evaluated the boosted algorithms in two aspects, utiliza-
tion and player’s experience. Also, we compared the proposed
algorithms to the GA and PSOmethods presented in [29] and
four popular bin-packing algorithms. The simulation results
showed that our Boosted-PSO method achieves the highest
efficiency among the other methods, including Boosted-GA,
FFA, BFA, NFA, and WFA in terms of GPU utilization,
capacity wastage, and player’s QoE. Also, it has remarkable
stability for the different number of players. In our future
work, we will consider other quality metrics and also the
network parameters to evaluate the problem from the other
aspects and to attain a more comprehensive solution.

VOLUME 8, 2020 60481

H. E. Dinaki et al.: Boosted Metaheuristic Algorithms for QoE-Aware Server Selection in Multiplayer CG

REFERENCES
[1] The Global Games Market Will Generate $152.1 Billion in 2019|Newzoo.

Accessed: Mar. 20, 2020. [Online]. Available: https://newzoo.
com/insights/articles/the-global-games-market-will-generate-152-1-
billion-in-2019-as-the-u-s-overtakes-china-as-the-biggest-market/

[2] M. Semsarzadeh, M. Hemmati, A. Javadtalab, A. Yassine, and S. Shirmo-
hammadi, ‘‘A video encoding speed-up architecture for cloud gaming,’’ in
Proc. IEEE Int. Conf. Multimedia Expo Workshops (ICMEW), Jul. 2014,
pp. 1–6.

[3] Sony Says Cloud Gaming Could be Future Threat to PlayStation
Business—Business Insider. Accessed: Mar. 20, 2020. [Online]. Available:
https://www.businessinsider.com/sony-says-cloud-gaming-future-threat-
to-playstation-business-2019-2

[4] Global Cloud Gaming Market Will Reach USD 6, 944 Million By
2026: Zion Market Research. Accessed: Mar. 20, 2020. [Online].
Available: https://www.globenewswire.com/news-release/2018/12/31/
1679151/0/en/Global-Cloud-Gaming-Market-Will-Reach-USD-6-944-
Million-By-2026-Zion-Market-Research.html

[5] Sony Computer Entertainment to Acquire Gaikai Inc. A Leading
Interactive Cloud Gaming Company SCE To Build A Cloud Ser-
vice Bringing Gaikai’s Cloud Based-Streaming Technologies into Its
Network Business. Accessed: Mar. 20, 2020. [Online]. Available:
https://www.sie.com/en/corporate/release/2012/120702.html

[6] OnLive. Accessed: Mar. 20, 2020. [Online]. Available: http://onlive.com/
[7] PlayStation Now Game-Streaming Service Coming Summer 2014

(Update)—Polygon. Accessed: Mar. 20, 2020. [Online]. Available:
https://www.polygon.com/2014/1/7/5284504/sony-playstation-now-
gaikai-based-streaming-service-ps-ps2-ps3

[8] Company Profile | Broadmedia GCCorporation. Accessed: Mar. 20, 2020.
[Online]. Available: https://www.broadmediagc.co.jp/en/corporation/

[9] Stadia Founder’s Edition—One Place for All the Ways We Play—
Google Store. Accessed: Mar. 20, 2020. [Online]. Available:
https://store.google.com/ca/product/stadia_learn

[10] PlayStation Now—Online Streaming Services on PS4 or PC—
PlayStation. Accessed: Mar. 20, 2020. [Online]. Available:
https://www.playstation.com/en-ca/explore/playstation-now/

[11] Game Streaming—Play Games With Friends|Parsec. Accessed:
Mar. 20, 2020. [Online]. Available: https://parsecgaming.com/

[12] Vortex—Cloud Gaming for Android, PC and macOS. Accessed:
Mar. 20, 2020. [Online]. Available: https://vortex.gg/

[13] Game Anywhere on Your Mac, Windows PC, or SHIELD Device With
NVIDIA’s Cloud Gaming Service. Accessed: Mar. 20, 2020. [Online].
Available: https://www.nvidia.com/en-us/geforce/products/geforce-now/

[14] PLAYKEY|Games Online. Accessed: Mar. 20, 2020. [Online]. Available:
https://welcome.playkey.net/en/lp/eu-quiz-before/

[15] S. Shirmohammadi, M. Abdalla, D. T. Ahmed, K.-T. C. A. K. A. S. Chen,
Y. Lu, and A. Snyatkov, ‘‘Introduction to the special section on visual
computing in the cloud: Cloud gaming and virtualization,’’ IEEE Trans.
Circuits Syst. Video Technol., vol. 25, no. 12, pp. 1955–1959, Dec. 2015.

[16] K.-T. Chen, C.-Y. Huang, and C.-H. Hsu, ‘‘Cloud gaming onward:
Research opportunities and outlook,’’ in Proc. IEEE Int. Conf. Multimedia
Expo Workshops (ICMEW), Jul. 2014, pp. 1–4.

[17] M. Amiri, H. A. Osman, S. Shirmohammadi, and M. Abdallah, ‘‘Toward
delay-efficient game-aware data centers for cloud gaming,’’ ACM Trans.
Multimedia Comput., Commun., Appl., vol. 12, no. 5s, pp. 1–19, Sep. 2016.

[18] Y. Chen, J. Liu, and Y. Cui, ‘‘Inter-player delay optimization in multiplayer
cloud gaming,’’ in Proc. IEEE 9th Int. Conf. Cloud Comput. (CLOUD),
Jun. 2016, pp. 702–709.

[19] M. Amiri, A. Sobhani, H. Al Osman, and S. Shirmohammadi, ‘‘SDN-
enabled game-aware routing for cloud gaming datacenter network,’’ IEEE
Access, vol. 5, pp. 18633–18645, Sep. 2017.

[20] K.-T. Chen, Y.-C. Chang, P.-H. Tseng, C.-Y. Huang, and C.-L. Lei, ‘‘Mea-
suring the latency of cloud gaming systems,’’ in Proc. 19th ACM Int. Conf.
Multimedia (MM), 2011, p. 1269.

[21] Y. Deng, Y. Li, X. Tang, and W. Cai, ‘‘Server allocation for multiplayer
cloud gaming,’’ in Proc. 24th ACM Int. Conf. Multimedia ACM, 2016,
pp. 918–927.

[22] H. Ahmadi, S. Khoshnood, M. R. Hashemi, and S. Shirmohammadi, ‘‘Effi-
cient bitrate reduction using a game attention model in cloud gaming,’’
in Proc. IEEE Int. Symp. Haptic Audio Vis. Environ. Games (HAVE),
Oct. 2013, pp. 103–108.

[23] E. Babaei, M. R. Hashemi, and S. Shirmohammadi, ‘‘A state-based game
attention model for cloud gaming,’’ in Proc. 15th Annu. Workshop Netw.
Syst. Support Games (NetGames), Jun. 2017, pp. 34–36.

[24] H. Dar, J. Kwan, Y. Liu, O. Pantazis, and R. Sharp, ‘‘The game performance
index for mobile phones,’’ 2019, arXiv:1910.13872. [Online]. Available:
http://arxiv.org/abs/1910.13872

[25] R. Ellerweg, ‘‘Make frame rate studies useful for system designers,’’ in
Proc. Int. Conf. Graph. Interact. (ICGI), Nov. 2018, pp. 1–8.

[26] M. Claypool, K. Claypool, and F. Damaa, ‘‘The effects of frame rate
and resolution on users playing first person shooter games,’’ in Proc.
Multimedia Comput. Netw., Jan. 2006, Art. no. 607101.

[27] J. A. Berton and K.-L. Chuang, ‘‘Effects of very high frame rate display in
narrative CGI animation,’’ in Proc. 20th Int. Conf. Inf. Vis. (IV), Jul. 2016,
pp. 395–398.

[28] Y. Gao, Y. Xue, and J. Li, ‘‘Utilization-aware allocation for multi-tenant
datacenters,’’ in Proc. IEEE 33rd Int. Conf. Distrib. Comput. Syst. Work-
shops, Jul. 2013, pp. 82–87.

[29] H. E. Dinaki and S. Shirmohammadi, ‘‘GPU/QoE-aware server selection
using Metaheuristic algorithms in multiplayer cloud gaming,’’ in Proc.
16th Annu. Workshop Netw. Syst. Support Games (NetGames), Jun. 2018,
pp. 1–6.

[30] E. Dhib, K. Boussetta, N. Zangar, and N. Tabbane, ‘‘Cost-aware vir-
tual machines placement problem under constraints over a distributed
cloud infrastructure,’’ in Proc. 6th Int. Conf. Commun. Netw. (ComNet),
Mar. 2017, pp. 1–5.

[31] A. Laghrissi and T. Taleb, ‘‘A survey on the placement of virtual resources
and virtual network functions,’’ IEEE Commun. Surveys Tuts., vol. 21,
no. 2, pp. 1409–1434, 2nd Quart., 2019.

[32] W. Cai, M. Chen, and V. C. M. Leung, ‘‘Toward gaming as a service,’’
IEEE Internet Comput., vol. 18, no. 3, pp. 12–18, May 2014.

[33] X. Nan, X. Guo, Y. Lu, Y. He, L. Guan, S. Li, and B. Guo, ‘‘Delay–
rate–distortion optimization for cloud gaming with hybrid streaming,’’
IEEE Trans. Circuits Syst. Video Technol., vol. 27, no. 12, pp. 2687–2701,
Dec. 2017.

[34] S. Choy, B. Wong, G. Simon, and C. Rosenberg, ‘‘A hybrid edge-cloud
architecture for reducing on-demand gaming latency,’’ Multimedia Syst.,
vol. 20, no. 5, pp. 503–519, Oct. 2014.

[35] M. Claypool, ‘‘Motion and scene complexity for streaming video games,’’
in Proc. 4th Int. Conf. Found. Digit. Game (ACM), 2009, pp. 34–41.

[36] P. B. Beskow, P. Halvorsen, and C. Griwodz, ‘‘Latency reduction in
massively multi-player online games by partial migration of game state,’’
in Proc. 2nd Int. Conf. Internet Technol. Appl., Wales, U.K., 2007,
pp. 153–163.

[37] Y. Gao, L. Wang, and J. Zhou, ‘‘Cost-efficient and quality of experience-
aware provisioning of virtual machines for multiplayer cloud gam-
ing in geographically distributed data centers,’’ IEEE Access, vol. 7,
pp. 142574–142585, Oct. 2019.

[38] Y. Deng, Y. Li, R. Seet, X. Tang, and W. Cai, ‘‘The server allocation
problem for session-based multiplayer cloud gaming,’’ IEEE Trans. Mul-
timedia, vol. 20, no. 5, pp. 1233–1245, May 2018.

[39] X. Zhang, H. Chen, Y. Zhao, Z.Ma, Y. Xu, H. Huang, H. Yin, andD.O.Wu,
‘‘Improving cloud gaming experience through mobile edge computing,’’
IEEE Wireless Commun., vol. 26, no. 4, pp. 178–183, Aug. 2019.

[40] Y. Li, Y. Deng, X. Tang, W. Cai, X. Liu, and G. Wang, ‘‘Cost-efficient
server provisioning for cloud gaming,’’ ACM Trans. Multimedia Comput.,
Commun., Appl., vol. 14, no. 3s, pp. 1–22, Jun. 2018.

[41] K.-T. Chen, Y.-C. Chang, H.-J. Hsu, D.-Y. Chen, C.-Y. Huang, and
C.-H. Hsu, ‘‘On the quality of service of cloud gaming systems,’’ IEEE
Trans. Multimedia, vol. 16, no. 2, pp. 480–495, Feb. 2014.

[42] H.-J. Hong, D.-Y. Chen, C.-Y. Huang, K.-T. Chen, and C.-H. Hsu, ‘‘Placing
virtual machines to optimize cloud gaming experience,’’ IEEE Trans.
Cloud Comput., vol. 3, no. 1, pp. 42–53, Jan. 2015.

[43] H. Tian, D. Wu, J. He, Y. Xu, and M. Chen, ‘‘On achieving cost-effective
adaptive cloud gaming in geo-distributed data centers,’’ IEEE Trans. Cir-
cuits Syst. Video Technol., vol. 25, no. 12, pp. 2064–2077, Dec. 2015.

[44] S. Morishima, M. Okazaki, and H. Matsutani, ‘‘A case for remote GPUs
over 10 GbE network for VR applications,’’ in Proc. 8th Int. Symp. Highly
Efficient Accel. Reconfigurable Technol., 2017, vol. 6.

[45] F. Metzger, A. Rafetseder, and C. Schwartz, ‘‘A comprehensive end-to-end
lag model for online and cloud video gaming,’’ in Proc. 5th ISCA/DEGA
Workshop Perceptual Qual. Syst. (PQS), Aug. 2016, pp. 15–19.

[46] GitHub—Mas-Ude/Onlinegame-Lag-Sim. Accessed: Mar. 20, 2020.
[Online]. Available: https://github.com/mas-ude/onlinegame-lag-sim

[47] T. Zinner, O. Hohlfeld, O. Abboud, and T. Hossfeld, ‘‘Impact of frame
rate and resolution on objective QoE metrics,’’ in Proc. 2nd Int. Workshop
Qual. Multimedia Exp. (QoMEX), Jun. 2010, pp. 29–34.

[48] FFmpeg. Accessed: Mar. 20, 2020. [Online]. Available: http://ffmpeg.org/

60482 VOLUME 8, 2020

H. E. Dinaki et al.: Boosted Metaheuristic Algorithms for QoE-Aware Server Selection in Multiplayer CG

[49] I. Slivar, L. Skorin-Kapov, and M. Suznjevic, ‘‘Cloud gaming qoe models
for deriving video encoding adaptation strategies,’’ in Proc. 7th Int. Conf.
Multimedia Syst. (MMSys), 2016, pp. 185–196.

[50] George Millington. AMD Press Release. New AMD RadeonTM Pro V340
Graphics Card Delivers Accelerated Performance and High User Density
to Power Datacenter Visualization Workloads. Accessed: Aug. 26, 2018.
[Online]. Available: https://www.globenewswire.com/news-release/2018/
08/26/1556638/0/en/New-AMD-Radeon-Pro-V340-Graphics-Card-
Delivers-Accelerated-Performance-and-High-User-Density-to-Power-
Datacenter-Visualization-Workloads.html

[51] M. R. Johnson and D. S. Garey, Computers and Intractability: A Guide to
the Theory of NP-Completeness. San Francisco, CA, USA: Freeman, 1979.

[52] E. G. Cooman, M. R. Garey, and D. S. Johnson, ‘‘Approximation algo-
rithms for bin packing: A survey,’’ in Approximation Algorithms for NP-
hard problems. 1996, pp. 46–93.

[53] E. Falkenauer and A. Delchambre, ‘‘A genetic algorithm for bin packing
and line balancing,’’ in Proc. IEEE Int. Conf. Robot. Autom., May 1992,
pp. 1186–1192.

[54] R. Kennedy and J. Eberhart, ‘‘Particle swarm optimization (PSO),’’ in
Proc. IEEE Int. Conf. Neural Netw., Perth, WA, Australia, Nov. 1995,
pp. 1942–1948.

[55] H. Moayedi, M. Mehrabi, M. Mosallanezhad, A. S. A. Rashid, and
B. Pradhan, ‘‘Modification of landslide susceptibility mapping using opti-
mized PSO-ANN technique,’’ Eng. Comput., vol. 35, no. 3, pp. 967–984,
Jul. 2019.

[56] A. Jaafari, E. K. Zenner, M. Panahi, and H. Shahabi, ‘‘Hybrid artificial
intelligence models based on a neuro-fuzzy system and Metaheuristic
optimization algorithms for spatial prediction of wildfire probability,’’
Agricult. Forest Meteorol., vols. 266–267, pp. 198–207, Mar. 2019.

[57] A. Ratnaweera, S. K. Halgamuge, and H. C. Watson, ‘‘Self-organizing
hierarchical particle swarm optimizer with time-varying acceleration coef-
ficients,’’ IEEE Trans. Evol. Comput., vol. 8, no. 3, pp. 240–255, Jun. 2004.

[58] D. E. Goldberg and J. H. Holland, ‘‘Genetic algorithms and machine
learning,’’ Mach. Learn., vol. 3, nos. 2–3, pp. 95–99, 1988.

[59] J. H. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor,
MI, USA: MI Univ. Michigan Press, 1975.

[60] D. Finkel, M. Claypool, S. Jaffe, T. Nguyen, and B. Stephen, ‘‘Assignment
of games to servers in the OnLive cloud game system,’’ in Proc. Annu.
Workshop Netw. Syst. Support Games, 2014.

[61] R. M. Nasiri, J. Wang, A. Rehman, S. Wang, and Z. Wang, ‘‘Perceptual
quality assessment of high frame rate video,’’ in Proc. IEEE 17th Int.
Workshop Multimedia Signal Process. (MMSP), Oct. 2015, pp. 1–6.

[62] S. B. Aruoba and J. Fernández-Villaverde, ‘‘A comparison of programming
languages in economics,’’ Nat. Bur. Econ. Res., Cambridge, MA, USA,
White Paper w20263, 2014.

HOSSEIN EBRAHIMI DINAKI (Member, IEEE)
is currently pursuing the Ph.D. degree with
the Department of Electrical Engineering and
Computer Science, University of Ottawa, ON,
Canada. His research interests include optimiza-
tion, applied AI, QoE-aware resource manage-
ment, network diagnosis, and cloud gaming.
He has expertise in evolutionary algorithms and
deep artificial neural networks. He is a member of
the ACM. Also, he has professional experience on

frequency and network planning of digital video broadcasting.

SHERVIN SHIRMOHAMMADI (Fellow, IEEE)
received the Ph.D. degree in electrical engineering
from the University of Ottawa, Canada.

He is currently a Professor with the School
of Electrical Engineering and Computer Science,
University of Ottawa. He is also the Director of
the Distributed and Collaborative Virtual Envi-
ronment Research Laboratory, doing research in
applied AI for multimedia systems and networks,
specifically video systems, gaming systems, and

multimedia-assisted healthcare systems. The results of his research, funded
by more than $14 million from public and private sectors, have led to
over 350 publications, three best paper awards, over 70 researchers trained
at the postdoctoral, Ph.D., and master’s levels, holds over 20 patents and
technology transfers to the private sector, and a number of awards. He is a
Fellow of the IEEE for contributions to multimedia systems and network
measurements and a Lifetime Senior Member of the ACM. He was the
winner of the 2019 George S. Glinski Award for Excellence in Research and
the University of Ottawa Gold Medalist. He is also a licensed Professional
Engineer in Ontario. He is the Editor-in-Chief of the IEEE TRANSACTIONS

ON INSTRUMENTATION AND MEASUREMENT, and an Associate Editor of ACM
Transactions on Multimedia Computing, Communications, and Applica-
tions, having been numerously recognized as the Associate Editor of the year
by both of these and other journals.

MAHMOUD REZA HASHEMI (Senior Member,
IEEE) received the B.Sc. and M.Sc. degrees
in electrical engineering from the University of
Tehran, Tehran, Iran, in 1989 and 1993, respec-
tively, and the Ph.D. degree from the University
of Ottawa, ON, Canada, in 2001. He is currently
a tenured Associate Professor with the School
of Electrical and Computer Engineering, Univer-
sity of Tehran. He is also a Co-Founder and the
Director of the Multimedia Processing Laboratory

(MPL), University of Tehran. His research interests include multimedia
systems and networking, security and trust in cloud computing, and cloud
gaming. He has also served as a member of technical committees of the
IEEE International Conference on Multimedia and Expo (ICME), the IEEE
International Symposium on Multimedia, and ACM Multimedia Systems.
He was a recipient of the ICMEQuality Reviewer Awards, in 2011 and 2013.
He is an Associate Editor of the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS

FOR VIDEO TECHNOLOGY.

VOLUME 8, 2020 60483

	INTRODUCTION
	BACKGROUND AND RELATED WORKS
	BACKGROUND
	RELATED WORKS

	UTILIZATION, DELAY, AND USER'S EXPERIENCE MODELS
	GPU UTILIZATION MODEL
	RESPONSE DELAY MODEL
	USER'S EXPERIENCE MODEL

	PROBLEM STATEMENT
	PROBLEM FORMULATION

	PROPOSED METAHEURISTIC ALGORITHMS
	PROPOSED PSO MODEL
	PROPOSED SUB-ALGORITHM
	PROPOSED GA MODEL
	COMPUTATIONAL COMPLEXITY

	EXPERIMENTS AND RESULTS
	COMPARISION WITH GA AND PSO
	COMPARISION WITH FOUR COMMON BIN-PACKING ALGORITHMS

	CONCLUSION
	REFERENCES
	Biographies
	HOSSEIN EBRAHIMI DINAKI
	SHERVIN SHIRMOHAMMADI
	MAHMOUD REZA HASHEMI

