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ABSTRACT In high-tech informative warfare, the combat system-of-systems which become increasingly
functional and complex can be abstracted as heterogeneous combat networks (HCNs). The operational
capability index (OCI) formula is an important model to evaluate the performance of HCNs. To prevent the
error of accepting wrong conclusions when using OCI model, the correctness and accuracy of the model
should be substantiated before making critical decisions. Accordingly, this paper presents an integrated
methodology of framework named operational capability index model validation based on characteristic
topology analysis (OCVCT) for validating and testing the OCI model. In this framework, a concept named
characteristic topology, which conforms to military rules and has the highest operational capability assess-
ment, is put forward to replace the compact model as the validation candidate. To search for characteristic
topology efficiently, we propose an improved genetic algorithm (GA) with the key-gene oriented crossover
operator which considers the prior knowledge of combat networks and takes advantages of both binary
and real encoding methods. A case study proves the effectiveness of OCVCT. Moreover, compared with two
state-of-the-art and one classical GAs, the improved GA has superiority in convergence speed and reliability.
The idea of OCVCT also has a potential application prospect for various evaluation model validations of
combat networks.

INDEX TERMS Operational capability index, model validation, characteristic topology, genetic algorithm,
heterogeneous combat networks, operational chain.

I. INTRODUCTION
As a force multiplier, information has a profound impact on
war [1]. To pursue competitive advantages, the extremely
robust networks are constructed by the modern military
to connect geographically dispersed forces. Consequently,
system-of-systems warfare countermeasures have gradually
replaced platform-centric to be the main operational pat-
terns [2]. Being composed of various types of multifunctional
entities, the combat system-of-systems can be abstracted as
heterogeneous combat networks (HCNs) [3]–[6].

Evaluating the capability of combat networks is of sig-
nificant military value for improving network performance
and for optimizing operational decision making [3], [7].
Recently, the compact mathematical model, to measure the
capability of combat networks, named operational capability
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index (OCI) has been used to investigate the functional
robustness [3], network disintegration [4], equipment contri-
bution [5], equipment portfolio [6] and mission planning [8]
of combat system-of-systems. Being derived strictly from
observe, orient, decide, and act (OODA) cycle theory [9] and
the concept of the operational chain (OC) [3], [4], OCI can
effectively integrate the different behaviors and capabilities
of heterogeneous entities, accurately describe the cooperative
relationship among combat forces in joint operations, and
fully reflect the characteristics and rules of modern war-
fare. Many useful insights for the combat system-of-systems
construction and operational guidance are provided based
on OCI [3]–[6], [8], [10]. It is therefore of significance to
guarantee the accuracy and reliability of OCI model to pre-
vent the error of accepting wrong conclusions before mak-
ing critical decision. Moreover, for military issues, different
missions require different operational capabilities. The OCI
model should be adjusted constantly to give combat network
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a suitable evaluation. Model validation is an effective and
necessary way to judge the correctness and applicability of
OCI model [11], [12].

Unfortunately, no method has been proposed to validate
OCI model so far. Finding a suitable validation method for
a novel model is always a challenging work and requires
creativity [13]. For the compact OCI model, its function is
to evaluate the operational capability of complex combat
networks. Judging whether the model gives the correct and
accurate capability assessment for different combat networks
is the most intuitive and effective way to test the model.
Obtaining reliable and adequate combat networks with
known performance is requisite to realize the above method.
However, collecting these data from actual warfare is imprac-
tical. First, owing to the deep uncertainty of warfare [4], [14],
the information of an observed combat network may contain
some missing or erroneous data since the intelligence col-
lection is always incompleteness. Second, adequate number
of comparable combat networks cannot be obtained because
construction of the combat system-of-systems is tolerably
expensive [15]. Therefore, Li et al. [16], [17] proposed two
combat network generation methods to acquire topology of
combat networks. Nevertheless, since these generation meth-
ods have strong randomness, the generated topologies, lack of
representativeness, have low efficiency for OCI model vali-
dation. If a combat network has the highest capability assess-
ment by one OCI model, the characteristics of the model will
be inevitably existed in this topology. This topology, named
as characteristic topology in this paper, can therefore be a
suitable candidate used for OCI model validation.

Mathematically speaking, finding characteristic topology
from numerous generated topologies can be regarded as a
combinatorial optimization problem belonging to NP Com-
plete. The objective function is OCI model and the optimal
solution is the characteristic topology. Due to complexity
of the problems, the heuristic algorithms are an effective
way to search for the solution [18]. For combat networks,
the vertices represent the combat entities, while the edges
are directional information links. Therefore, the heteroge-
neous combat networks can be regarded as information net-
works. Relying on heuristic algorithm, researchers have done
numerous works on topology optimization of information
networks [19]–[27]. Genetic algorithm (GA) [19], [21]–[24],
ant colony algorithm [20], tabu algorithm [21], [25], greedy
algorithm [25] and simulated annealing algorithm [21], [27]
are all selected and implemented. In these works, GA is used
most frequently. Network topology optimization belongs to
combinatorial optimization problem, and GA is suitable in
solving this kind of problem. The most suitable binary coding
method of genetic algorithm can well represent the adjacent
matrix of network [21]–[24]. Moreover, GA has superior con-
vergence ability and strong flexibility [28], [29]. Therefore,
GA is also the first choice in this paper.

This paper describes a study on OCI model validation
problem to prevent the error of makingwrong decisions based

on the OCImodel evaluation results. The contributions of this
paper can be summarized as follows:

(1) An integrated methodology of framework named oper-
ational capability index model validation based on character-
istic topology analysis (OCVCT) is proposed for validating
and testing the evaluation model. OCVCT provides a novel
validation idea: the compact mathematical model is trans-
formed into characteristic topology, and then the model is
verified by analyzing numerous and meaningful information
of this topology. The idea of OCVCT also has a potential
application prospect for various evaluation model validations
of combat networks.

(2) An improved genetic algorithm is proposed to search
for the characteristic topology. The GA takes advantages of
both binary and real encoding methods to handle the het-
erogeneity of combat networks. The crossover operator is
further enhanced by the prior knowledge of combat networks.
Compared with two state-of-the-art and one classical GAs,
the improved GA has superiority in convergence speed and
reliability.

(3) The feasibility and effectiveness of OCVCT are tested
in a case study, and many useful conclusions are obtained.
The specific methods to improve and revise OCI model are
given. The validation results can assist commanders when
making proper and reasonable decisions.

The remainders of the paper are organized as follows.
Section II introduces the basic concepts and background.
Section III introduces the OCVCT framework. In Section IV,
the improved GA algorithm is described. Section V illus-
trates the effectiveness of OCVCT with a case study.
In section VI, the improved GA is compared with two state-
of-the-art and one classical GAs. Finally, conclusions and
future work are discussed in section VII.

II. BASIC CONCEPTS AND BACKGROUND
A. MODEL VALIDATION
Anything, such as system, concept, or phenomena, can be
abstracted as a model, and researches on model validation
cover a comprehensive range of fields [13]. Generally, valida-
tion techniques can be classified into four categories: formal,
informal, static and dynamic methods [30]. Formal methods
are based upon strict mathematical proof [13], [31]. The
derivation procedures of OCI models can be regarded as a
formal validation procedure. Nevertheless, since every model
has a derivation process, this process cannot prove whether
the model is sufficiently correct. Informal methods [30],
relying on human reasoning, has strong subjectivity. Static
methods focus on the structure, assumptions or other inherent
characteristics of model [12]. Directly judging the credibility
of OCI model from its compact mathematical equation is
unrealistic. Dynamic methods are suitable for a variety of
models owing to their concise and effective validating idea:
executing themodel and then evaluating the execution results.
When applying the dynamic methods, two approaches are
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FIGURE 1. Two approaches to evaluate execution results in the dynamic
validation method.

employed most commonly to evaluate the execution results.
As shown in Fig. 1, the experimental setups represent the
real system, credible models and anything to generate trusted
data. The first and most effective approach is to validate
the model by comparing the output with experimental setup.
For example, Green and Ranga [32] described two types
of tests for emulator and simulation environment, and then
compared output of the two tests. Marušić and Lončar [33]
presented an experimental setup to produce available data
which was contrasted with model results. Zhang et al. [34]
verified the calculated results with the commercially avail-
able simulation data. However, when difficulties exist in
creating experimental setup, validating execution results is
concentrated on analyzing the I/O (input and output) data
based on assumptions and related theories, which is the sec-
ond approach. For example, Hajnoroozi et al. [35] employed
‘‘measurement units’’ to create input data for the simulation
model and then the obtained response data were analyzed to
calibrate the model. Poropudas and Virtanen [36] put forward
an output data analysis approach which converted output data
into games and then estimate games to validate air combat
models. OCI, as an evaluation model and derived from an
abstract concept, cannot find credible experimental setup.
When applying dynamic validation methods, OCI model is
more suitable for the second approach. In addition, since
inputs of OCI model are complex combat network topolo-
gies which contain meaningful information, the emphasis of
analysis should focus on input data.

B. HETEROGENEOUS COMBAT NETWORKS
Since research on heterogeneous combat networks will facil-
itate the combat system-of-systems construction and oper-
ational guidance, many researchers try to construct a more
persuasive HCN. The widely-used models of HCN based on
network science can be divided into two categories: IACM
(information age combat model) [37] and FINC (Force, Intel-
ligence, Networking and C2) [38]. In IACM, the entities are
divided into four categories, namely sensors, decision points,
influencers, and targets. FINC contains three types of entities,

namely force, intelligence and C2 nodes. Except for the
unique entity (i.e., target nodes) in the IACM, the other three
nodes of two models have similar meanings. For example,
both sensors in IACM and intelligence nodes in FINC rep-
resent the combat forces that execute reconnaissance, mon-
itoring, and early warning missions; both decision points in
IACM and C2 nodes in FINC represent the combat forces
that execute commands and control missions; both influ-
encers and force nodes represent entities that execute fire
attacks and electromagnetic interferencemissions. Therefore,
the two models are basically the same in essence, and the
modeling idea of this combat networks is widely accepted and
used [3]–[6], [8], [16], [39]–[42]. In the follow-up researches
of HCN, the main difference is to determine whether there is
a target node or not. Since all entities of the enemy can be
regarded as target nodes, the target nodes are not considered
independently in many researches [3], [4], [39], [40]. Based
on this idea, the target nodes will not be introduced in our
work. Moreover, when applying dynamic validation method
to analyze the input and output data of OCI model, differ-
ent combat networks should be generated and compared.
The edges between sensor, decider and influencer entities
are information links, whereas the edges between influencer
entities and target entities are usually energy flows [5], [6],
[16], [41]. Comparison between energy flows and informa-
tion links is not feasible since the physic properties of them
are generally different. Thus, the HCNs studied in this work
consist of three entities: sensor, decider and influencer.

C. OPERATIONAL CHAIN
The theory of Observation, Orientation, Decision and Action
Cycle is well known to describe the operational process
needed to win a war [43]. In combat networks, sensor
is the executor of Observation; decider undertakes the
tasks of Orientation and Decision; and influencer completes
Action. To represent operational process in combat net-
work, the concept of operational chain is employed in many
researches [3]–[6], [16], [17], [44]. Operational chain is an
information link chain that different entities in the chain
cooperate with each other to complete the OODA cycle.
The basic operational process of operational chain can be
described as follows: sensor detects the intelligence from
enemy target and transmits it to decider; After fusing and
analyzing the data, decider makes decisions, and gives attack
orders to influencer; Then, influencer attacks enemy tar-
gets. The specific definition of operational chain slightly
changes in different works. For example, in references
[3], [4], no target entity exists in operational chain; in refer-
ences [5], [6], [16], [17], [44], the chain includes target entity.
Since the combat networks we will study only consist of
sensor, decider and influencer, the operational chain excludes
the target entity in this paper. According to references [3], [4],
the chain containing only one sensor, decider and influencer
is defined as basic operational chain (OCBasic in Fig. 2).
Generalized operational chains (OCA, OCB and OCC
in Fig. 2) contain intelligence sharing between sensors,
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FIGURE 2. Operational chains in HCN.

information communicating between deciders and reconnais-
sance commanding from deciders to sensors, which means
there are multiple sensors and deciders in one operational
chain. In Fig. 2, The black arrows represent the informa-
tion links. The length of OCs is defined as the number of
information links existing in the chain. Therefore, the length
of OCBasic is 2 and OCA, OCB and OCC are generalized
operational chains with lengths of 3, 4 and 5 respectively.

III. OPERATIONAL CAPABILITY INDEX MODEL
VALIDATION BASED ON CHARACTERISTIC
TOPOLOGY ANALYSIS
In this section, we will introduce the integrated methodology
of framework named OCVCT to validate the correctness and
accuracy of the OCI model. From Fig. 3, we can see that
the OCVCT contains two steps. Frist, based on an improved
genetic algorithm, the characteristic topology of the OCI
model is obtained. Second, according to the assumptions and
theories which were used to derive the model, the correctness

FIGURE 3. OCVCT framework.

and accuracy of OCI model can be evaluated by analyzing
characteristic topology. In the following sections, the frame-
work will be illustrated in detail.

The OCVCT is not only suitable for OCI model valida-
tion. It also has an application prospect for other network
evaluation models. The network evaluation models, used for
evaluating the quality of the network, have been constructed
in various forms. The common network evaluation mod-
els include network connectivity measures [45], spectrum
measures [46], and functional measures [3], [4] and they
are usually derived strictly from some credible theories and
assumptions with compact mathematical forms.

A. OCI MODELS AND THEIR ASSUMPTIONS
OCI models and their assumptions will be introduced first.
In reference [3], to derive the operational capability index
model, two assumptions are given:
Assumption 1: Operational chain with shorter length will

be more reliable for information transmission quality, leading
to a faster OODA cycle.
Assumption 2: A larger number of alternative operational

chains will improve the robustness of combat networks and
enhance the operational efficiency.

Based upon these assumptions and OODA theory, Li [3]
derived the operational capability index model, i.e.,

P(GHCN ) =
∑
lj

P(OCj) (1)

where the P(GHCN ) is the operational capability of whole
heterogeneous combat networks. P(OCj) is the operational
capability of one operational chain lj and it can be expressed
as:

P(OCj)=
1
|lj|
×

∑
vS∈lj

PS (vS )×
∑
vD∈lj

PD(vD)×
∑
vI∈lj

PI (vI ) (2)

where vS , vD, vI are the sensor, decider, influencer entities in
the j-th operational chain lj. PS (vS ) is the detection capability
of sensor entities, PD(vD) is the decision capability of decider
entities, and PI (vI ) is the attack capability of the influencer
entities. |lj| is the length of operational chain. According to
assumption 2, the operational capability is inversely propor-
tional to |lj|.
In order to provide comparison models, in this paper,

a parameter λ named length attenuation factor is added into
equation (2). In equation (2), though |lj| has been introduced
to satisfy the requirement of assumption 1, the impact of the
length may not be described properly. Boyd, the founder of
OODA theory, repeatedly emphasized the crucial position of
the speed of the OODA cycle. The U.S. military, especially
the Navy, even holds the following view: ‘‘warfare is neces-
sarily a function of decision making and, whoever can make
and implement decisions consistently faster gains a tremen-
dous, often decisive advantage’’ [47]. Therefore, to reflect
the dominant position of shorter chain, we define that with
the increasing of |lj|, the operational capability of operational
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chain decreases by λ power of |lj|. And equation (2) can be
rewritten as

Pλ(OCj) =
1
|lj|λ
×

∑
vS∈lj

PS (vS )×
∑
vD∈lj

PD(vD)×
∑
vI∈lj

PI (vI ).

(3)

Thus, the whole operational capability of heterogeneous
combat networks can be expressed as

Pλ(GHCN ) =
∑
lj

Pλ(OCj). (4)

When the value of λ varies, different and comparable OCI
models can be obtained.

B. CHARACTERISTIC TOPOLOGY
The topology of combat network can be expressed as G =
(V ,E), where V represents the node set and E represents the
link set. In this paper, node set is composed of sensor enti-
ties (S), decider entities (D) and influencer entities (I ) [3], [4]:
V = VS ∪ VD ∪ VI . VS = (vS1 , · · ·, v

S
i , · · ·, v

S
ns) represents

sensor entity set. VD = (vD1 , · · ·, v
D
i , · · ·, v

D
nd ) represents

decider entity set. VI = (vI1, · · ·, v
I
i , · · ·, v

I
ni) represents

influencer entity set. nS , nD, nI are total number of S, D,
I entities respectively. Link set, E = (e1, · · ·, ei, · · ·, eM ),
represents the set of information links between two entities in
combat networks. The links are directed edges and M is the
total number of links. This paper divides the information link
set into five categories: intelligence sharing link (S → S),
intelligence upload link (S → D), reconnaissance command
link (D → S), fire control information link (D → I ) and
communicating link (D → D) [4]. Since the links, being
all information links, have identical physical carriers, it is
assumed that different links can be substituted for each other.

Because heterogeneous combat networks are abstracted
from actual combat system-of-systems, the topologies should
satisfy the following military constraints.
Constraint 1: In a mission, due to the limitation of

resources, the devices and weapons cannot be arbitrarily
increased or reduced and they are considered as fixed val-
ues [4], [19]. Thus, the number of nodes (nS , nD, nI ) and
edges (M ) cannot be changed.
Constraint 2: In modern warfare, low bandwidth services

are the main services and the overall network invulnerability
is more important than link bandwidth. Thus, no duplicate
edges are permitted in the network.
Constraint 3: Each combat entity, playing a certain role in

a combat mission and probably becoming the dominant entity
because of the military uncertainty, should not be isolated so
that the distribution of information links must ensure the full
connectivity of the network.

As discussed in section II, the feasible way to validate OCI
models is the analysis of input data, i.e., combat networks.
We think that the most suitable network for OCI model vali-
dation is called characteristic topology and its definition is:

Definition 1: Characteristic topology. In a specific opera-
tional mission, an OCI model evaluates the operational capa-
bility of all possible heterogeneous combat networks which
satisfies the military constraints. Among these networks,
the one with the highest operational capability is defined as
the characteristic topology of this OCI model.

Using characteristic topology to represent OCI model to
accomplish validation work is an effective idea. Character-
istic topology has the highest capability evaluated by the
corresponding model. The relationship between characteris-
tic topology and corresponding OCI model is the same as
the relationship between objective function and optimal solu-
tion of heuristic algorithms. In heuristic algorithms, the fact
that objective function determines the characteristic of the
optimal solution is accepted by everyone. Hence, analyzing
the optimal solution (characteristic topology) can provide
insights into objective function (OCI model). In this paper,
an improved genetic algorithm will be proposed to search for
the characteristic topology.

Moreover, using characteristic topology would have many
advantages. First, different from compact mathematical equa-
tion of OCImodel, enough andmeaningful information could
be acquired from complicated topology structures. Second,
compared with other random topologies, the characteristic
topology can fully reflect the characteristic of OCI model
and will therefore improve the validation efficiency. Third,
characteristic topology is easy to visualize, and the strength
and weakness of the OCI model can be seen intuitively.

C. TOPOLOGY ANALYSIS BASED ON ASSUMPTIONS AND
THEORIES
To judge whether the OCI models meet the requirements of
the assumptions and theories, three aspects of characteristic
topology will be analyzed to validate the model.

(1) Length of operational chains. According to assump-
tion 1, shorter length leads to a fast and reliable OODA cycle.
Thus, for each characteristic topology, the average length of
operational chains will be calculated and the longest chain in
combat network will be detected. If those lengths are shorter,
the combat network will have a higher operational capability.

(2) Alternative operational chains. Depending on assump-
tion 2, a larger number of alternative operational chains will
improve the invulnerability of combat networks. In other
words, this assumption means that if one operational chain
is destroyed, there are many other chains can be used to
replace it. However, some military engagement is time sen-
sitive. The commander strives to use as little time as possi-
ble to improve decision speed and achieve decisive advan-
tage [47]. The quality of alternative chains also has significant
military value. Thus, the number of all operational chains
and high-quality chains should be considered simultaneously.
Moreover, we also should investigate that when one chain
is destroyed, whether other alternative chains still exist or
not. Hence, for characteristic topology, some damage strategy
should be employed.
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(3) Entity workload. From OODA theory, we know that
the founder, Boyd, repeatedly emphasized the crucial position
of the speed of OODA cycle [47]. Since the OCI mod-
els take advantage of this theory, we should investigate the
tempo of OODA cycle from multiple perspectives, not just
from the length. If one combat entity undertakes too many
operational tasks in one military mission, the entity bears a
heavy workload which leads to low operational efficiency.
As a result, the OODA tempo declines. In combat networks,
every combat entity is abstracted as a node. Since operational
chain is the carrier of an operational task, the number of
chains passing through one entity can be used to estimate the
workload of each node. Thus, the workload of the i-th node
can be defined as:

Wi = N oc
i /N

oc
HCN (5)

where N oc
i is the number of operational chains passing

through the i-th node and N oc
HCN is the number of all oper-

ational chains in combat network. If Wi is too large, the i-th
node will have a high probability to handle many operational
tasks simultaneously, which decrease the speed of OODA
cycle.

IV. KEY-GENE ORIENTED CODING TRANSITION GENETIC
ALGORITHM (KCTGA)
According to the definition, the characteristic topology can be
obtained by genetic algorithm. Finding characteristic topol-
ogy of OCImodel accurately and quickly is the prerequisite to
ensure the reliability and efficiently of OCVCT. Accordingly,
this paper proposes an improved genetic algorithm.

A. CHROMOSOME ENCODING
The adjacent matrix is used as the chromosome to represent
an heterogeneous combat network topologyG = (V ,E). The
chromosome G can be expressed as

G = (eij)n×n =

 e11 . . . e1n
...

. . .
...

en1 · · · enn

 (6)

where eij, being aBoolean number, represents the information
links from the i-th node to the j-th node in combat networks.
Adjacent matrix, as a special binary encoding solution, can
describe the heterogeneity of the network effectively by using
the following definitions: when i ∈ [1, ns], vi is a S node;
when i ∈ (ns, ns + nd ], vi is a D node and when i ∈
(ns + nd , ns + nd + ni] vi is an I node. For example, when
i ∈ (ns, ns + nd ] and j ∈ [1, ns], eij represents reconnais-
sance command link (D→S). Fig. 4 is the illustration of the
chromosome encoding. The valid edges are only allowed in
colored parts in Fig.4.

B. FITNESS CALCULATION
The fitness of each chromosome is the operational capability
index Pλ(GHCN ). To calculate Pλ(GHCN ), we should first find
all the operational chains which could be searched by two
methods.

FIGURE 4. The illustration of the chromosome encoding.

The first method takes advantages of depth-first algorithm
(DFS) [48]. The process of DFS is to go deep into every pos-
sible branch path of the tree until cannot go any further, and
each node can only access once. To exploit DFS, the adjacent
matrix should be converted to adjacent list. Then, from each
initial node S, the following steps are applied to calculate
operational chains:

Step1 for an initial node S, visit the adjacent unvisited
nodes. Mark the unvisited nodes as visited and record the
walks (In graph theory, the walk is a sequence of vertices and
edges v1e1v2 · · · eivi+1 and the length of a walk is the number
of edges in the sequence.) from the S node to them.

Step2 for the newest visited node of each walk, visit its
adjacent unvisited nodes. If the unvisited node is not an I
node, mark it as visited and record the walk from the S node to
this visited node. If the unvisited node is an I node, the walk
is recorded as an operational chain. Repeat Step2 until no
adjacent node is found for the newest visited node of each
walk.

The algorithm can accurately find every operational chain,
which means we can not only know the number of chains,
but also know the distribution of links and nodes in detail.
However, the method has a high time complexity.

The second method can obtain the number of chains with
a fast calculating speed. As shown in Fig. 4, since no edge
exists between S nodes and I nodes, the walk from S to I
must pass through D nodes. Thus, the operational chain can
be regarded as a special walk starting at vSi and ending at vIj .

Let Gk be the kth power of equation (6) and e(k)ij is the ijth
element in Gk . The number of operational chains with length
k can be expressed as

n(k)ij =
∑
ij

e(k)ij (7)

where i ∈ [1, ns] and j ∈ [ns + nd + 1, ns + nd + ni].
With k increasing, the n(k)ij will become extremely large
because the walks contain repeated edges [16]. Therefore,
equation (7) can only be used to acquire the number of
chains approximately. However, when k = 2, the calculation
results is accurate. The second method, though it’s not always
reliable, has an extremely low time complexity and has been
used to study the performance of combat networks by some
researchers [16], [17].
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C. SELECTION AND MUTATION OPERATORS
Tournament operator is employed to execute selection. The
strategy of this operator is to choose a certain number of
chromosomes from the population at a time, and then the one
with the largest fitness value will be selected to enter the next
generation.

The single point mutation method is used to mutate chro-
mosomes. In this operator, a gene with the value of ‘‘1’’ is
randomly selected in adjacent matrix. Then another gene with
the value of ‘‘0’’ is chosen in colored part of Fig. 4. Finally,
the values of these two genes are exchanged. The single point
mutation method does not produce self-loop, and can ensure
that the total number of nodes and links in combat network
cannot be changed.

D. KEY-GENE ORIENTED CODING TRANSITION
CROSSOVER OPERATOR
The crossover operator makes offspring inherit genes of
their parents and concentrates the large searching area into
a relatively superior local area. To improve the convergence
efficiency of GA, the crossover operator which makes more
changes should be utilized [49]. These operators often col-
lect and mix the genes of parents and then distribute them
to their offspring randomly. However, as a binary encoding
solution, the chromosome of Fig. 4 only contains ‘‘1’’ and
‘‘0’’. Mixing and distributing genes will lead to the loss
of parent’s characteristics. Recently, Chen et al. [19] has
proposed a dual-encoding genetic algorithm (DMGA) which
converts adjacent matrix into adjacent list. Since adjacent list
is a real number encoding solution, destructive operator can
be utilized without the concern of losing characteristics of
parents. However, since the mix and distribution of genes are
random in DMGA, there is plenty of room for the perfor-
mance improvement of this algorithm.

In this paper, based upon the EX operator in reference [29],
the ‘‘good’’ genes are selected and preserved to enhance
DMGA. The process of crossover operator proposed in this
paper is illustrated in Fig. 5. First, the encoding form of two
parents is changed from adjacentmatrix into adjacent list. The
genes existing in both parents are selected and preserved as
‘‘good’’ genes. Then, the remaining genes are mixed. The D
nodes coordinate and co-operate various operational capabili-
ties and they are of great significance in combat networks [3].
Therefore, we define that the edges containing D nodes are
key-genes which can be regarded as another kind of ‘‘good’’
gene. Then, we can generate two offspring and the good child
consists of more key-genes. Consequently, the convergence
speed is enhanced. Considering that the crossover operator is
the main contribution of our work, the proposed GA can be
named as key-gene oriented coding transition genetic algo-
rithm (KCTGA).

E. GA PROCESS
The GA process to obtain characteristic topology of an OCI
model is shown in Fig. 6. The OCI model is introduced into

FIGURE 5. Improved crossover operator.

FIGURE 6. GA process to generate characteristic topology.

GA as the objective function. The random combat network
topologies are the initial population. Calculating the oper-
ational capability of each topology by using OCI model,
the combat network with higher fitness is selected to retain.
Through the operators of crossover andmutation, new combat
networks are generated. Repeating the above steps until the
iteration is end. The best solution of GA (i.e., the character-
istic topology of OCI model) is obtained. During iterations,
all combat networks should satisfy the military constraints.
The formulation to calculate characteristic topology can be
described as (8), as shown at the bottom of the next page.

V. CASE STUDY
To illustrate the feasibility and effectiveness of OCVCT in
solving OCI model validation problem, extensive experi-
ments are conducted on combat networks.

A. CASE DESCRIPTION
In a military mission, there are 12 nodes in heterogeneous
combat networks, including 5 S nodes, 3 D nodes and

59766 VOLUME 8, 2020



K. Chen et al.: Method to Validate OCI Model of HCNs Based on Characteristic Topology Analysis

4 I nodes. Due to the limitation of communication devices,
it is assumed that 30 effective information links can be pro-
vided. In equation (3), we take λ from 1 to 15 to obtain 15OCI
models. For each OCI model, a characteristic topology is
generated. The characteristic topology obtained at λ = 1 is
CT1, at λ = 2 is CT2, at λ = 3 is CT3, etc.
The operational capability of 12 nodes, ranging from

1 to 10, are shown in Tab. 1. The crossover probability
of genetic algorithm is 0.8, the mutation probability is 0.2,
the number of iterations is 100, and the population size is 20.
To guarantee the accuracy of OCI calculation, the depth-first
algorithm is applied to search for operational chains.

TABLE 1. The operational capability of each nodes in HCN.

B. TOPOLOGY ANALYSIS
In every case of λ, the GA runs 100 times and generates
50 topology results. The result with the highest operational
capability is selected to analyze. Fig. 5 is characteristic
topologies of OCI models at λ = 1, λ = 5, λ = 10 and
λ = 15 respectively. The four topologies are apparently
different which means that four OCI models have different
evaluation criteria on combat networks.

Aswe can see intuitively from Fig. 7(a) and Fig. 7(b), when
D3 is destroyed, all operational chains in the network will
be broken. With the increasing of λ, part of the operational
chains no longer passes through D3. In Fig. 7(c), only both
nodeD2 and nodeD3 are destroyed simultaneously, the whole
combat network will disintegrate completely. In Fig. 7(d),
three D nodes are backup to each other. If any D node is
reserved, combat network can still work effectively. There-
fore, Fig. 7(d) has the best robustness if all combat enti-
ties have identical protection ability. According to the above
analysis, D3 node is critical in the combat networks because
it has the largest capability compared with other D nodes.
However, for I nodes, the algorithm is not sensitive to their
capability. From all the subgraphs in Fig. 7(except Fig. 7(b)),
four I nodes have the same degree. As the middle node of
the combat chain, decider entities have a huge impact on
the operational chains. I nodes, as the end of the operational
chain, can only be connected withD. Its capability difference

FIGURE 7. The characteristic topologies of OCI models with different λ.
(a) λ = 1; (b) λ = 5; (c) λ = 10; (d) λ = 15.

is relatively unimportant. In modern warfare, it is therefore
more valuable to improve the capability of deciders than that
of influencers. For S nodes, judging the influence of node
capability on network topology directly is difficult. However,
when λ is small, the links are mainly concentrated between S
nodes. At this time, the OCI model pays more attention to
the number of operational chains, indicating that the links
between S nodes are the keys to increase the number of
chains.

Besides, as shown in Fig. 7(c), only one intelligence upload
link (S → D) is connected to D1, which means that this
combat entity cannot conduct any operational task since no
operational chain passes through this node. In this topology,
the resource of decider entity is underutilized. Therefore,
intuitively analyzing the characteristic topology will also
bring insights into OCI models. Next, to compare 15 OCI
models more profoundly, we will analyze the characteristic
topologies according to the analysis methods discussed in
Section III.

1) LENGTH OF OPERATIONAL CHAINS
To investigate the reliability and speed of OODA cycle,
the longest and average length of the chains will be stud-
ied. Three scenarios with different numbers of effective



maxPλ(GHCN )

s.t.



∑
ei,j = M

ei,j = 0, i ∈ [1, nS ], j ∈ (nS + nD + 1, nS + nD + nI ]
ei,j = 0, i ∈ (nS + nD + 1, nS + nD + nI ], j ∈ [1, nS + nD + nI ]
ei,j = 0, i = j

(8)
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information links were considered: 24 links, 30 links and
36 links. Fig. 8(a) shows the average length and Fig. 8(b)
shows the longest length for each characteristic topology.
As shown in these figures, both the average and the longest
length decrease as λ increases. When conducting military
missions, the characteristic topology derived from higher λ
OCI model has the apparent superiority in reliability and
tempo of OODA cycle. Thus, the OCI model with higher λ
can satisfy the requirement of assumption 1 better.

FIGURE 8. The length of operational chains in each characteristic
topology. (a) average length; (b) longest length.

2) ALTERNATIVE OPERATIONAL CHAINS
Two scenarios will be considered to assess the quantity and
quality of operational chains. In the first scenario, the combat
networks are undamaged without any attack and the number
of overall and basic chains will be counted for each topology.
As we can see in Fig. 9(a), the overall number of the chains
reduces when λ increases. Though the quantity of the chain
has an overwhelming advantage at lower λ, the quality is
not optimistic. In Fig. 9(b), larger λ results in characteristic
topology containing more basic chains which is of far more
value to military engagement than generalized chains since
basic chain means fast and reliable OODA cycle. Therefore,
if the quality of operational chain is the main concerns of the
military commander, when evaluating the combat network,
taking a larger λ is a relatively wiser choice for OCI model
construction.

FIGURE 9. The number of operational chains in each characteristic
topology. (a) number of overall operational chains; (b) number of basic
operational chains.

In the second scenario, the number of operational chains
will be studied when combat network has been attacked
and part of the network has been destroyed. The motivation
for this section is to investigate whether there are enough
replaceable operational chains when one of them has been
broken. Two choices can be selected to realize it: removing
one node or removing one edge in one chain. However,

since the distribution of heterogeneous edges are changed in
different topologies, choosing comparable edges to destroy
is unrealistic. Fortunately, the category and number of nodes
are identical in each network. Thus, we remove one node
in topologies and the remaining operational chains will be
analyzed.

Fig. 10 is the remaining operational chains when destroy-
ing one kind of node. As shown in these figures, as λ
increases, the number of remaining operational chains will
decrease in most cases. However, some exceptions exist when
S3,D1,D2 andD3 are removed. Decider entities, like the brain
of the human body, play a critical role in military engage-
ments, which could be the prime target for enemies [3]. Inves-
tigating the number of remaining chains after D nodes being
damaged is of greater value for combat network robustness
study than other nodes. Thus, we should pay more attention
on Fig. 10(b). In Fig. 10(b), when λ is too low or too high,
the number of remaining chains is very limited especially for
D3 who has the highest node capability as shown in Tab. 1.
In CT1 to CT4, though the original number of the chains
is considerably large as shown in Fig. 9(a), the removal of
D3 will lead to drastic decline of operational chains. This is
because when λ is lower, to find combat network with higher
operational capability, the OCI models focus on the number
of the chains other than the length. Therefore, the information
links are distributed among S nodes and D nodes in these
characteristic topologies. As a result, onlyD3 has the capacity
to command and control I nodes directly such as combat
networks in Fig. 7(a) and (b). When D3 is destroyed, all
chains in the network will be interrupted sinceD3 participates
in all operational tasks. In CT10 to CT15, the number of
remaining chains is also limited. This is because the original
number of chains is scarce. Therefore, to persist considerable
number of operational chains afterD3 is removed, the optimal
characteristic topologies are CT5 to CT10.

FIGURE 10. Remaining operational chains when removing one node in
characteristic topologies (a) removing S nodes; (b) removing D nodes;
(c) removing I nodes.
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In Fig. 11, the remaining number of basic operational
chains increases as λ rises. Therefore, when taking the
emphasis on quality, the lower λ is not a good choice for
OCI models. Considering Fig. 10 and Fig. 11 simultaneously,
if we want OCI model to have an accurate evaluation for
combat network who has excellent robustness when one D
node damaged, the λ should not be too low or too high.

FIGURE 11. Remaining basic operational chains when removing one node
in characteristic topologies (a) removing S nodes; (b) removing D nodes;
(c) removing I nodes.

3) ENTITY WORKLOAD
Fig. 12 shows the workloadWi of each node in characteristic
topologies. We can see that if the operational capability of
a node is higher, the node will undertake more tasks such
as S4, D3 and I4, i.e., combat entities with great capability
come great responsibility. However, except S3, theWi of other
sensor entities is close to 0.75 in CT1 to CT10, which means
that these sensor nodes have a 75% probability to participate
in any operational tasks. Worse still, in CT1 to CT4, the Wi
of D3 is equal to 1, which means that D3 involves in every
operational task in a military mission. When λ increases,
in corresponding characteristic topologies, the Wi of high
capability nodes declines and Wi of low capability nodes
rises. Division of labor reduces theworkload of whole combat
network, leading to a high operational efficiency. If we want
to give a high capability estimation for combat networks
which have low workload for each entity, the higher λ should
be taken for OCI models. However, too large λ will make
OCI model pay more attention on shorter operational chains,
which will make allocation of tasks too average and the
competent entities cannot play the critical role in the war.

C. RESULTS OF MODEL VALIDATION FROM
CHARACTERISTIC TOPLOGY ANALYSIS
Directly analyzing the mathematical formula of equation (3),
the intuitive conclusion can be drawn that when λ is lower, the
corresponding characteristic topology will have lager number
of alternative chains. However, after analysis of characteristic
topology, we find that though the number of the chain is the

FIGURE 12. Entity workload of each node. (a) sensor entities; (b) decider
entities; (c) influencer entities.

most at the lowest λ, the destruction of one decider entity will
cause most of the chains to fail. In other words, there is a high
correlation between these ‘‘fake’’ alternative chains. And just
when λ is relatively higher, the characteristic topology can
provide the ‘‘real’’ alternative chains when some decider
entities are destroyed. Moreover, these chains have superior
quality.

Therefore, analyzing characteristic topology can provide
us directions to revise the OCI models. For example, in this
case, if we want to provide high operational capability esti-
mation for combat networks in which the decider entities
have a backup to each other, the λ should be assigned higher.
If centralized command is the priority of the mission, the λ
should be assigned lower. In a word, the characteristic topol-
ogy analysis could afford us insights into OCI models which
could not observe directly from the model itself.

Moreover, the OCI model can be further improved by
adding some parameters to avoid problems discovered by
characteristic topology analysis. For example, to average the
workload of each entity, equation (3) can be revised as

Pλ(OCj)=
1
|lj|λ

∑
vS∈lj

PS (vS )×
∑
vD∈lj

PD(vD)×
∑
vI∈lj

PI (vI )

max
vS∈lj

WS (vS )×max
vD∈lj

WD(vD)×max
vI∈lj

WI (vI )

(9)

where WS (vS ), WD(vD) and WI (vI ) are the workload of each
entity defined by equation (5). However, the correctness of
equation (9) should be tested byOCVCT and this is our future
work.

VI. PERFORMANCE STUDY OF PROPOSED KCTGA
A. COMPARATION ALGORITHMS
In this section, the performance of improved GA named
KCTGA will be studied and its convergence efficiency will
be compared with two state-of-the-art genetic algorithms,
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FIGURE 13. Convergence speed of 4 GAs at one run.

named DMGA and GA-SWTA, and one classical genetic
algorithm, named single-point crossover genetic algorithm
(SGA).

The DMGA proposed by authors of [19] is applied to opti-
mize the mobile microwave relay networks which belong to
military communication networks and can be regarded as the
physic carrier of combat networks. Moreover, the constraints
of two problems are the same such as the resources are a
fixed value and no duplicate edges are allowed in the network.
Therefore, the problem solved by [19] and this paper has
a high similarity. The DMGA has an excellent convergence
speed in dealing with such constraint problems.

The GA-SWTA [29] is used to handle the sensor-weapon–
target assignment (S-WTA) problem. Like KCTGA, the chro-
mosome encoding technique in GA-SWTA should consider
heterogeneous genes. Furthermore, as the military problems,
both S-WTA and combat network exist strict constraints.
Thus, GA-SWTA can be transplanted into the problem of this
paper smoothly.

SGA [22] is a classical genetic algorithm whose perfor-
mance is well known and can therefore be applied as the
standard with which other GA can be compared.

B. EXPERIMENTAL SETTINGS
In our experiment, the parameters of OCI model are selected
as: λ = 15 and PS (VS,j) = PD(VD,j) = PI (VI ,j) = 32. With
the above parameter combination, the operational capability
of one basic operational chain is

Pλ(OCj) =
1
|2|15

× 32× 32× 32 = 1. (10)

And the operational capability of a generalized chain with
the length of 3 is

Pλ(OCj) =
1
|3|15

× 32× 32× 32 = 0.0023. (11)

FIGURE 14. Niter ,opti of 4 GAs at ns = 5, nd = 3 and ni = 4 with different parameters.
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FIGURE 15. Niter ,opti of 4 GAs at ns = 8, nd = 4 and ni = 6 with different parameters.

Since longer chains serve extremely low contribution of
operational capability for combat networks, ignoring the
operational capability contributed by generalized chains is
reasonable. Accordingly, the equation (4) can be approxi-
mately written as

Pλ(GHCN )=
∑
lj

Pλ(OCj)=n
(2)
si ×

1
|2|15
×323=n(2)si , (12)

where n(2)si is the number of basic operational chains and it
can be calculated by equation (7). Therefore, these param-
eters allow us to obtain operational capability extremely
fast. The accuracy of calculation result is also acceptable.
Consequently, numerous results can be obtained efficiently
to compare the algorithms.

Moreover, when the number of information links is larger
than Noc = ns × nd + nd × ni, the maximum n(2)si is a fixed
value and it can be expressed as

n(2)si,max = ns × nd × ni. (13)

Since equations (12) and (13) mean that the optimal value
of Pλ(GHCN ) is a known parameter, it is convenient and
persuasive to useNiter,opti, which is the iteration numberwhen
Pλ(GHCN ) reaches n

(2)
si,max, to judge the convergence speed of

the algorithms. All algorithms are implemented in MATLAB
and the experiments are performed on a (TM) i5-8300CPU@
2.30 GHz personal computer with 16 GB memory.

C. RESULTS AND DISCUSSIONS
Fig. 13 shows the Pλ(GHCN ) against iterations when four
genetic algorithms execute only once. Substituting ns = 5,
nd = 3, ni = 4 and M = 36 into equation (13), the n(2)si,max
is equal to 60. We can see that KCTGA outperforms other
three GAs, and its Niter,opti is only 10. The SGA has the worst
convergence performance and Pλ(GHCN ) needs 36 iterations
to reach n(2)si,max. lower Niter,opti also means that the corre-
sponding algorithm has more chance to obtain an optimal
solution when the total number of iterations is not enough.
For example, with the increasing of the network scale, the GA
may easily get trapped in a local optimum and hence more
iterations are required.

However, since genetic algorithm is a stochastic search
technique, the superiority of KCTGA cannot be demonstrated
credibly by only one run. Therefore, the four algorithms are
executed 100 runs at each combination of parameters. The
results of Niter,opti among 100 runs are depicted as the box
chart in Fig. 14 and Fig. 15. The boxes are determined by the
25th and 75th percentiles. The medians and means are shown
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as a line and a square respectively in the center of the boxes.
The top of whiskers extends to the largest data less than or
equal to 1.5 times the quartile range (IQR), and the bottom
extends to the smallest data larger than 1.5 times the IQR.
As shown in two figures, the boxes of KCTGA are lower than
the boxes derived by other three GAs in 94.4% cases. This
indicates that KCTGA exhibits a better convergence speed.
Moreover, when the number of information links increases,
the box of KCTGA is becoming comparatively much lower
and shorter, which means the convergence stability is also
improved. This is because larger number of links will provide
more key-genes for good child in crossover operator. Conse-
quently, the good child will be closer to optimal solution and
hence the convergence performance is enhanced.

VII. CONCLUSION
TheOCI formula is an importantmodel tomeasure the perfor-
mance of heterogeneous combat networks. Validating the cor-
rectness and accuracy of OCI model is of significant military
value to prevent the acceptation of the wrong conclusions in
combat network studies. Based on the characteristic topology,
this paper provides a method named OCVCT to validate OCI
models.

Based upon OCVCT, many meaningful validation results
have been drawn, which are helpful to the derivation of reli-
able OCI models. For example, the OCI model with lower λ
may give high operational capability evaluation for the wrong
combat networks which have a larger number of ‘‘fake’’
alternative operational chains. However, too large λwill make
OCI model incline to the combat networks which almost only
contain the shortest operational chains, rendering allocation
of tasks too uniform and the competent entities have no
chance to play the critical role in the combat system-of-
systems. These results can provide us orientations to change
the value of λ to satisfy the requirements of the specific
missions, making OCI model adaptive for different warfare.
Moreover, the OCI model can be further improved by adding
some parameters to avoid problems discovered by character-
istic topology analysis.

To search for characteristic topology accurately and effi-
ciently, we proposed a novel genetic algorithm named
KCTGA. Considering the prior knowledge of combat net-
works and taking advantages of both binary and real encod-
ing methods, an improved crossover operator is introduced.
Compared with two state-of-the-art and one classical GAs,
the KCTGA has a better convergence speed and reliability.

However, this paper only provides a basic idea required in
solving operational capability index model validation prob-
lems. Plenty of work remains to be done in the future, for
example, when the scale of combat network is extremely
large, the limitation of GA will lead to high time complexity
of KCTGA. Therefore, the faster characteristic topology gen-
eration method which is not based on the heuristic algorithm
should be investigated. The idea of OCVCT can be exploited
for other evaluation model validations, but how to transplant
the method properly needs to be studied.
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