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ABSTRACT During preliminary tea processing, moisture content is an important consideration affecting
the tea quality. Traditionally, the moisture content of tea leaves was manually controlled by the joint action
of multiple processing units, and maintaining stability was difficult. In this paper, a multi-unit collaborative
strategy was proposed for controlling moisture content in preliminary tea processing. Multivariate methods
including polynomial regression, radical basis function neural network (RBFNN), and least squares support
vector machine (LSSVM) were used to establish models for moisture content prediction in the first fixation,
second fixation, and drying units, with minimal root mean square errors (RMSEs) of 1.34%, 0.86%, and
0.13%, respectively. The combination of RBFNN and LSSVM, with a RMSE of 0.03%, was used to model
the preliminary processing of whole tea. Rough set data mining technology was used to obtain the optimum
ranges of moisture content and critical process parameters. Finally, aMonte Carlo simulation experiment was
carried out within the optimum range, and moisture content design spaces for the single unit and the whole
processing line were obtained. With the proposed approach, the stability of the final moisture content of tea
can be improved, which is of great significance for improving tea quality and accelerating the automation of
tea production.

INDEX TERMS Critical process parameter, design space, moisture content, multivariate method,
rough set, tea.

I. INTRODUCTION
Tea is the second most consumed beverage (other than water)
worldwide and is widely cultivated in China, India, and other
areas. Green tea has been demonstrated to lower the incidence
of chronic pathologies, such as cancer [1] and cardiovascular
diseases [2]. Moisture content is an important consideration
affecting the tea quality. Excessive moisture content will
accelerate the aging and mildew growth of tea [3]. Currently,
the control of tea moisture content relies on the experiences
of workers, which are very subjective. Furthermore, guar-
anteeing the stability of the final tea moisture content is
difficult.

Some research concerning the relationship between the
tea moisture content and tea quality has been proposed,
which has mainly focused on the single processing unit.
Botheju et al. [4] investigated the relationship between the
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withering process and the rate of water loss in fresh leaves.
Vargas and Vecchietti [5] found that the withering time
and temperature in black tea processing should be adjusted
according to the moisture content of the harvested leaves;
it also showed that this adjustment caused a drop in fabric
productivity when the humidity of the shoots exceeded a
critical value. Ullah et al. [6] indicated that excessive with-
ering led to a significant decrease in tea moisture content
and the inhibition of polyphenol oxidase (PPO) activity.
Wang et al. [7] found that a decrease in water content led to
significant changes in gene transcription and concentration of
tea flavor compounds, which promoted the special flavor of
various teas. Hence, the precise control of moisture content
in tea is strongly related to the tea quality, which is of great
importance in tea production. However, the final moisture
content of tea is produced through the interaction of multiple
processing units. It is difficult to optimize the final quality of
tea by simply analyzing the relationship between tea quality
and the moisture content of a single unit.
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Mathematical methods, including theoretical models and
multivariate methods, have been utilized to predict some
important features in tea. Panchariya et al. [8] fitted
the production data of the drying process to different
semi-theoretical models. The Lewis model could best
describe the thin-layer drying characteristics of black tea
particles. Zhu et al. [9] established a discriminant mode
of the degree of fermentation with multi-layer perceptron,
random forest, and support vector machine methods and
developed a rapid method for detecting the degree of black
tea fermentation based on the electrical properties of tea.
Hyperspectral imaging technology was also used to predict
tea moisture content. Sun et al. [10] determined character-
istic wavelengths for moisture content prediction using the
successive projections algorithm and competitive adaptive
reweighted sampling method and visualized the moisture
content distribution in tea leaves. Wei et al. [11] established
a least squares support vector machine (LSSVM) model for
moisture content prediction based on hyperspectral images
of the front and back of tea and obtained the distribution
map. Deng et al. [12] proposed an excellent 3D image filter
to represent textural information; this was used to improve
the prediction accuracy of moisture content in the partial
least squares model. Taheri-Garavand et al. [13] presented an
approach for predicting the moisture content of dried savory
leaves using the combination of an artificial neural network
and genetic algorithm. However, most studies ignored the
relationship between tea moisture content and critical process
parameters (CPPs), and few studies have examined the selec-
tion of CPPs in each unit with the final moisture content as a
target.

In addition, some studies for tea processing control has
been reported. Huang et al. [14], Ma et al. [15] studied
the automatic control process of Pu’er tea fermentation;

programmable logic controller (PLC) was used for in-line
control of the temperature and humidity during the fermen-
tation process. Gong et al. [16] designed an automatic white
tea dryer including machinery and control systems to control
white tea drying conditions. Zheng et al. [17] used varied
smart meters and centralized controllers to construct a control
system, and designed a novel interface software for the auto-
matic control of tea baking. Javanmard et al. [18] proposed
an automatic tea dryer system based on a programmable con-
troller for controlling the moisture content and temperature at
different stages of drying; the moisture content of tea leaves
declined from 68% to 3%, and the temperature increased from
30 ◦C to 80 ◦C. However, most of these studies focused on
the automatic control of a single unit, while ignoring that
tea processing is an organic whole where multiple processing
units are coupled to each other.

In this study, a whole-process optimization method for
the synergistic control of moisture content in preliminary
tea processing is proposed. The specific objectives of this
study were (a) to establish models for predicting the moisture
content in each processing unit and the whole production
line, (b) to determine the CPPs of each unit to synergistically
control moisture content in preliminary tea processing, and
(c) to verify the proposed methods with practical application.

II. MATERIALS AND METHODS
A. SAMPLE PREPARATION
Green tea samples of one bud with two leaves were harvested
from theMingchun tea base in Lichuan City, Hubei Province.
A conventional green tea processingmethod was employed in
this experiment (Fig. 1), the details of which are as follows:

(1) Withering: harvested tea samples were spread out in a
withering room for 16-27 h at 25-30 ◦C until the moisture
content was around 75%.

FIGURE 1. The production process of green tea.
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(2) First fixation: withered tea samples were stir-fried at
350-500 ◦C for 90-130 s until the moisture content was
around 60%. The fixation temperature was obtained by a
sensor attached to the first fixation machine (6CSF-100,
SunyoungMachinery Co. Ltd., China). The fixation time was
recorded by a timer.

(3) First rolling: after 40-50 min of resurgence, the tea
leaves were transferred into a rolling machine (6CR-55,
Sunyoung Machinery Co. Ltd., China) for 16-30 min until
the leaves were tightly tied and scented.

(4) Second fixation: rolled tea samples were stir-fried again
at 200-300 ◦C for 70-150 s until the moisture content was
around 45%. The time and temperature of the second fixation
were obtained in the same way as the first fixation.

(5) Second rolling: after 40-50 min of resurgence, the
tea leaves were transferred into a rolling machine (6CR-55,
SunyoungMachinery Co. Ltd., China) for 50-90 min until the
leaves were tightly tied again and scented.

(6) Drying: rolled tea samples were transferred into a
drying machine (6CCP-60, Sunyoung Machinery Co. Ltd.,
China) for dehydration by roasting until the moisture content
was around 6%. The time and temperature of the drying were
obtained in the same way as the first fixation.

An automatic moisture analyzer (MA-150, Sartorius,
Germany) was used to measure the moisture content of tea
leaves. Tea samples (6 g) were uniformly laid on a sample pan
and then dried in the analyzer at 100 ◦C until no changes in
weight were observed. The moisture content was calculated
with (1), where y is the moisture content, w is the sample
weight before drying, and w′ is the sample weight after
drying.

y = (w− w′)
/
w. (1)

All processes were performed in triplicate. The temper-
ature and time of each unit and the moisture content after
each unit were collected for each batch. In total, 60 batches
were performed with the above-mentioned processing meth-
ods, and all CPPs and moisture contents were measured.
To establish and test the models, 50 batches were randomly
assigned to a training set, and the rest were assigned to the
testing set.

Ten extra sample batches were used to verify the estab-
lished control strategy. The initial conditions for these
10 sample batches are shown in Table 6. The batches of
samples were divided into two groups, A and B. The CPPs
of group A were specified according to the experiences of
workers. The CPPs of groupBwere specified according to the
guidance of the established design space. CPPs and moisture
contents were measured by the samemethods used in training
samples.

B. SENSORY EVALUATION
Sensory evaluation was performed for groups A and B during
experimental verification according to tea sensory evaluation
method (GB/T 23776-2009). Group A was produced accord-
ing to traditional craftsmanship, and Group B was produced

according to the design space. Then, the color, aroma, shape,
and overall quality of the tea were scored by an experienced
tea taster on a 10-point scale and rounded to one decimal
place.

C. DATA ANALYSIS
To establish the moisture content design space, it is necessary
to identify the relationship among the CPPs, unit moisture
content, and final moisture content and to determine the
optimum ranges of the CPPs and unit moisture content. The
unit model was used to determine the relationship between
the CPPs and unit moisture content. The overall model was
used to determine the relationship between the unit and final
moisture contents. Rough set theory was used to determine
the optimum ranges of CPPs and the unit moisture content.

1) MULTIVARIATE METHODS
a: POLYNOMIAL REGRESSION
Regression analysis is a commonly used statistical analysis
method to determine the interdependence between two or
more variables [19]. It can accurately measure the correlation
between the various factors and the degree of regression
fitting and obtain the most comprehensible mathematical
model. In this case, a quadratic polynomial was used for
regression, the significance level was 0.05, and the confi-
dence of the estimated value of the coefficient was 95%.

b: RADICAL BASIS FUNCTION NEURAL NETWORK (RBFNN)
RBFNN is a typical feedforward neural network. The basic
principle is to convert the input data of the low-dimensional
mode into high-dimensional space, making the linearly indi-
visible problem in low-dimensional space linearly separable
in high-dimensional space [20]. RBFNNhas a good nonlinear
fitting ability, which can map arbitrarily complex nonlinear
relationships and has the best unique approximation. In this
case, the input layer and hidden layer of the neural network
were fully connected, the number of samples was used as
the number of hidden layer nodes, and the Gaussian radial
basis function was selected as the function of hidden layer
activation.

c: LSSVM
Support vector machine (SVM) is a method based on VC
(Vapnik-Chervonenkis) dimension theory and structural risk
minimization principles. To obtain the best generalization
ability, SVM seeks the best compromise between model
complexity and learning ability based on limited sample
information. LSSVM transforms the inequality constraint in
the SVM optimization problem into an equality constraint,
which is more computationally efficient and has a complete
mathematical and theoretical basis [21]. In this case, the grid
search method was used to optimize the penalty coefficient γ
and the kernel parameter σ , and radial basis function (RBF)
was utilized as kernel function.
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TABLE 1. The results of models for moisture content prediction in the three units.

d: HYBRID MODEL
Because the relationship between the input and output of the
overall model is complex, it is difficult to meet the accuracy
requirements with a single model. In this case, a hybrid
modeling strategy with RBFNN and LSSVM as the main
model and error compensation model, respectively, was used
for overall modeling. Firstly, RBFNN was used to establish
a prediction model for the final moisture content, and the
difference (1E) between the final moisture content prediction
value ŷ and the actual value y∗ could be obtained. Then,
the LSSVM model was used to predict 1E. Next, the grid
search method was used to optimize the hyperparameters
of RBFNN and LSSVM. Finally, the predicted values of
RBFNN and LSSVM were added together to obtain the pre-
dicted value Ŷ of the final moisture content, as shown in (2).

Ŷ = ŷ+ 1̂E . (2)

In this experiment, the models for the prediction of mois-
ture content in each unit were established with polynomial
regression, RBFNN, and LSSVM. Because the product qual-
ity of the upstream unit directly affects the tea quality of
the downstream unit during the tea production process, and
the time and temperature are the CPPs that have the greatest
impact on the teamoisture content, themoisture content of the
previous unit and the CPPs of the current unit were used as
inputs, and the moisture content of the current unit was used
as the output. In addition, 10-fold cross-validation was used
to optimize parameters and prevent overfitting. All models
were performed in MATLAB (v2018a, MathWorks, USA).

2) ROUGH SET ERROR FEEDBACK RULE MINING
To establish the unit and final moisture content design spaces,
it was necessary to obtain the optimum ranges of CPPs and
moisture content in each unit; in this case, these ranges were
determined by rough set.

The expression of knowledge in rough set theory generally
adopts the form of information table or information system.
The information system can be represented by a quaternion
ordered array K = 〈U ,A,V , ρ〉, whereU is the whole object,

that is, the domain; A is the total attribute, A = C ∪D, where
C is the conditional attribute set, D is the decision attribute
set; V =

⋃
aεA Va, Va is the value range of the attribute a;

ρ:U × A→V is an information function, ρx :A→V , x ∈ U
reflects the complete information of the object x in K [22].
In this case, rule mining with rough sets is subject to initial
data discretization, attribute reduction, attribute value reduc-
tion, and extraction rules, etc. [23], [24].

In the practical production process, experienced workers
adjust the target value of the moisture content of each unit
according to the difference between the actual and target
values of the final moisture content; then, they adjust the
CPPs of each unit. Manual adjustments can be converted to
automatic adjustments by rough set theory.

Let the final moisture content in any two adjacent samples
have the following relationship:

y(i) = f (y1 (i) ,y2 (i) , y3 (i) , y4(i)), (3)

y(i+1) = f (y1 (i+1) , y2 (i+1) , y3 (i+1) , y4(i+1)), (4)

where y(i) is the final moisture content, y1 (i) is the moisture
content of the withered leaf, y2 (i) is the moisture content
after the first fixation, y3 (i) is the moisture content after
the second fixation, and y4(i) is the moisture content after
drying.

The difference in the final moisture content between two
adjacent samples was:

1y = y(i+1)−y(i). (5)

The difference in the unit moisture content between two
adjacent samples was:

{1y1 (i) ,1y2 (i) ,1y3 (i) ,1y4 (i)}

= {y1 (i+ 1)− y1 (i) , y2 (i+ 1)− y2 (i) , y3 (i+ 1)

−y3 (i) , y4(i+ 1)− y4(i)}. (6)

In this case,1y, y1 (i), y2 (i), y3 (i), and y4(i) were consid-
ered as the condition attributes, and1y1 (i),1y2 (i),1y3 (i),
and 1y4 (i) were considered as the decision attributes. The
attributes were used to construct the decision information
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TABLE 2. Comparison of overall model performance.

tables. And the change rules of the final and unit moisture
contents could be determined with following steps: (a) The
decision information table was split into a single decision
attribute decision table; (b) The data discretization method
based on information entropy was used to discretize the
data; (c) The attribute reduction algorithm based on posi-
tive domain changes was used to implement attribute reduc-
tion; (d) Then each attribute value was reduced one by one
to obtain a final simplified decision table, which could be
regarded as an error feedback rule table. The difference
between the actual and target values of the final moisture
content was considered as a condition attribute to query the
rule base, and the difference between the actual and optimum
values of the moisture content of each unit of each sample
could be obtained. Then, the actual value and the difference
were added to obtain the optimum value of the moisture
content of each unit of each sample, and the maximal and
minimal values of the optimum values in all samples were
identified to obtain the best moisture content range in each
unit.

By replacing the condition attributes with the differences in
the final moisture content between two adjacent samples and
the CPPs in each unit and replacing the decision attributes

FIGURE 2. Relationship between the predicted moisture content and
actual value in the hybrid model.

with the differences in CPPs between two adjacent samples
in each unit, the optimum range of CPPs per unit could also
be determined.

D. DESIGN SPACE THEORY
Quality by design (QbD) is a systematic approach that
emphasizes process control, which is commonly used in avia-
tion, electronics, chemical, and drug development [25], [26].
The design space is defined as the multidimensional combi-
nation and interaction between input variables and process
parameters that ensures product quality. As mentioned above,
the optimum ranges of the moisture content and CPPs of
each unit were obtained via the rough set. In this case, the
final moisture content was considered as nonadjustable when
the moisture content of a certain unit exceeded the optimum
range.

TABLE 3. Error feedback rules for the moisture content of withered leaves and the temperature of the first fixation.
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FIGURE 3. Changes in moisture content in group A (a), changes in moisture content in group B (b), changes in moisture content in group B (with
disturbance added to the first fixation) (c), changes in moisture content in group B (with disturbance added to the second fixation) (d).

According to the principle of Monte Carlo simulation,
many sampling results can be randomly generated by com-
puter simulation, and the value of the statistic or parameter
can be calculated [27]. Within the optimum range of CPPs
per unit, 10,000 sets of CPP combinations in each unit were
generated by a random samplingmethod. The predictedmois-
ture content values of each unit could be obtained based on the
unit model. The combinations of the CPPs whose predicted
values were beyond the optimum range were removed, and
the retained CPP combinations served as the design space of
the unit moisture content. Hence, the initial CPPs in each unit
could be determined by querying the unit moisture content
design space.

The design space for the final moisture content was estab-
lished in the same manner. Firstly, 10,000 sets of moisture
content combinations within the optimum range were gen-
erated by a random sampling method. Then, the predicted
values of the final moisture content were obtained based on
the whole model. The combinations of the unit moisture con-
tent with predicted values beyond the optimum range were
removed, and the retained combinations of the unit moisture
content served as the design space of the final moisture
content. When there was a deviation in the upstream unit,
the CPPs of the downstream unit could be adjusted depending
on the final moisture content design space.

E. PERFORMANCE EVALUATION
In order to evaluate the performance of the moisture con-
tent prediction model, some figures of merits were used.

TABLE 4. The optimum ranges of the moisture content and CPPs per unit.

Root mean square error (RMSE) measures model accuracy.
Smaller RMSE value indicate higher model accuracy. The
coefficient of determination (R2) measures the relationship
between the predicted and actual values; higher R2 indicates
better prediction performance. The values of RMSE and R2

could be deduced with the following equations:

RMSE =

√
(1
/
n)
∑n

i=1
(yi − ỹi)

2, (7)

R2 = 1−
∑n

i=1
(yi − ỹi)

2
/∑n

i=1
(yi − ỹi)

2, (8)

where n is the sample number, yi is the actual value, and ỹi is
the predicted value.
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TABLE 5. Sensory evaluation and moisture content of 10 batches in groups A and B.

III. RESULTS AND DISCUSSION
A. MOISTURE CONTENT PREDICTION FOR A SINGLE UNIT
To simplify the research, multivariate methods were carried
out for the fixation and drying units, which were closely
related to the change in moisture content. The polynomial
regression model, RBFNN, and LSSVMwere used to predict
the moisture content of each unit. The model with the best
prediction performance would be selected as the unit model.

The results of models for moisture content prediction of the
three units are shown in Table 1. In the first fixation unit,
the moisture content of withered leaves, fixation temperature,
and fixation time were utilized as inputs, and the moisture
content after the first fixation was utilized as the output. The
spread factor of RBFNN was optimized by the grid search
method with a search range of 0-3000. The spread factor was
1350 in this case. The penalty coefficient (γ ) and the kernel
parameter (σ ) of LSSVM were optimized by the grid search
method with search ranges of 1-200 and 1-500, respectively.
The optimized γ and σ values were 90 and 100, respec-
tively. As shown in Table 1, the polynomial model performed
poorly on the testing set; this might be due to its poorer
generalization ability [28]. In general, LSSVM performed
best on the testing set, the RMSE and R2 of which were
1.34% and 0.9078, respectively. Compared with RBFNN,
LSSVM had a unique solution and a lower tendency toward
overfitting. LSSVM was used as the unit model for moisture
content prediction in the first fixation.

In the second fixation unit, the moisture content after the
first fixation, fixation temperature, and fixation time were
used as inputs, and the moisture content after the second
fixation was used as the output. The spread factor, γ , and
σ were optimized in the same way as described for the first

TABLE 6. Initial conditions of the 10 Tea leaf batches.

fixation unit. In this case, the spread factor, γ , and σ were
2000, 91, and 101, respectively. As shown in Table 1, LSSVM
performed best in moisture content prediction in the second
fixation unit, with an RMSE and R2 of 0.86% and 0.8963 on
the testing set, respectively. Hence, LSSVM was chosen as
the unit model for the second fixation unit.

In the drying unit, the moisture content after the second
fixation, drying temperature, and drying time were used as
inputs, and the moisture content after the drying unit was
used as the output. The spread factor of RBFNN, penalty
coefficient, and kernel parameter of LSSVM were optimized
in the same way as described for the first fixation unit. The
optimized spread factor, γ , and σ were 2000, 70, and 45,
respectively. As shown in Table 1, LSSVM also performed
best in the drying unit, with an RMSE and R2 of 0.13% and
0.9659, respectively.
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TABLE 7. Decision information table of the error feedback for moisture content.
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TABLE 7. (Continued.) Decision information table of the error feedback for moisture content.

B. OVERALL MODEL BUILDING
Compared with the unit model, the correlation between the
unit and final moisture contents was more complicated. It is
difficult to predict the moisture content accurately with a
single model. Hence, a hybrid model (RBFNN-LSSVM) was
used in this case; results for the hybrid and single models are
shown in Table 2. In the hybrid model, the moisture contents
of each unit were used as inputs and the final moisture content
was used as the output. RBFNN was used to fit the final
moisture content, LSSVM was used to fit the residual, and
the final prediction was the sum of the results of these two
models.

As shown in Table 2, the performance of the hybrid model
was better than that of the single model. Previous study has
shown that a single model has worse performance in a com-
plex situation [29]. A single model only focuses on a certain
aspect, and it is easy to ignore some information in complex
data; however, a hybrid model can combine the advantages
of different single models to achieve complementary effects.
The correlation between the predicted and actual values is
shown in Fig. 2.

C. OPTIMIZATION OF RANGES OF CPPS AND UNIT
MOISTURE CONTENT
The rough set theory was utilized to determine the opti-
mum ranges of unit moisture content and CPPs, which were
used to establish the design space. The difference in final
moisture content between two adjacent samples (1y) and
the moisture contents after withering, first fixation, second
fixation, and drying (y1, y2, y3, and y4, respectively) were
taken as the condition attributes. The differences in moisture

contents between two adjacent samples of leaves after the
processes of withering (1y1), first fixation (1y2), second
fixation (1y3), and the drying unit (1y4) were taken as the
decision attributes. The decision information table of the error
feedback for moisture content is shown in Table 7.

The difference in final moisture content between two
adjacent samples (1y), the moisture content of withered
leaves (y1), first fixation temperature (r1), first fixation
time (r2), second fixation temperature (r3), second fixa-
tion time (r4), drying unit temperature (r5), and drying
unit time (r6) were taken as the condition attributes. The
differences in the first fixation temperature (1r1), first fix-
ation time (1r2), second fixation temperature (1r3), second
fixation time (1r4), drying unit temperature (1r5), and dry-
ing unit time (1r6) between two samples were taken as the
decision attributes. The decision information table of the error
feedback for CPPs is shown in Table 8.

Because the decision information tables of the error
feedback for the unit moisture content and CPPs were
multi-decision attribute decision tables, Table 7 was divided
into four decision tables of single decision attributes, and
Table 8 was divided into six decision tables of single deci-
sion attributes. Taking 1y1 and 1r1 as examples, the data
discretization method based on information entropy and
the attribute reduction algorithm based on positive domain
change were used to discretize data and reduce the attributes
of the two decision tables [23], [24]. Then, each attribute
value was reduced individually. If a conflict occurred, the
attribute value was not deleted; the lack of a conflict indicated
that the attribute value should be deleted. Finally, the sim-
plified decision table is shown in Table 9; according to this
table, 59 error feedback rules each could be generated for
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TABLE 8. Decision information table of the error feedback for critical process parameters.
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TABLE 8. (Continued.) Decision information table of the error feedback for critical process parameters.

the moisture content of withered leaves and the first fixation
temperature (Table 3 ).

The optimum ranges of the moisture content of the tea
leaves after each unit and the CPPs in each unit are shown
in Table 4. The optimum ranges of moisture content, tem-
perature, and time in the first fixation were 56.0-70.0%,
270-500 ◦C, and 50-120 s, respectively; those in the second
fixation were 40.0-49.0%, 190-290 ◦C, and 44-146 s,
respectively; and those in the drying unit were 4.5-7.0%,
135-180 ◦C, and 40-90 min, respectively.

D. MOISTURE CONTENT DESIGN SPACE FOR THE
PRELIMINARY PROCESSING OF GREEN TEA
Ten thousand sets of CPP combinations in each unit were
randomly selected within the optimum CPP range. Using the
moisture content predicted by the unit model, combinations
beyond the optimum range of the moisture content of each
unit were discarded. Hence, the remaining combinations were
selected as the unit moisture content design space.

In the same manner, ten thousand sets of combinations
of the unit moisture content were randomly selected within
the optimum range of the unit moisture content. Using the
final predicted moisture content, combinations beyond the
optimum range of the final moisture content were discarded,
and the remaining combinations were selected as the final
moisture content design space.

The unit moisture content design space was used to guide
the selection of initial CPPs of each unit. When there was
an interference or operational deviation in the upstream unit,
the target value of the moisture content of the downstream
unit could be adjusted according to the final moisture content
design space. The CPPs of the downstream unit could be

guided by the unit design space according to the new target
value of the moisture content of the downstream unit. In this
case, the final moisture content could remain stable.

E. EXPERIMENTAL VERIFICATION
To verify the guiding role of the moisture content design
space for whole-process optimization and collaborative con-
trol, experiments were carried out on the tea production line
of Hubei Mingchun Tea Company. Ten batches of withered
leaves with different environmental temperature, humidity,
and moisture content were divided into two groups (A and B).
Group A was processed according to the general processing
method, and group B was processed according to the design
space. The initial conditions of the 10 tea leaf batches are
shown in Table 6.

Fig. 3 (a) and (b) show the changes in moisture con-
tents in the first batches of groups A and B. The CPPs of
group A were set according to the specified empirical values.
The target value of the unit moisture content of group B
was first specified according to the final moisture content
design space, and then the initial value of CPPs per unit
was designated according to the unit moisture content design
space. The final moisture content from group B was 3.05%,
which was close to the target value (see Fig. 3 (b)). To test
the stability of the proposed control strategy, a disturbance
was added manually in the first and second fixation units.
As shown in Fig. 3 (c) and (d), the moisture content after
adding disturbances diverged from the target values, and the
new CPP values were adjusted accordingly to achieve the
final moisture content. The new target value of the moisture
content of the subsequent units could be specified according
to the final moisture content design space, and then the new
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TABLE 9. Compensation decision table for moisture content of withered leaves and the temperature of the first fixation.
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TABLE 9. (Continued.) Compensation decision table for moisture content of withered leaves and the temperature of the first fixation.

value of CPPs of the subsequent units could be designated
according to the unit moisture content design space. The final
moisture content fluctuated around the target value (3%),
which indicated that the control strategy was stable.

The sensory evaluation and moisture content of 10 batches
in groups A and B are shown in Table 5. According to
the production standard of Mingchun Tea Company, better
tea quality can be achieved when the final moisture content
is closer to 3%. As shown in Table 5, the average scores
for the color (8.50), shape (8.25), aroma (8.35), and overall
quality (8.53) of group B were higher than those of group A.
In addition, the final moisture content of group B fluctuated
around the target values. The RMSE and variance of the final
moisture content of group A were 0.54% and 0.2294, respec-
tively; in group B, they were 0.05% and 0.0029, respectively.
The final moisture content of group B was more stable and
was closer to the target value. The results indicated that in-line
and precise control of moisture content during tea processing
could be achieved, and the tea quality could be more stable
and improved with the proposed method.

IV. CONCLUSION
In this work, a novel approach was established for in-line and
precise control of moisture content in green tea processing.
Multivariate models for predicting moisture content in a
single unit and the whole production line of tea process-
ing were established. LSSVM performed best in the first
fixation, second fixation, and drying units, with RMSEs
of 1.34%, 0.86%, and 0.13%, respectively. Moreover,
RBFNN-LSSVM performed best in the whole production
line, with an RMSE of 0.03%. The guidance of CPPs
was determined with rough set and design space methods.
In addition, the proposed approach was verified in a practical

tea production line. For the final moisture content of tea,
an RMSE of 0.05% and a variance of 0.0029 were achieved
with specified CPPs, which are significantly better than
those of the conventional method. This work provided the
first proof-of-principal data for in-line and precise control
of moisture content in a tea production line. These data
may provide an approach for accelerating the automation of
preliminary processing of green tea.

APPENDIX
Table 6, Table 7, Table 8 and Table 9 are shown in the
submitted appendix table.
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