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ABSTRACT An interval power flow (IPF) method that considers the interval correlations of input
random variables is proposed to improve the calculation accuracy of IPF, i.e., as correlated distributed
generations (DGs) and some correlated DGs-loads are integrated into distribution system. The interval
correlation for input variables is described by parallelogram model (PM), whose shape and size are
determined by the interval correlated level. Based on affine arithmetic (AA) method, the IPF is solved
through nonlinear optimization instead of traditional interval iterative computations. The optimization model
of IPF is established, and the interval correlations of input variables (DGs-DGs and DGs-loads) are added
into the IPF optimization problem in the form of additional constraint, to make the power flow solutions,
i.e., bus voltage magnitude, voltage angle, active and reactive power of branches, more accurate. Finally,
several cases, i.e., numerical case, IEEE33-bus, PG&E69-bus and IEEE118-bus distribution system, not
only demonstrate the effectiveness of the proposed method, but also indicate that the IPF results are affected
by uncertainty level, and the widths of IPF increase with the increasing of uncertainty level.

INDEX TERMS Affine arithmetic, interval correlation, interval power flow, nonlinear optimization,
parallelogram model.

NOMENCLATURE
xci Midpoint of interval variable xi
xwi Radius of interval variable xi
ρxixj Correlation coefficient between variables xi and xj
εi Noise symbol of interval variable xi
n System total bus number
PQ List of PQ-bus
PV List of PV-bus
Gij Real part of the bus admittance matrix Yij
Bij Imaginary part of the bus admittance matrix Yij
ei Real part of voltage magnitude for ith bus Vi
fi Imaginary part of voltage magnitude for ith bus Vi
θi Angle of Vi
εPi Injected active power noises at the ith bus
ε
Q
i Injected reactive power noises at the ith bus
nP List of PQ-bus and PV-bus
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ei,0 Central value of ei
fi,0 Central value of fi
ePij Partial deviation of ei at the jth bus for active power
f Pij Partial deviation of fi at the jth bus for active power

eQij Partial deviation of ei at the jth bus for reactive power

f Qij Partial deviation of fi at the jth bus for reactive power
Pi,0 Central value of interval active power
Qi,0 Central value of interval reactive power
Pij Active power of the ijth branch
Qij Reactive power of the ijth branch

ABBREVIATIONS
PF Power Flow
IPF Interval Power Flow
DGs Distributed Generations
PM Parallelogram Model
IA Interval Arithmetic
AA Affine Arithmetic
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MP Multi-dimensional Parallelepiped
MC Monte Carlo

I. INTRODUCTION
Power Flow (PF) study is one of the most basic tools in power
system analysis and is widely used in state estimation, voltage
control and security analysis, etc. [1]. With more and more
renewable resources, like wind and photovoltaic, and random
loads, i.e., electric vehicles, being integrated into distribution
system, traditional deterministic PF cannot meet schedule
requirements due to uncertainty of input variables, which
leads to uncertainty PF. The PF analysis is actually a problem
consisting of nonlinear equations. Once the input parameters
of PF equations are uncertain, PF solutions can not be rep-
resented by only single values but by intervals [2], [3]. The
method based on Interval Arithmetic (IA) to analyze PF is
called interval power flow (IPF) algorithm, which has been
studied for many years but still remains immature because of
the nonlinear characteristics of PF.

In the early development of IPF analysis, the main method
is to apply the IA of nonlinear equations into PF analy-
sis [4]. In terms of interval iterative method, the Newton
iteration [5] is not suitable for the PF calculation, because the
interval Jacobi matrix cannot be inverted, which means that
iterations cannot be performed. Soon after, Krawczyk-Moore
interval iterative method provides an effective algorithm to
solve the problem that interval matrix cannot be inverted [6],
which often appears in some IPF researches [7], [8].
Krawczyk-Moore method is useful to solve uncertain non-
linear equations but there are still some shortcomings, one
is that improper initial values cause the interval solutions
to be non-convergent, another limitation is that the range of
results are too conservative due to interval dependency [9],
which means that the bounds of IPF solutions are too wide.
Affine Arithmetic (AA) method due to the ability that alle-
viate the dependency is gradually and widely used in IPF as
an improved method, and which is being studied by many
scholars.

AA is a self-validated model that is designed to allevi-
ate the dependency problem in interval computations [10].
An affine variable is represented by a linear combination of
a central value and a series of noises rather than intervals.
Vaccaro et al proposed a methodology based on AA to ana-
lyze IPF problem [11], whose solution bounds are better and
narrower than those obtained by traditional methods. Since
then, various improved methods based on AA have been
proposed and applied into power systems [12]–[15], i.e., a
range arithmetic-based optimization model [12], the mixing
method under rectangular and polar coordinate system [13],
the method based on multi-stage AA [14] and the method
based on evidence theory and AA [15]. In addition to IA
and AA, many other algorithms and works are explored
for improving IPF. Both the optimality-based bounds tight-
ening (OBBT) method in [16] and moment-SOS approach
in [17] are applied into IPF analysis to improve the accuracy

of interval results. Moreover, a review of IPF calculation
methods of power system in recent years has been made
in [18]. For above references, the correlations among input
random variables are not considered, and there is very little
discussion of interval correlations for IPF problems in exist-
ing works.

Renewable energy sources and random loads, includ-
ing wind turbines, photovoltaic generations and electric
vehicles, et al, are constantly integrated into the distribution
system. When distributed generations (DGs) and random
loads are connected to the distribution system, the input
data, just like bus injected power is not only intermittent
and fluctuating, but also may be correlated to each other.
In [19]–[22], Jiang et al. described the correlated and inde-
pendent interval variables in a unified framework. At first,
a new multidimensional ellipsoid model is described in [19],
which can be regarded as a fundamental tool to relieve the
correlations among variables. Afterwards, multidimensional
parallelepiped (MP) convex model is proposed in [20]–[22],
and this model is compared with the interval model and
ellipsoidmodel. The comparative results show thatMPmodel
is more concise and more precise, so interval solutions can be
obtained by usingMPmodel. In this paper, a two-dimensional
parallelepiped model, that is parallelogram model (PM),
is applied to IPF problems in distribution power system based
on AA theory, and the improvements made are as follows:

(1) For the distribution system integrated with DGs and
loads, not only the strong randomness exists in DGs and loads
with sources, but also the correlations are in them [23], [24].
The correlations of input variables (DGs-DGs and DGs-
loads) in PF calculation are what this paper needs to consider,
which can reduce the conservatism of IPF.

(2) The method that calculates the IPF solutions based
on AA in [11] actually transforms the iterative process into
a nonlinear optimization problem, yet the interval correla-
tions mentioned above are not considered until now. In fact,
nonlinear optimization is composed by objective functions
and a series of constraints. The PM model is used to build
new constraints obtained by the correlations of input vari-
ables (DGs-DGs andDGs-loads), which enhance overall con-
straints in optimization problem. Accordingly, the interval
solutions of IPF are more accurate because of new constraints
with correlations.

(3) The influence of the uncertainty level and different
correlations of input variables on IPF are analyzed in this
paper. Uncertainty level can be expressed by the fluctuation
tolerance, which determines the shape and size of PMmodel.
Correspondingly, the constraints are also affected by fluctu-
ation tolerance. Another, the different correlations of input
variables are divided into DGs-DGs and DGs-loads, which
both have impacts on the IPF.

The rest of this paper is organized as follows: Section II
introduces interval correlation model, including traditional
IA method and PM model. Section III states a brief review
of the IPF based on AA. In Section IV, the method using PM
to IPF is analyzed. To verify the effectiveness of proposed
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method and explore the influence of uncertainty level and
the different correlations of input variables on IPF, numerical
cases and three distribution system cases, i.e., IEEE33-bus,
PG&E69-bus and IEEE118-bus distribution power system,
are discussed in Section V. Finally, conclusions of this paper
are summarized in Section VI.

II. INTERVAL CORRELATION MODEL
A. THE FUNDAMENTALS OF INTERVAL ARITHMETIC
IA is an attractive method to solve uncertainty problem
because it can reduce the impact of objective factors and
improve the reliability of analysis results. IA is a convenient
algorithm proposed byMoore in 1979 [4], and he also defined
interval variables and interval basic operations.

An interval number [x, x] is the set of real numbers x such
that x ≤ x ≤ x. Then a closed interval x is defined as:

x = [x, x̄] =
{
x ∈ R

∣∣x ≤ x ≤ x̄ } (1)

where x, x are elements of set R and are the lower and upper
bounds of the interval variable x, respectively.
For two interval variables x and y, the addition, subtraction,

multiplication, and division are defined in [4]. IA operations
play an important role in uncertain analysis for somany years.
However, overestimation problem always exits in traditional
IA operations due to a dependency assumption [10]. That is
to say, although IA can describe the variation range of the
uncertainty, it cannot express the correlation among inter-
val variables. For example, interval variable x = [−1, 1],
it minus itself get x − x =

[
x − x, x − x

]
= [−2, 2] by the

current IA operations rather than the exact result [0, 0]. The
reason for this ‘‘illness’’ is that the correlations for input
variables aren’t considered according to [21].

B. PARALLELOGRAM MODEL
A two-dimensional PM is developed by Professor C. Jiang,
who took into account independent and dependent interval
variables in a unified framework [21]. For the PM, the given
samples of variable space should be enclosed by establishing
a parallelogram, and the parallelogram with a minimum area
is considered as the best one. The correlations of interval
variables and variation ranges are reflected by the position
and size of specific parallelogram.

Fig. 1 is taken as an example to explain how the PM cures
the ‘‘illness’’ that traditional IA usually overestimates the
interval calculation results.

For Fig.1, xc1, x
c
2 and x

w
1 , x

w
2 are the midpoints and radiuses

of interval variables x1, x2, respectively.

xc = (x̄ + x)/2,

xw = (x̄ − x)/2. (2)

It is easy to know that the interval variables x1 and x2 are
composed by the rectangle ABCD in Fig. 1 as the correlation
is not considered. However, the samples may not fill the
entire rectangle ABCD when there is correlation between
x1 and x2. ParallelogramAECF is more suitable for describing

FIGURE 1. The parallelogram model.

x1 and x2 in this case, that is PM. In this model, the correlation
coefficient ρx1x2 between variables x1 and x2 is defined as
follows:

ρx1x2 =
b− a
b+ a

(3)

where a and b denote the semi-diagonal length of the paral-
lelogram in the direction of MF and MC.

The explicit expression of PM is described in (4) shown in
reference [3]: ∣∣∣ρ−1T−1R−1(x− xc)∣∣∣ ≤ e (4)

where | · | denotes the absolute value in it, and the matrices ρ,
T, R, x, xc and e are defined as:

ρ =

[
ρx1x1 ρx1x2
ρx2x1 ρx2x2

]
=

[
1 ρ12
ρ21 1

]
T =

[
w1 0
0 w2

]
wi =

1
2∑
j=1

∣∣ρij∣∣ ,
R =

[
xw1 0
0 xw2

]
x =

[
x1
x2

]
xc =

[
xc1
xc2

]
e = [−1, 1]T (5)

It is assumed that vector δ = [δ1δ2]T and δi = [−1, 1]
(i = 1, 2), then standard expression of two correlated interval
variables can be obtained from (4):

x = RTρδ + xc (6)

According to the PM and the standard expression in (4),
correlated interval variables are converted into independent
ones [21], whose specific steps and examples are described
in Section V.

As forN interval randomvariables, i.e., DGs, random loads
in power system, the correlation coefficient matrix ρ can be
described as

ρ =


ρ11 ρ12 · · · ρ1N
ρ21 ρ22 · · · ρ2N
...

...
. . .

...

ρN1 ρN2 · · · ρNN

 =


1 ρ12 · · · ρ1N
ρ21 1 · · · ρ2N
...

...
. . .

...

ρN1 ρN2 · · · 1


(7)
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where ρ is an N ×N symmetric correlation matrix, and the e
is N × 1 vector.

The uncertain domain for the N interval variables can be
described as∣∣∣∣∣∣∣ρ−1T−1R−1

 X1 − XC1
...

XN − XCN


∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣C−1
 X1 − XC1

...

XN − XCN


∣∣∣∣∣∣∣ ≤ e

(8)

where the matrices T, R, C are the N × N matrix.

III. INTERVAL POWER ANALYSIS BASED ON AA
PF calculation is the most basic and important tool of
power system analysis. However, large-scale uncertain loads
demand and generator power output accessed to power
system make it difficult to obtain the solutions of uncer-
tain power flow with traditional PF calculation method.
IA method is used to deal with uncertain problem for IPF,
that is, only approximate range of solution is needed instead
of exact value information. We know that there are conser-
vative defects when IA is applied to functions according to
Section II, so the AA is utilized in this paper.

A. AFFINE ARITHMETIC
AA is proposed to overcome the shortcomings of IA. In terms
of AA, an interval variable x = [x, x] is expressed as the
combination of a central value x0 and noises xiεi as

x = x0 + x1ε1 + x2ε2 + · · · + xnεn (9)

where εi(i = 1, 2, . . . , n) is noise symbol and xi(i =
1, 2, . . . , n) is associated coefficient. The specific value of
each noise is unknown except that it is restricted to εi =
[−1, 1](i = 1, 2, . . . , n) and each noise is independent from
the other noise symbols.

AA and IA can be transformed each other. An affine form
variable x can be expressed as x = [x0 − r, x0 + r], and the
radius r can be computed as r =

∑n
i=1 |xi|, where r is called

the total deviation for x. Conversely, an interval variable x =
[a, b] can be switched affine form as x = x0 + xiεi, where
x0 = (b+ a)/2 and xi = (b− a)/2. There is more additional
relevant information in affine form, so the solutions are more
accurate by using AA.

Key feature of AA is that different affine form variables
may have some same noise symbols. Thus, given two affine
form variables x and y:

x = x0 + x1ε1 + x2ε2 + · · · + xnεn
y = y0 + y1ε1 + y2ε2 + · · · + ynεn

The basic operations of affine form are defined as:
αx + βy+ γ = (αx0 + βy0 + γ )+ (αx1 + βy1)ε1

+ · · · + (αxn + βyn)εn (10)

where α, β and γ are three real numbers,

x · y = (x0 +
n∑
i=1

xiεi) · (y0 +
n∑
i=1

yiεi)

= x0y0 +
n∑
i=1

(x0yi + y0xi)εi +
n∑
i=1

xiεi ·
n∑
i=1

yiεi

= x0y0 +
n∑
i=1

(x0yi + y0xi)εi + zkεk (11)

where εk is the new noise and zk is the new coefficient that
can be calculated by zk =

∑n
i=1 |xi| ·

∑n
i=1 |yi|. In the same

way, we can get x/y through x · (1/y).

B. INTERVAL POWER FLOW
Firstly, typical PF equations under rectangular coordinate
system are

Pi = ei
n∑
j=1

(Gijej − Bijfj)+ fi
n∑
j=1

(Gijfj + Bijej)

Qi = fi
n∑
j=1

(Gijej − Bijfj)− ei
n∑
j=1

(Gijfj + Bijej)

∀i ∈ nPQ

(12)

andPi = ei
n∑
j=1

(Gijej − Bijfj)+ fi
n∑
j=1

(Gijfj + Bijej)

V 2
i = e2i + f

2
i ∀i ∈ nPV

(13)

where

n system total bus number;
nPQ list of PQ-bus;
nPV list of PV-bus;
Gij + jBij Gij, Bij are real and imaginary part of Yij

respectively, where Yij is the bus admit-
tance matrix;

ei + jfi ei, fi are real and imaginary part of Vi,

where
√
e2i + f

2
i = Vi is the ith bus volt-

age magnitude;
θij = θi − θj θi, θj are angles of Vi,Vj respectively.

For IPF, the injected active power Pi and reactive power
Qi are regarded as intervals just like [Pmin

i ,Pmax
i ] and

[Qmin
i ,Qmax

i ] because of uncertain loads and renewable
energy generations, and then the power flow solutions,
i.e., bus voltage magnitude, voltage angle and the line flows,
are also intervals. In other words, these input power variations
lead to the fluctuations for solutions of PF results. Therefore,
we assume that εPi , ε

Q
i are injected active and reactive power

noises at the ith bus respectively, and their initial values are
both [−1, 1]. According to reference [11], the state variables
of power system in rectangular coordinates are described as
affine form:

ei = ei,0 +
∑
j∈nP

ePijε
P
j +

∑
j∈nPQ

eQij ε
Q
j

fi = fi,0 +
∑
j∈nP

f Pij ε
P
j +

∑
j∈nPQ

f Qij ε
Q
j i ∈ nP

(14)
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where

nP list of PQ-bus and PV-bus;
ei,0, fi,0 central value of ei and fi;
ePij, f

P
ij partial deviation of ei and fi due to the

active power injected at the jth bus;
eQij , f

Q
ij partial deviation of ei and fi due to the

reactive power injected at the jth bus;

Parameters in (14) ei,0, fi,0, ePij , f
P
ij , e

Q
ij , f

Q
ij are all unknown

but can be calculated by the formulations in [13], whose
specific calculation expressions are as follows:

ePij =
∂ei
∂Pj

∣∣∣∣
0
1Pj, f Pij =

∂fi
∂Pj

∣∣∣∣
0
1Pj

eQij =
∂ei
∂Qk

∣∣∣∣
0
1Qk , f Qij =

∂fi
∂Qk

∣∣∣∣
0
1Qk

for i, j ∈ n Pk ∈ nQ (15)

where these partial derivatives ∂ei
∂Pj
|0,

∂fi
∂Pj
|0,

∂ei
∂Qk
|0,

∂fi
∂Qk
|0 can

be obtained by the inverse of the Jacobi matrix for deter-
ministic PF at point ei,0 and fi,0. As for ei,0 and fi,0, they
can be obtained by deterministic PF or MC as the central
value references.1Pj and1Qk represent the radii of interval
[Pmin

j ,Pmax
j ] and [Qmin

k ,Qmax
k ] respectively. That is, 1Pj =

(Pmax
j − Pmin

j )/2 and 1Qk = (Qmax
k − Qmin

k )/2.
Then we replace ei and fi in (12) and (13) with the affine

form in (14). After basic operations by AA, the following AA

form of injected powers can be obtained:
Pi = Pi,0 +

∑
j∈nP

PPijε
P
j +

∑
j∈nQ

PQij ε
Q
j +

∑
k∈nN

Pikεk

Qi = Qi,0 +
∑
j∈nP

QPijε
P
j +

∑
j∈nQ

QQij ε
Q
j +

∑
k∈nN

Qikεk

∀i ∈ PQ

(16)

and
Pi = Pi,0 +

∑
j∈nP

PPijε
P
j +

∑
j∈nQ

PQij ε
Q
j +

∑
k∈nN

Pikεk

V 2
i = V 2

i,0 +
∑
j∈nP

V P
ij ε

P
j +

∑
j∈nV

VQ
ij ε

Q
j +

∑
k∈nN

Vikεk

∀i ∈ PV

(17)

where

Pi,0 central value of interval active power, which is
(Pmini + P

max
i )/2;

Qi,0 central value of interval reactive power, which is
(Qmini + Q

max
i )/2;

V 2
i,0 known value of PV-bus;
εk new noises generated during the calculation;

PPij,P
Q
ij ,Pik ,Q

P
ij,Q

Q
ij ,Qik ,V

P
ij ,V

Q
ij ,Vik new coefficients of

noises εPj , ε
Q
j and εk .

Generally, it is assumed that subscripts 1, 2, . . . ,m denote
PQ buses, subscriptsm+1,m+2, . . . , n−1 denote PV buses
and subscript n denotes the slack bus. The affine forms (16)
and (17) can be converted into the matrix form in (18), as
shown at the bottom of this page.



[
Pmin
1 ,Pmax

1

]
...[

Pmin
n−1,P

max
n−1

][
Qmin
1 ,Qmax

1

]
...[

Qmin
m ,Qmax

m
][

V 2
m+1,V

2
m+1

]
...[

V 2
n−1,V

2
n−1

]


=



P1,0
...

Pn−1,0
Q1,0
...

Qm,0
V 2
m+1,0
...

V 2
n−1,0


+



PP11 PP12 · · · PP1,n−1 PQ11 PQ12 · · · PQ1,m
...

...
...

...
...

...
...

...

PPn−1,1 PPn−1,2 · · · PPn−1,n−1 PQn−1,1 PQn−1,2 · · · PQn−1,m
QP11 QP12 · · · QP1,n−1 QQ11 QQ12 · · · QQ1,m
...

...
...

...
...

...
...

...

QPm,1 QPm,2 · · · QPm,n−1 QQm,1 QQm,2 · · · QQm,m
V P
m+1,1 V P

m+1,2 · · · V P
m+1,n−1 VQ

m+1,1 VQ
m+1,2 · · · VQ

m+1,m
...

...
...

...
...

...
...

...

V P
n−1,1 V P

n−1,2 · · · V P
n−1,n−1 VQ

n−1,1 VQ
n−1,2 · · · VQ

n−1,m



·



εP1
εP2
...

εPn−1
ε
Q
1

ε
Q
2
...

ε
Q
m



+



P11 P12 · · · P1,nN
...

... · · ·
...

Pn−1,1 Pn−1,2 · · · Pn−1,nN
Q11 Q12 · · · Q1,nN
...

...
...

...

Qm,1 Qm,2 · · · Qm,nN
Vm+1,1 Vm+1,2 · · · Vm+1,nN
...

...
...

...

Vn−1,1 Vn−1,2 · · · Vn−1,nN




ε1
ε2
...

εnN

 (18)
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Correspondingly, the more general form can be written as

f = C + AX + BY (19)

where

f =
[ [
Pmin
1 ,Pmax

1

]
· · ·

[
V 2
n−1,V

2
n−1

] ]T
,

C =
[
P1,0 · · · V 2

n−1,0

]T
,

A =


PP11 · · · PQ1,m
...

. . .
...

V P
n−1,1 · · · VQ

n−1,m

 ,

B =

 P11 · · · P1,nN
...

. . .
...

Vn−1,1 · · · Vn−1,nN


X = [εP1 ε

P
2 · · ·ε

P
n−1ε

Q
1 ε

Q
1 · · · ε

Q
m]

T ,

Y = [ε1ε2 · · · εnN ]T .

As discussed in [11] and [13], the range of IPF can be
reduced by contracting variable X , while Y cannot be con-
tracted. Because X is the original noises we assumed, but Y
is the new noises generated by the calculation process. That
means the elements in X will become narrower than [−1, 1]
after calculation and the elements for Y have always remained
the same [−1, 1]. Actually, the IPF problem is changed into
nonlinear optimization problem about noises εi according
to [11] and [13], where (19) denotes constraint conditions and
the PF solutions of affine form to be solved can be treated as
the objective functions. From [13], we know that one of the
constraints can be obtained by (19) and expressed as

AX = f − C − BY = D = [inf(D), sup(D)] (20)

According to the definition of εi and (20), the constraints
about εi can be also expressed as (21):

s.t.



−1 ≤ εPi ≤ 1, i = 1, 2, . . . , n− 1
−1 ≤ εQi ≤ 1, i = 1, 2, . . . ,m

inf(Di) ≤ (AX )i =
n−1∑
j=1

AijεPj +
m∑
j=1

Aijε
Q
j ≤ sup(Di),

i = 1, 2, . . . , 2n− 2

(21)

where D can be obtained by calculating (20), and the Di,
(AX)i represent the ith element of D and AX respectively.
As we all know, the solutions of PF are bus voltage mag-

nitude Vi, bus voltage angle θi, active power of branches Pij
and reactive power of branches Qij. In rectangular coordinate
system, they can all be represented by these functions about
ei and fi as shown in (22)-(25).
1) Voltage magnitude Vi

V 2
i = e2i + f

2
i = (ei,0 +

∑
j∈nP

ePijε
P
j +

∑
j∈nQ

eQij ε
Q
j )

2

+ (fi,0 +
∑
j∈nP

f Pij ε
P
j +

∑
j∈nQ

f Qij ε
Q
j )

2 (22)

2) Voltage angle θi

θi = arctan(fi/ei)

= arctan[(fi,0 +
∑
j∈nP

f Pij ε
P
j +

∑
j∈nQ

f Qij ε
Q
j )

/(ei,0 +
∑
j∈nP

ePijε
P
j +

∑
j∈nQ

eQij ε
Q
j )] (23)

3) Active power of branches Pij

Pij = Gij(e2i + f
2
i − eiej − fifj)+ Bij(eifj − ejfi) (24)

4) Reactive power of branches Qij

Qij = Gij(eifj − ejfi)− Bij(e2i + f
2
i − eiej − fifj) (25)

As can be seen from (22), (23), (24) and (25), these func-
tions can all be converted into polynomials about noises εi.
So the range of these solutions can be obtained by nonlin-
ear optimization, that is, their min and max values can be
obtained when (22)-(25) are as objective functions and (21)
is as the constraints.

In summary, IPF solutions can be obtained by nonlinear
optimization about noises εi, and the IPF solutions obtained
by AA are better than that obtained by IA. But as mentioned
in Section I, the correlations among some interval variables
are not considered, the interval solutions are still not accurate
enough. Naturally, the bounds of IPF solutions with interval
correlations are becoming much narrower than those without
correlations.

IV. INTERVAL POWER FLOW WITH CORRELATION
Section III describes the process of IPF calculation by AA.
As discussed in Section I, it exists correlations for DGs-DGs
and DGs-loads in distribution system. It is assumed that
DGs-DGs and DGs-loads are accessed the ith and the jth bus
in distribution system, and they have a certain correlations,
then the correlations can be added as new constraints in (21).

Similarly, in (19), f , B, Y and C are known, and only
X in AX is unknown. The intervals [inf(Di),sup(Di)] can be
obtained by calculating the known equation f −C−BY = D,
and the uncertain AX is in these intervals Di, which can be
used as constraints about εPi and εQi . Generally, the X can be
well constrained by the upper and lower bounds of Di, just as
described in [13]. But Di is not the optimal constraint of X ,
the reason is that it may exist correlations among the elements
in f .
Next, the ith and the jth buses are used for analysis. Both

(AX)i and (AX)j have upper and lower limits, which are
expressed as {

inf(Di) ≤ (AX )i ≤ sup(Di)
inf(Dj) ≤ (AX )j ≤ sup(Dj)

(26)

These two inequalities in (26) are actually parts of (2n − 2)
inequality constraints in formula (21), which are the ith and
the jth respectively.

The inequalities in (26) presented as four lines AB, BC,
CD and DA to form a rectangle ABCD in Fig. 2. But when
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FIGURE 2. The constraint model with correlation.

considering the correlations of interval variables, the range
of (AX)i and (AX)j should be described by a parallelogram
AECF instead of the rectangle ABCD in Fig. 2.
where
Points: x1 = inf(Di), x2 = sup(Di), y1 = sup(Dj), y2 =
sup(kDi + Dj), y3 = sup(Dij), y4 = inf(Dj), y5 =

inf(Dij), y6 = inf(kDi + Dj).
Line L1: (AX )j = k(AX )i + b.
Actually, the area or size of parallelogram is narrowed

compared to rectangle ABCD, which means the constraints
are enhanced, so the parallelogram surrounded by four lines
AE, EC, CF and FA are the optimal constraints. Now the
problem is how to obtain the inequality constraints about
these lines.

Firstly, a line can be expressed as (AX )j = k(AX )i + b in
Fig.2, which is equivalent to

b = (AX )j − k(AX )i (27)

where (AX )i and (AX )j are intervals.
As for (27), b can be calculated as b = [inf(kDi +

Dj), sup(kDi+Dj)] by traditional IA method, which does not
reduce the constraint area as shown by the lines L1 and L4
in Fig.2. Through PM method mentioned in Section II, b can
be calculated as b = [inf(Dij), sup(Dij)], which the constraint
area is reduced as shown by the lines L2 and L3.
That is to say, regardless of the slope k , the constraints can-

not be enhanced by IA method. But as long as the slope k is
appropriate, the constraints can be optimal by the PMmethod.
The optimal slope k can be obtained by the borderlines of PM.
So the improved constraints are

s.t.



−1 ≤ εPi ≤ 1, i = 1, 2, . . . , n− 1
−1 ≤ εQi ≤ 1, i = 1, 2, . . . ,m

inf(Di) ≤ (AX )i =
n−1∑
j=1

AijεPj +
m∑
j=1

Aijε
Q
j ≤ sup(Di),

i = 1, 2, . . . , 2n− 2
inf(Dij) ≤ k(AX )i + (AX )j ≤ sup(Dij),

i, j ∈ 1, 2, . . . , 2n− 2
(28)

where Dij = [inf(Dij), sup(Dij)] is calculated by PM method.

In a word, new constraints are described as the following
two cases:
1) without correlation

inf(kDi+Dj)≤k(AX )i+(AX )j≤sup(kDi+Dj) (29)

In this case, (29) is same as (26), that is,Dij = kDi+Dj.
2) with correlation
According to the description above, it exists that Dij ⊆

kDi + Dj as the correlations of input variables is considered,
original constraints are enhanced by adding new constraints.
The bounds of IPF solutions are tighter.
Generally speaking, the flow chart of the proposed method

is shown in Fig. 3 and the process of the proposed method is
illustrated according to following steps.

FIGURE 3. Process of the proposed method.

Step 1:Writing the typical PF equations under rectangular
coordinate system presented in (12), (13) and obtaining the
solutions of deterministic PF.
Step 2: The output power of DGs and random loads are

regarded as the source of interval fluctuation. The affine form
of PF equations in (18) is obtained by assuming εPi and εQi
represent the injected active and reactive power noises at the
ith bus respectively.
Step 3: The affine form of PF equations in (18) is written

as the constraints in (21) about noises εi, which includes the
boundary of noises εi [−1, 1] and the boundary of (AX)i
obtained by transforming (18).
Step 4: The correlations of input variables (DGs-DGs and

DGs-loads) are transformed into the constraints through PM
model. The constraints (28) can be obtained by integrating
the additional correlations constraint into (21).
Step 5: The objective functions (22)-(25), i.e., the affine

form of bus voltage magnitude, voltage angle, active and
reactive power of branches, are obtained. Interval solutions
of IPF problem combing with objective functions (22)-(25)
and constraints (28) can be obtained through optimization
algorithm such as the fmincon of Matlab.
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V. CASE STUDY
In this section, a numerical case and three case studies about
distribution system are discussed. In the first numerical case,
it is used to prove that the interval solution does becomemore
accurate with considering the correlations of input variables.
In the second case, the correctness and effectiveness of the
proposed method are proved with IEEE33-bus distribution
system. In the third case, we test the effects of different
injected power uncertainty levels on the IPF with PG&E69-
bus distribution system. The results show that the widths of
IPF solutions are much tighter with the interval correlations,
and the final interval solutions are also affected by uncertainty
level. In the last case, the IEEE118-bus distribution system
illustrates the optimization level as a supplementary example.

A. NUMERICAL CASE
Two interval variables x1 = [2, 4] and x2 = [2, 4] are
considered in this case, which are calculated by traditional
IA and the proposed method.

Taking the function f = x1 + x2 as an example. It is
assumed that the correlation coefficient between x1 and x2
is ρ = −0.2 (The positive correlation is not considered
due to similarity), then the following expression (30) can be
obtained according to (6):[

x1
x2

]
= RTρδ + xc

=

[
1 0
0 1

] [
1/1.2 0
0 1/1.2

]
×

[
1 −0.2
−0.2 1

] [
δ1
δ2

]
+

[
3
3

]
(30)

In this way, the function f (x) with correlations is transformed
into the function f (δ) with only independent variables.

f (δ) = (0.8333δ1 − 1.6667δ2 + 3)

+ (−1.6667δ1 + 0.8883δ2 + 3)

= [4.6668, 7.3332] (31)

Compared the interval result [4, 8] using traditional IAwith
the interval result [4.6691, 7.3296] using Monte Carlo (MC),
it can be seen that the interval results obtained by the proposed
method are really much narrower.

Of course, one example does not lead to the general conclu-
sion, so some different correlation coefficients ρ and different
objective functions f (x) are analysed. The objective functions
are as follows:

f1 = x1 + x2
f2 = x1 · x2 − x1 + x2
f3 = x21 − x

2
2 − x1 · x2 + x1 + x2

The sample size of MC is set to 10,000, which is treated as
the true value. The results are shown in Table 1.

For the function f1, the interval results obtained from MC
and the method with & without correlation are all [4, 8] when
correlation coefficient is set as 0.2. Compared to the interval

TABLE 1. Comparison of results with and without correlation.

result [4.669, 7.330] obtained by MC, the function interval
value [4.667, 7.333] obtained by the method with correlation
is closer than the interval result [4, 8] without correlation
when the coefficient is set as -0.2. As for f2 and f3, their
interval results are all affected by the correlations, whether
the correlation coefficient is positive or negative. However,
the degree of correlation influence is different. The proposed
method is effective to solve these functions whose input
variables are correlative.

In order to reflect the universality of the proposed method,
we can apply this method into the IPF problem with interval
correlations in distribution power system.

B. IEEE33-BUS DISTRIBUTION SYSTEM
The single line diagram and load parameters of IEEE33-bus
distribution system can be found in paper [25]. There are
manyways to select parameters, i.e., the number, location and
capacity of DGs and random loads such as electric vehicles,
but just as an example, it is assumed that five DGs with
500+j150kVA and one additional load with 300+j100kVA
are integrated into IEEE33-bus distribution system as shown
in Fig.4. The correlations of bus 18 and 33 with DGs, bus
25 and 29 with DGs, bus 9 with DG and bus 10 with
load are considered, and the fluctuation tolerance of output
power of all DGs and loads is ±10%. The correlations for
the DGs-DGs and DGs-loads are set as −0.8 in this paper
(The positive correlation is not considered due to similarity).
The results obtained by MC simulation with correlations are
regarded as the ‘true’ bounds of IPF, and the sample number
is set to 10,000 to ensure accurate level. For MC simulation,
the samples of two interval variables are in parallelogram
shown in Fig.1. The calculation results of IPF are presented
in Fig.5, Fig.6 and Fig.7.

FIGURE 4. The single line diagram of IEEE33-bus system.

It can be observed that the deterministic PF is between
upper and lower bounds of interval results obtained by three
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FIGURE 5. The results of bus voltage magnitude of IEEE33-bus system.

FIGURE 6. The results of bus voltage angle of IEEE33-bus system.

FIGURE 7. The results of active power of IEEE33-bus system.

different methods (with correlation, without correlation and
MC) from Figs.5∼7. Compared to the interval bus voltage
magnitude without correlation, the bounds with correlation
are closer to the ‘true’ bounds of MC from Fig.5. Same to
voltage magnitude, the bus voltage angle and active power
of branches have the same optimized performance according
to Fig.6 and Fig.7. It shows that the accuracy of the IPF
solutions is improved when the correlation of input variables
are considered. The reason is that the interval extension is
emphasized by the method with correlation while is ignored
by the method without correlation. In other words, the fea-
sible region of IPF solutions is smaller as the correlation of
input variables in proposed method are considered.

FIGURE 8. Impact of correlation with/without DGs-loads.

To research the influence of DGs-loads with correla-
tions on IPF, the correlated buses considered are divided
two situations: first one is the correlations of DGs-DGs
(bus 18, 33) and DGs-DGs (bus 25, 29) are considered,
another is the correlations of DGs-DGs (bus 18, 33),
DGs-DGs (bus 25, 29) and DGs-loads (bus 9, 10) are con-
sidered. It is assumed that the fluctuation tolerance of output
power for all DGs and loads is ±10%, and the correlation
coefficients are set as −0.8. Two different voltage magni-
tude of IPF are shown in Fig. 8. The bounds with corre-
lations of DGs-loads are narrower than the ones without
correlations of DGs-loads. The boundaries of IPF become
narrower because the number of correlated buses considered
increases, no matter whether the correlated buses are DGs or
loads.

C. PG&E69-BUS DISTRIBUTION SYSTEM
The single line diagram and parameters of PG&E69-bus
distribution system can be found in paper [26]. Similar to
IEEE33-bus distribution system, it is assumed that five DGs
(bus 15, 27, 39, 54, 69) with 1000+j300kVA and one addi-
tional load (bus 48) with 800+j200kVA are integrated into
PG&E69-bus distribution system, and the correlations of bus
15 and 69, bus 27 and 54, bus 39 and 48 are considered. The
fluctuation tolerance of output power of all generators and
loads is±15%, the correlation coefficients for DGs-DGs and
DGs-loads are set as −0.6 (The positive correlation is not
considered due to similarity).

Firstly, we can get the same conclusion that the accuracy
of the IPF solutions is narrowed when the correlations are
considered from Figs.9∼11. However, compared with the
results shown in Figs.5∼7, the interval widths of IPF solu-
tions between ‘‘with correlation’’ and ‘‘without correlation’’
seem much smaller in PG&E69-bus distribution system than
the interval widths obtained in IEEE33-bus distribution sys-
tem. The important reason is that the scale of PG&E69-bus
distribution system is larger than IEEE33-bus distribution
system, but the number of DGs and additional loads inte-
grated into network are also just six. The effect caused by the
correlation becomes more obvious when the number of DGs
increases.
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TABLE 2. Comparison of results of evaluation indexes.

FIGURE 9. The results of bus voltage magnitude of PG&E69-bus system.

FIGURE 10. The results of bus voltage angle of PG&E69-bus system.

FIGURE 11. The results of active power of PG&E69-bus system.

We continue to explore the impact of uncertainty level on
the bounds of the IPF solutions using the proposed method
in this paper. The results are described in Fig.12. It shows

FIGURE 12. Impact of uncertainty level on voltage magnitude.

that the obtained boundaries, i.e., the bus voltage magnitude,
become much tighter with decreasing of uncertainty level
from 30% to 20% and 10%.

In order to indicate the optimization level of the proposed
method, voltage magnitude is used as an example to define
maximum, minimum and average evaluation indexes, which
are shown in (32), (33) and (34).

Amax = max(
vmax
m,i − v

min
m,i

vmax
i − vmin

i

)× 100% (32)

Amin = min(
vmax
m,i − v

min
m,i

vmax
i − vmin

i

)× 100% (33)

A =

n∑
i=1

(vmax
m,i − v

min
m,i )

n∑
i=1

(vmax
i − vmin

i )
× 100% (34)

where vmaxm,i and vminm,i are true upper and lower bounds of IPF,
which can be represented by the MC simulation results, and
vmaxi , vmini are estimated boundaries calculated by the AA,
including the methods with correlation and without correla-
tion. So the evaluation indexes are the ratio that the widths
for interval results obtained by AA to the ones obtained by
the MC method, and A is the average value, Amax is the max-
imum value and Amin is the minimum value. The results of
IEEE118-bus distribution system is added to the simulation,
because much larger grid size can be provided to validate the
performance of the presented method. The injection capacity
of correlated DGs and loads is 2000+j500 kVA, and the
correlations of bus 85 and 88, bus 37 and 62, bus 77 and
99, bus 46 and 54, bus 113 and 118 are considered (DGs:
bus 85, 88, 37, 62, 77, 99, 46, 113, Load: bus 54 and 118).
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The correlated level is set as −0.15, and 10% variation of
output power for generators and loads is considered. The
results are shown as Table 2.

For the values of three evaluation indexes A, Amax and
Amin in any one power system above. The evaluation indexes
with correlations are larger than the ones of without correla-
tion, which shows that the results obtained by the proposed
method are closer to the true values according to Table 2.
Moreover, the calculation time (Computer: Core(TM)
i5-5200 CPU @ 2.20GHz, 8GB RAM) increases with the
increasing of the scale of distribution system, and the
time with correlation (3.09s, 11.66s, 32.49s for IEEE33-
bus system, PG&E69-bus system, IEEE118-bus system
respectively) is not much more than the time without cor-
relation (2.09s, 10.02s, 29.27s for IEEE33-bus system,
PG&E69-bus system, IEEE118-bus system respectively).
These two methods are all much faster than MC (17.84s,
71.87s, and 199.55s).

For different system, we can get the same conclusion that
the proposed method with correlation can narrow the IPF
solutions without spending much more time.

VI. CONCLUSION
This paper proposes an improved IPF method that considers
the correlations of input variables (DGs-DGs and DGs-loads)
in the distribution power system based on AA, which makes
the interval solutions of uncertain power flow more accurate.
The distribution system that integrates DGs and loads is
used as an example to validate the effectiveness of proposed
method, the obtained calculation results show that the interval
correlations do affect the accuracy of IPF solutions, and the
bounds of interval solutions would be much tighter with
correlation of input variables.

Both the correlations of DGs-DGs and DGs-loads have
the effect that narrows the bounds of IPF. Furthermore,
the bounds of the IPF interval results also change with differ-
ent uncertainty level. Generally, much smaller the uncertainty
fluctuation is, the much tighter the bounds are.

Although the method presented in this paper is proved to
be practical and effective, there remains a lot of research to
do, such as the nature of the interval correlation, the impact
of different location and number of integrated DGs and loads,
and the improvement of the correlation model.
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