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ABSTRACT Aiming at the selection problem for course of action (COA) of aviation swarm, this paper
proposes an optimized selectionmethod for COA of aviation swarm based on dynamic influence nets (DINs),
and discrete artificial bee colony (DABC) algorithm. Firstly, based on the basic concept of the aviation swarm
combat plan, static and dynamic modeling and analysis are performed, respectively. Then, the probability
propagation mechanism of DINs, which mainly includes key parameter determination and probability
propagation algorithm, is established. Subsequently, based on the analysis of the evaluation index, the model
is solved by using DABC algorithm with real number coding. Finally, this paper takes the offshore
island attack task as an example, and carries out multiple sets of simulation cases to compare DABC
algorithm with discrete glowworm swarm optimization (DGSO) algorighm and discrete particle swarm
optimization (DPSO) algorithm, through all these cases, the rationality of the model, and the effectiveness
and superiority of the algorithm are verified.

INDEX TERMS Aviation swarm, course of action, dynamic influence nets, discrete artificial bee colony
algorithm, probability propagation mechanism.

I. INTRODUCTION
With the rapid development of aviation platform technol-
ogy, information network technology, and artificial intelli-
gence technology, the trend of swarming, networking, as well
as intelligentization of air combat has become increasingly
apparent. Aviation platforms combat in a swarming mode,
i.e., aviation swarm combat, will become an important air
combat style in the future [1]. Different from the traditional
aerial formation combat style, aviation swarm combat has
more balanced platform capability distribution, more diverse
formation style, more flexible battlefield command and con-
trol (C2), and has significant combat advantages.

The design for course of action (COA) of aviation swarm
is that, the optimal or better combat action plan generated by
aviation swarm, based on the actual combat environment and
the possible hostile behaviors of the enemy. The essence of
this problem is a scientific quantitative description and effi-
cient optimization of the causal relationship among dynamic
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combat action, combat environment, and combat effect, and
the pros or cons of designing effect will determine the level
of aviation swarm combat capability.

For the analysis and modeling of COA problem, the cur-
rent research mainly adopts bayesian networks (BNs) and
dynamic bayesian networks (DBNs) [2]. As typical proba-
bilistic network models, BNs and DBNs can effectively meet
the modeling demands of combat problems with dynamic
uncertainty. However, in practical applications, BNs and
DBNs have their inherent defects. Firstly, in the process of
probability reasoning, BNs and DBNs are highly dependent
on the conditional probability table (CPT), and as the number
of nodes increases, it will cause difficulties in the construc-
tion of CPT. Secondly, the reasoning calculations for a large
number of probabilities in CPT, is relatively inefficient in
computing time [3]. In order to effectively solve the above
problems, through improving the related methods, Chang
proposed a novel influence nets (INs) method by introducing
causal strength logic (CSAT) parameters [4]. In the modeling
process, INs only needs to specify the CAST parameters to
characterize the positive and negative effects between a pair
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of nodes with dependencies, thereby reducing the number
of parameter definitions. In addition, because INs adopts
the so-called loopy belief propagation (LBP) mechanism to
carry out reasoning, it effectively improves the reasoning
efficiency [5], [6].

In terms of research details, in the current research,
the key parameters are always dependent on expert expe-
rience, and the experience of different experts may lack
consistency, which makes it difficult for key parameters to
reflect comprehensive and accurate expert opinions. There-
fore, the corresponding consistency algorithm is needed to
gather the similar expert opinions to improve the credibility
of key parameters. Besides, due to the limitation of encod-
ing/ decoding method and the algorithm performance itself,
the algorithm’s solution efficiency is not high, it is necessary
to use an efficient algorithm with simple and flexible encod-
ing/ decoding method to solve the model.

To sum up, the research purpose of this paper is to select
the best or better COA of aviation swarm, so as to improve
the air combat effectiveness. Section II gives the concept of
COA, and then a dynamic influence nets (DINs) method is
used to systematically model the COA problem of aviation
swarm. In Section III, key parameters are determined by using
a consistency test method based on Kendall’s test of concor-
dance (KTC) [7], and a comprehensive weighted method is
used to gather consensus expert opinions, and on this basis,
probability propagation mechnism of DINs is put forward.
Afterwards, a novle discrete artificial bee colony (DABC)
algorithm is used to solve the model in Section IV. Section V
provides several groups of simulation experiments to verify
the performance of the proposed algorithm, and in SectionVI,
summary and future research prospects are given.

II. MODELING AND ANALYSIS OF COA
A. BASIC CONCEPT OF COA
Firstly, a few definitions need to be made clear.
Def. 1 (Actions): Actions are defined as feasible combat

measures, which are jointly determined by multiple combat
experts in accordance with the aviation swarm combat rule
and combat resource constraints, and the purpose of actions
is to achieve its own combat objectives.

Let the action set as A = {a1, a2, · · · , a|A|}, and |A| is
the number of actions. Considering that the completion of air
combat task by aviation swarm is a continuous and dynamic
evolution process, it is assumed that the evolution phase can
be divided into T+1, and the external combat environment at
the initial phase t0∼t1, is characterized as CE(t0).
If at the phase of tk−1∼tk (2≤ k ≤ T+1), aviation swarm

takes action ai, then let Pk−1(ai) = 1, 1 ≤ i ≤ |A|.
Conversely, if action ai is not taken, then let Pk−1(ai) =
0, 1 ≤ i ≤ |A|. Therefore, without considering resource and
regulatory constraints, the number of optional subaction of ai
in all T + 1 combat phase is 2T . And due to the existence of
corresponding constraints, the number of feasible subaction
strategies of ai is far less than 2T .

Assume that the combat subaction set for ai within all
T + 1 combat phase is 9i = {a1i , a

2
i , · · · , a

|ai|
i }, |ai| < 2T .

For all 1 ≤ j ≤ |ai|, there must be aji in 9i, is constituted
by a sequence [aji(t1), a

j
i(t2), · · · , a

j
i(tT )] of length T , where

aji(tk ) ∈ {0, 1}, 1 ≤ k ≤ T . Therefore, in T + 1 combat
phase, all combat actions constitute a feasible action space
9S = 91 ×92 × · · · ×9|A|.
Def. 2 (Hostile Behaviors): Hostile behaviors are defined

as actions taken by the enemy to undermine our combat
action, and the purpose of hostile behaviors is to hinder
the achievement of our combat objectives. Let the possible
hostile behavior set as B ={b1, b2, · · · , b|B|}, where |B| is
the number of hostile behaviors.

Due to the uncertainty of hostilities, the occurrence of
hostile behaviors has certain random characteristics. How-
ever, combat experts can still give the occurrence prob-
ability of hostile behaviors in a certain combat phase
based on historical combat data and their own combat
experience.

At the phase tk−1∼tk (2 ≤ k ≤ T + 1), the occurrence
probability of bl(1 ≤ l ≤ |B|) is generally a probability inter-
val with a range of [Pmin

k−1(bl),P
max
k−1(bl)]. In this probability

interval, this paper assumes that Pk−1(bl) obeys a uniform
distribution [8].
Def. 3 (Desired Effects): Desired Effects are defined as the

ultimate combat objectives to be achieved by aviation swarm.
For different tasks performed, the type and number of desired
effects are different. The goal of selecting an effective COA
is to maximize the probability of achieving the desired effect.
Let the desired effect set of aviation swarm combat as D =
{d1, d2, · · · , d|D|}, where |D| is the number of desired effects.
Def. 4 (Intermediate Effects): Intermediate Effects are

defined as the phased combat effects achieved by aviation
swarm in order to achieve the ultimate combat objective.
Intermediate effects are the link between actions, hostile
behaviors and desired effects.When aviation swarm performs
complex tasks, it is difficult to directly establish the causal
relationships among a large number of actions, hostile behav-
iors and desired effects.

Therefore, the classification and association of each
causal relationship is generally achieved through interme-
diate effects, thereby effectively reducing the difficulty of
characterizing all causal relationships in the combat process.
Let the intermediate effect set of aviation swarm combat as
C = {c1, c2, · · · , c|C|}, where |C| is the number of interme-
diate effects.

B. STATIC MODEL OF COA BASED ON INs
The causal relationship modeling of COA based on INs is to
use the CAST parameter to express the relationship strength
between actions, hostile behaviors, desired effects and inter-
mediate effects, and generate the probability of achieving
desired effect through the probability propagation from the
root node to the leaf node. As shown in Figure 1, it is a static
model of COA based on INs.
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FIGURE 1. Static model of COA based on INs.

The static model of COA based on INs can be charac-
terized as a quaternion array IN = {V ,E , CAST, BP},
where V = {A,B,C,D} represents the node set in influence
nets, including actions, hostile behaviors, desired effects and
intermediate effects. The value of the node is binary, i.e.,
the value is 0 or 1.
E = {(A,C), (B,C), (C,D)} represents the causal rela-

tionship of all nodes in influence nets, and it is described by
a directed edge with an arrow or a round head.
CAST represents the influence strength value in influence

nets, for direct edge (A,C), the influence strength value is
CASTA,C ∈ {(h, g)|h ≥ −1, g ≤ 1}, where h represents the
influence level of parent node equals 1 on child node equals 1,
and g represents the influence level of parent node equals 0 on
child node equals 1. Generally, according to the value of h
and g, the causal relationship can be divided into two types,
i.e., promotion relationship and inhibition relationship. For
direct edge (A,C), when h > 0, g ≤ 0, it indicates that A
has a promoting effect on C , and the corresponding e ∈ E
is a directed edge with an arrow head, while when h ≤ 0,
g > 0, it indicates that A has an inhibitory effect on C , and
the corresponding e ∈ E is a directed edge with a round head.
BP represents the prior probability or benchmark

probability of the corresponding node value is 1, i.e., the
probability that the specific node value equals 1 without the
external causality. Among them, the root node corresponds
to the prior probability, and the leaf node corresponds to
the benchmark probability. In an actual COA problem, there
may be multiple events that affect an event. Taking event cn
affected by event set A = {a1, a2, · · · , a|A|} as an example,
suppose X|A| is a binary random vector with |A| dimensions,
the value of the i-th component inX|A| is xi. If event ai occurs,
then xi = 1, on the contrary, xi = 0.

In order to measure the influence of the value of xi on event
cn, Equation (1) is used to define the influence strength value
of event ai on event cn from a qualitative perspective.

h(ai) =

 1, Given ai, event cn must occur
−1, Given ai, event cn must not occur
0, Occurence of cn is independent to ai

(1)

If ai is given, the conditional probability that event cn to
be true is P(cn|Ai), then Equation (2) represents the influence

strength value h(ai) defined from a quantitative perspective.

P(cn|ai) =

 1, h(ai) = 1
0, h(ai) = −1
P(cn), h(ai) = 0

(2)

whereP(cn) is the benchmark probability that event cn occurs.
Let h(ai) ∈ [−1, 1], and use linear interpolation to expand

the definition space of P(cn|Ai). If ai is given, then the con-
ditional probability that event cn occurs, i.e., P(cn|Ai), can be
defined as follows.

P(cn |ai ) =
{
P(cn)+ h(ai) · [1− P(cn)], h(ai) ∈ [0, 1]
P(cn)+ h(ai) · P(cn), h(ai) ∈ [−1, 0)

(3)

C. DYNAMIC MODEL OF COA BASED ON DINs
Through Equation (1), (2) and (3) in above, the mapping
relationship between CAST value and conditional probability
P(cn|Ai) is established, so that the causal relationship among
actions, hostile behaviors, desired effects, and intermediate
effects is linked with the influence strength value to generate
the influence nets accordingly.

However, aviation swarm combat process is continuous
and dynamic, combat actions and hostile behaviors will
continuously evolve as the battlefield situation changes.
As a result, the static model of COA based on INs can-
not effectively represent the dynamic evolution of parameter
variables [9].

In order to overcome the shortcomings of non-dynamic
characteristics of INs during the modeling process, this
paper uses DINs to dynamically model the COA problem
of aviation swarm combat, and introduces a self-loop (SL)
mechanism in the calculation of the influence strength value.
It means that the desired effect and intermediate effect real-
ization probability of a certain combat phase are not only
related to the combat action sequence of current combat
phase, but also are related to the desired effect and interme-
diate effect realization probability of previous combat phase,
thus effectively describing the Markov characteristic of the
state transition of the desired effect and intermediate effect.

For the evaluation index of selecting the best COA for
aviation swarm combat, a single or a combination indicator
can be used. The evaluation indicators generally include that,
(i) the desired effect realization probability P{dm(tk )} in
tk−1∼tk phase, (ii) the desired effect realization probability
P{dm(tT+1)} in the final combat phase, and (iii) the aver-
age desired effect realization probability P{dm} in all com-
bat phase. Considering that the optimal purpose of aviation
swarm combat is to effectively complete tasks, the desired
effect realization probability P{dm(tT+1)} in the final combat
phase is selected as the evaluation index.

Therefore, with the aviation swarm combat resources as
the constraints, and the desired effect realization probability
under a specific sequence of actions as the optimization goal,
the optimization model of COA selection based on DINs is
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defined as Equation (4).

maxF(S) = |D|m=1f (P{dm(tT+1)|CE(t0), 9S})

s.t.
{
R(tk ) ≤ R0, 1 ≤ k ≤ T + 1
S ⊆ 9S

(4)

where R(tk ) is the combat resource consumption in combat
phase tk−1∼tk , and R0 is the combat resource threshold.
The objective function indicates that when it takes the

initial external combat environment as the starting point,
the model is to maximize the aggregate function of all final
desired effect probabilities by selecting the corresponding
combat sequence in the feasible action space. The first
constraint indicates that the combat resource consumption
in any combat phase cannot exceed the combat resource
threshold. The second constraint indicates that the combat
sequence must be selected in the feasible space.

As shown in Figure 2, it is a dynamic model of COA based
on DINs, where the dashed line indicates the backward influ-
ence relationship of desired effects and intermediate effects,
and parameter Pk (V 0

i ), 1 ≤ k ≤ T ,Vi ∈ {C,D} indicates
the probability value of the corresponding node is 1, which
is passed from combat phase tk−1 to combat phase tk , i.e.,
Pk (V 0

i ) = Pk−1(Vi) holds.

III. PROBABILITY PROPAGATION MECHANISM OF DINs
Like INs, the probability propagation of DINs is an approxi-
mate reasoning under the condition that the parent and child
node are independent. The core elements of probability rea-
soning, CAST parameters, are given by combat experts based
on combat experience. Unlike INs, DINs has dynamic char-
acteristics, i.e., the probability of the parent node will change
over time, and the child node will change accordingly.

The probability propagation mechanism of DIN mainly
includes two aspects, i.e., key parameter determination
and probability propagation algorithm. Among them,
the key parameters mainly include CAST parameters, prior
probability and benchmark probability.

A. KEY PARAMETER DETERMINATION
The key parameters in DINs are generally determined by the
knowledge fusion method of multiple experts. In the specific
representation method, a key parameter can be characterized
by a two-dimensional coordinate system, which is also called
belief graph, with the abscissa as the authority Q and the
ordinate as the influence strength CAST.
Specifically, Q and CAST adopts fuzzy language type

classification method, the mapping from comments to quan-
titative expression is established.

The evaluation of authority Q is divided into five levels,
which are very high (VH), relatively high (RH), average (AV),
relatively low (RL) and very low (VL), the corresponding
quantified values are 1, 0.75, 0.5, 0.25, 0 respectively.

The evaluation of influence strength CAST is divided
into seven levels, which are absolutely strong (AS), very
strong (VS), relatively strong (RS), average (AV), relatively
weak (RW), very weak (VW) and absolutely weak (AW),

FIGURE 3. CAST representation method based on belief graph.

the corresponding quantified values are 1, 0.9, 0.7, 0.5, 0.3,
0.1, 0 respectively.

As shown in Figure 3, it is CAST representation method
based on belief graph.

The measurement points h2(0.8,0.75) and g2(0.8,0.5)
respectively indicate that, without considering the positive
and negative signs, the h value given by an expert with
authority of 0.8 is 0.75, and the g value is 0.5.

Generally, corresponding methods are used to generate
the influence strength values directly. However, the current
research lacks a consistency test of expert opinions, which
causes some expert opinions that are inconsistent with other
expert opinions to affect the final influence strength value
generation. Therefore, the KTC method is used to test the
consistency of expert opinions, and then the final results
are generated by the fusion of expert opinions passing the
consistency test.

(i) Consistency test based on KTC method
Let the combat expert set as Z = {z1, z2, · · · , z|Z |}, where
|Z | is the number of experts, and the consistency test steps for
expert opinions in set Z are as follows.
Step 1 For expert zo ∈ Z (1 ≤ o ≤ |Z |), let the given

influence strength value as ho(Qho, Cho) and go(Qgo, Cgo),
where Qho as well as Qgo is the authority of expert zo,
generally Qho = Qgo holds, and Cho and Cgo are h and g
value given by expert zo respectively. Taking h value as an
example, the constructed ascending vector according to the
vector Ho = (Cho,1,Cho,2, · · · ,Cho,|V |) given by expert zo is
as follows.

Ro = (ro,1, ro,2, · · · , ro,|V |) (5)

where ro,v(1 ≤ v ≤ |V |) is the sort number of Cho,v with
ascending order in Ho.
Step 2 Establish hypothesis J0, i.e., the combat expert

opinions in set Z are inconsistent on the evaluation of the
influence strength value, and alternative hypothesis J1 is that,
the combat expert opinions in set Z are consistent on the
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FIGURE 2. Dynamic model of COA based on DINs.

evaluation of the influence strength value. Let the
significance level α = 0.05.
Step 3According to Equtation (6), calculate the KTC value

of expert set Z , i.e., Kendall(Z ).

Kendall(Z ) =

12
|V |∑
v=1

(
|O|∑
o=1

ro,v − 1
|V |

|V |∑
v′=1

|O|∑
o=1

ro,v′

)2

|O|2 · |V | · (|V |2 − 1)
(6)

Step 4 Compare the size of Kendall(Z ) and the test thresh-
oldKα , which is determined by the value of significance level
α and |V |. If Kendall(Z ) < Kα , then hypothesis J0 holds,
otherwise, hypothesis J1 holds.
(ii) Gather consensus expert opinions based on comprehen-

sive weighted method
Through the consistency test of expert opinions,

the consensus degree of expert set Z can be obtained as ηZ .

ηZ =

{
0, Kendall(Z ) < Kα
1, Kendall(Z ) ≥ Kα

(7)

Next, it needs to find an expert group Z ′, so that the experts
in Z ′ have the similiar opinion and Z ′ has the highest group
authority.

maxµZ ′

s.t.
{
ηZ ′ = 1
Z ′ ⊆ Z

(8)

where the first constraint indicates that the expert opinions
in Z ′ must be consistent, and ηZ ′ is the group authority of Z ′,
the calculation method is as follows.

µZ ′ =
∑
zo∈Z ′

Qho (9)

To solve Equation (8), comprehensive weighted method
should be used to gather expert opinions to obtain the fused
influence strength value, and the specific steps are as follows.

Step 1 Initialize expert set Y = ∅, and let the counting flag
count = 1.

Step 2 Judge whether the consensus degree ηZ of expert set
Z is equal to 1, if not, move the expert with the least opinion
similarity in Z to set Y , and repeat step 2 until there is only
one expert left in Z or ηZ = 1. The calculation method of
opinion similarity is shown in Equation (10).

δo =

∑
1≤o′≤|O|,o 6=o′

Kendall({zo, zo′})

|O| − 1
(10)

Step 3 Let Zcount = Z , count = count + 1, and let Z = Y .
Step 4 Compare the group authority of Z1,Z2, · · · , and let

Z ′ = argmax{µ1
Z , µ

2
Z , · · · }.

Step 5 Through step 1 to step 4, the expert group that
conforms to the consistency principle and has the largest
group authority is determined, and Equation (11) is used to
calculate the result of h value that combines the knowledge
of multiple experts.

H =
∑
zo∈Z ′

Qho
µZ ′

Ho (11)

Similarly, the g value, prior probability, and benchmark
probability can be calculated through the above steps.

B. PROBABILITY PROPAGATION ALGORITHM
In any combat phase, the realization probability of the child
node depends on the realization probability of the parent
node. Therefore, as the combat process continues to progress,
it is necessary to update the child nodes’ realization prob-
ability from top to bottom according to the change of the
parent nodes’ realization probability. The specific probability
propagation algorithm is as follows.

Step 1 For a specific combat phase, nodes can be divided
into different levels based on the current out-degree and in-
degree conditions of all nodes in the network. Among them,
the root node level is highest, the middle node level is middle,
and the leaf node level is lowest.

Step 2 Judge whether to enter the next combat phase, and
if so, update the level of all nodes and the prior probability of
the root node.
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Step 3 Normally, the conditional probability of a child
node is calculated based on the influence strength value and
parent node value. Let the parent node set as A, the child
node as cn, the influence strength value of ai is h(ai), then the
conditional probability calculation process of cn is as follows.

(i) Aggregate all positive influence strength values to gen-
erate Mpos.

Mpos = 1−
∏

h(ai)≥0

(1− h(ai)) (12)

(ii) Aggregate all negtive influence strength values to gen-
erate Mneg.

Mneg = 1−
∏

h(ai)<0

(1+ h(ai)) (13)

(iii) Combine Mpos and Mneg to generate M .

M =


Mpos −Mneg

1−Mneg
, Mpos ≥ Mneg

Mneg −Mpos

1−Mpos
, Mpos < Mneg

(14)

(iv) Calculate the corresponding conditional probability
P(cn|A1, a2, · · · , a|A|).

P(cn|a1, a2, · · · , a|A|)

=

{
P(cn)+M · [1− P(cn)],Mpos ≥ Mneg
P(cn)+M · P(cn),Mpos < Mneg

(15)

Step 4According to the full probability equation, calculate
the realization probability of the child node. Similarly, take
the parent node event occurrence in step 3 as an example,
the calculation method of P(cn) is defined as Equation (16).

P(cn) = P(cn|a1, a2, · · · , a|A|)× P(a1, a2, · · · , a|A|)

+P(cn|¬a1, a2, · · · , a|A|)

×P(¬a1, a2, · · · , a|A|)

+P(cn|a1,¬a2, · · · , a|A|)

×P(a1,¬a2, · · · , a|A|)+ · · ·

+P(cn|¬a1,¬a2, · · · ,¬a|A|)

×P(¬a1,¬a2, · · · ,¬a|A|) (16)

Step 5 Follow the above steps to update the probabilities
of all nodes at all levels.

Considering the dynamic characteristics of aviation swarm
combat, the realization probability of target nodes, i.e., the
desired effects and intermediate effects, need to be calculated
phase by phase. The specific steps are as follows.

Step 1 Initialize the state of all target nodes, and input the
parameter values gathered by the consensus expert opinions.

Step 2 Select feasible actions in phase tk−1∼tk , and then
generate the occurrence probability of hostile behaviors in
this phase.

Step 3 Probability propagation, i.e., the generation of
desired effect and intermediate effect realization probability,
is performed according to Equation (12) to Equation (16) in
this combat phase.

Step 4 Propagate the desired effect and intermediate effect
realization probability to the next combat phase, and calculate
the desired effect and intermediate effect realization proba-
bility in the next combat phase according to Equation (12) to
Equation (16).

Step 5 If the combat task ends, then calculate the objective
function value F(S).

IV. MODEL SOLVING
The COA selection problem of aviation swarm is a typical
combination optimization problem, and its essence is to select
the combination of actions that maximize the realization
probability of the desired effects.

It mainly includes three key parts, first, it gathers expert
opinions to generate all influence strength values based on the
KTC method, and the second is to calculate the desired effect
realization probability based on DINs, the third is to adopt the
optimization algorithm to select the best action plan.

Considering the occurrence characteristics of hostile
behaviors, we can adopt Monte Carlo method to determine
the probability of hostile behaviors, adopt DINs method to
calculate the desired effect realization probability, and use
DABC algorithm to select the best action plan.

As shown in Figure 4, it is the basic framework of selecting
the best COA for aviation swarm combat.

FIGURE 4. Basic framework of selecting the best COA for aviation swarm
combat.

A. ENCODING AND DECODING METHOD
For combat action ai in all T + 1 combat phase, the feasible
action set, i.e., 9i = {a1i , a

2
i , · · · , a

|ai|
i }, is determined by

combat experts, and multiple combat subactions constitute an
overall action strategy.

Taking into account the iterative characteristics of DABC
algorithm, a |A|-dimentional real number encoding method
is adopted. For individual elements at different positions in a
vector, the value ranges are different. For the i-th individual
element, the value range is (1, |ai| + 1), where |ai| is the
number of subactions of combat action ai.

When decoding, the subaction numbers are mainly
determined based on the integer information of the individual
elements. If the second individual element value is 3.0837,
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it means that the third subaction of a2 is actually taken,
i.e., a23.
Through this encoding and decoding method, an effective

mapping of the coding space to the decoding space can be
achieved, and the decoding information can uniquely and
conflict-freely represent the corresponding feasible solution,
thereby greatly improving the search efficiency.

B. OBJECTIVE FUNCTION
Due to the uncertainty of hostile behaviors in actual combat,
the desired effect realization probability may not be a fixed
value, but a random value corresponding to the specific hos-
tile behavior. In order to better reflect the random influence
in the combat process, the Monte Carlo method is used
to randomly generate the probability of hostile behaviors.
By setting the random number to be R, the mean value µ
and variance value σ 2 of all P{dm(tT+1)|CE(t0), 9S} are cal-
culated. Based on µ and σ 2, the signal-to-noise ratio (SNR)
value can be obtained according to Equation (17).

SNR = −10 · lg[1/µ2
· (1+ 3σ 2/µ2)] (17)

This paper selects the mean value µ as the objective func-
tion.

C. DABC ALGORITHM PROCESS
Traditional artificial bee colony (ABC) algorithm simulates
the foraging activities of bees to solve the combinatorial opti-
mization problem, and it has the advantages of simple param-
eter setting and strong optimization ability [10]. The DABC
algorithm proposed in this paper can be adopted to solve the
discrete optimization problem shown in Equation (4), and the
specific process of DABC algorithm is as follows.

Like the classic ABC algorithm, the process of DABC
algorithm mainly includes four phases, i.e., the initialization
phase, employed bee phase, onlooker bee phase, and scout
bee phase. The number of initialized food sources, employed
bees, and onlooker bees, are Nfs, Neb, Nob, respectively, there
is an unevolved counter trial for each food source, and the
initial value of trial is 0.

(i) Initialization phase
The element values in the initial food source matrix X

are randomly generated within a feasible interval, and the
number of rows in X equals the number of food sources Nfs,
the number of columns in X equals the number of optional
actions |A|. As shown in Equation (18), it is a randomly
generated equation for the element in m-th row and s-th
column, i.e., xms, in matrix X.

xms = xmin
s + rand1 × (xmax

s − xmin
s ) (18)

where xmin
s and xmax

s respectively represent the upper and
lower bounds of the element in the s-th column in matrix X,
and rand1 represents a random number in the range (0,1).
(ii) Employed bee phase
After the initial food source matrix X is generated, the

employed bee searches for a better food source nearby

according to the current location, and the update equation is
as follows.

x ′ms = xms + rand2 × (xms − xm′s) (19)

where x ′ms is an element in the newly generated food source
matrix, xm′s is a corresponding element in any other food
source matrix, and rand2 represents a random number in the
range (0,1). If x ′ms is outside the range of [xmin

s , xmax
s ], then

take x ′ms as the nearest boundary value.

x ′ms =

{
xmin
s , if x ′ms < xmin

s

xmax
s , if x ′ms > xmax

s

(20)

Calculate the fitness value of the new food source. If it is
better than that of the old one, then replace, and if it is inferior
to that of the old one, the old one is kept unchanged, and the
corresponding trial value is increased by 1.
(iii) Onlooker bee phase
After all the employed bees have completed the search,

they exchange food source location information with the
onlooker bees, and the onlooker bees calculate the following
probability according to the corresponding food source loca-
tion information.

pm = 0.9×
fitm

maxm=1,2,··· ,Nfs fitm
+ 0.1 (21)

If pm is greater than the randomly generated number rand3
in the range (0,1), the onlooker bee will update the location
of the food source according to Equation (19).

Similarly, it is necessary to compare the fitness values of
the new food source and the old food source. If the former
one is better, the old one is replaced, while if the latter one
is better, the old one is kept unchanged, and the unevolution
counter trial value is increased by 1.
(iv) Scout bee phase
If the solution quality of a certain food source has not

evolved in trialmax iterations, then the employed bee cor-
respondence to the food source will become a scout bee,
the original food source is abandoned, and a new food source
is randomly generated according to Equation (18). Besides,
the corresponding trial value is set to be 0.

Repeat the above steps until the predetermined number of
iterations, i.e., itermax, is reached or the desired optimization
effect is achieved, and output the final result.

V. SIMULATION EXPERIMENT ANALYSIS
A. SIMULATION CASE DESIGN
There are many types of aviation swarm combat tasks, and
this paper takes the offshore island attack task as an exam-
ple. It is assumed that the enemy builds a complete combat
defense system on an offshore island, and there are lots
of important enemy targets, which include combat com-
mand centers, radar positions, ammunition depots, ports, and
airports.

Our combat expectation is to concentrate all kinds of com-
bat forces to destroy the enemy’s key targets, so that it is easy
to seize the control of the island in the next step.
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(i) In terms of combat actions, the aviation swarm can take
actions as follows.
a1: Air-to-air attack on enemy air combat formations
a2: Air-to-sea attack on enemy surface ships
a3: Air-to-ground attack on fixed targets of the enemy
a4: Air-to-ground attack on pre-fixed targets of the enemy
a5: Air-to-ground attack on moving targets of the enemy
a6: Air-to-ground attack on pre-moving targets of the

enemy
a7: Combat information support
a8: Air intercept
a9: Electronic interference
a10: Aerial refueling
(ii) In terms of hostile behaviors, the types of behaviors are

given by experts based on their experience or historical data,
and the possible hostile behaviors are as follows.
b1: Enemy air combat formations lauch air interception
b2: Enemy surface ship formations launch air attack
b3: Enemy air defense system lauches air defense combat
b4: Enemy lauches electronic interference
b5: Off-island reinforcement air combat formations partic-

ipate in combat
(iii) In terms of desired effects, there are mainly two types.
d1: Aviation swarm successfully completes all tasks
d2: Damage of aviation swarm during task execution
(iv) In terms of intermediate effects, our combat actions

and hostile behaviors work together to generate correspond-
ing intermediate effects.
c1: Execution effect of air-to-air attack
c2: Execution effect of air-to-sea attack
c3: Execution effect of pre-targets attack
c4: Swarm builds up before attacking fixed/moving targets
c5: Execution effect of fixed/moving targets attack
c6: Aviation swarm returns to base
As shown in Figure 5, it is a DINs model of aviation swarm

combat based on certain expert knowledge.
According to the analysis of experts, aviation swarm per-

forming the attack task can be divided into six phases.
Phase t0∼t1, intercept the enemy’s air interception forma-

tion. Phase t1∼t2, suppress the enemy’s surface ships. Phase
t2∼t3, attack the enemy’s pre-fixed or pre-moving targets.
Phase t3∼t4, after aerial refueling and before attacking fixed
or moving targets, swarm builds up. Phase t4∼t5, attack the
enemy’s fixed or moving target. Phase t5∼t6, after intercept-
ing the enemy’s off-island reinforcement air combat forma-
tion, aviation swarm returns to base.

As shown in Table 1, it is the type and occurrence proba-
bility of hostile behaviors in each combat phase.

Based on experts’ experience, considering combat
resource and rule constraints, alternative strategies for dif-
ferent actions in all combat phase are given [11], which is
shown in Table 2.

B. ANALYSIS OF SIMULATION RESULTS
In order to verify the correctness of the model, and the
effectiveness and superiority of the algorithm, multiple sets

FIGURE 5. DINs model of aviation swarm combat.

TABLE 1. Type and occurrence probability of hostile behaviors.

of simulation experiments are carried out on a computer
configured with Intel (R) Core i3 2.27GHz CPU, based on
MATLAB R2010a simulation platform.

Through these simulation experiments, DABC algorithm,
discrete glowworm swarm optimization (DGSO) algo-
righm [12], and discrete particle swarm optimization (DPSO)
algorithm [13], are compared.

In terms of DABC algorithm parameter settings, let Nfs =
Neb = Nob = 10, trialmax = 10, itermax = 50.
Experiment 1: Firstly, based on the KTC method, generate

influence strength values by integrating multi-expert knowl-
edge. Let the number of experts as |Z | = 6, after checking
the table, it can be known that when the significance level
α = 0.05 and |V | = 25, the threshold Kα = 36.4151. And
it is assumed that the normalized expert authority vector is
(0.25,0.15,0.10,0.15,0.20,0.15).

According to the analysis of experts, the h and g values
without consistency test are given in Table 3 and Table 4,
respectively.

When KTC method is used to generate the consistency
h value, the expert group set with the highest authority is
{z2, z4, z5, z6}, and all the final h values generated are 0.38,
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TABLE 2. Alternative strategies for different actions.

−0.28, 0.65, 0.71, −0.30, 0.79, −0.05, −0.31, 0.63, 0.50,
0.56, 0.67, 0.69, −0.62, 0.23, 0.58, 0.44, 0.49, 0.35, 0.68,
0.52, 0.59, −0.51, −0.56, 0.35.
When generating the consistency g value, the expert group

set with the highest authority is {z2, z3, z5, z6}, and all the
final g values generated are -0.72, 0.51, −0.66, −0.85, 0.73,
−0.55, 0.35, 0.20,−0.67,−0.77,−0.14,−0.57,−0.27, 0.23,
−0.62, −0.40, −0.45, −0.93, −0.48, −0.48, −0.74, −0.59,
0.74, 0.65, -0.47.
Experiment 2: Let the occurence probability of histile

behavior bl as (Pmin
k−1(bl) + Pmax

k−1(bl))/2, adopt DABC algo-
rithm to solve the model. Under the randomly generated COA
S1 = (a21, a

2
2, a

2
3, a

1
4, a

1
5, a

2
6, a

2
7, a

2
8, a

4
9, a

1
10) and the optimal

COA S2 = (a11, a
1
2, a

3
3, a

2
4, a

3
5, a

2
6, a

6
7, a

1
8, a

5
9, a

1
10) generated

by DABC algori- thm, it analyzes three kinds of objective
functions, F1(S) = P{d1(tT+1) = 1|CE(t0), 9S}, F2(S) =
P{d2(tT+1) = 1|CE(t0), 9S}, and F3(S) = P{d1(tT+1) =
1, d2(tT+1) = 0|CE(t0), 9S}.

As shown in Figure 6 and Figure 7, they are the changes of
three objective functions at different combat phase under S1
and S2 respectively.

TABLE 3. Positive influence strength values without consistency test.

FIGURE 6. Changes of objective functions under S1.

It can be seen from Figure 6 and Figure 7 that, F3(S1) =
0.1340, F3(S2) = 0.3416. Therefore, the combat effect of S2
is better than that of S1. Through the above simulation, it can
be found that, the algorithm can effectively perform optimal
search, and better solutions can be found by iterative opti-
mization i.e., the effectiveness of proposed DABC algorithm
is proved.
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TABLE 4. Negative influence strength values without consistency test.

FIGURE 7. Changes of objective functions under S2.

Experiment 3: Firstly, take the occurrence probability of
hostile behaviors as a random value within a certain interval,
and determineH groups of hostile behavior occurrence prob-
ability by H -times Monte Carlo simulations. Then, respec-
tively run DABC algorithm, DGSO algorithm, and DPSO
algorithm for G-times, and take the mean value of all F3(S)
as the objective function, let H = G = 20. Afterwards, take

the occurrence probability of hostile behavior to be a cer-
tain value, run DABC algorithm (Algorithm I), DGSO algo-
rithm (Algorithm II), and DPSO algorithm (Algorithm III)
for G-times, and compare the solution distribution of each
algorithm. As shown in Figure 8, it is the mean fitness values
of three algorithms under 20 groups of probability values.
As shown in Figure 9, it is solution distribution of three
algorithms under 20 groups of experiments with a certain
hostile behavior probability.

FIGURE 8. Mean fitness values of three algorithms.

FIGURE 9. Solution distribution of three algorithms.

It can be seen from Figure 8 that, compared with the
comparison algorithms, DABC algorithm can obtain the
optimal solution 17 times, in all Monte Carlo simula-
tions with better results. Since the parameters are set ran-
domly, the algorithm can be considered to be statistically
better.

As can be seen from Figure 9, compared with the DGSO
and DPSO algorithm, the probability values obtained by the
DABC algorithm are larger, besides, the DGSO algorithm
is significantly inferior to the other two algorithms. In tems
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of the value distribution, the DABC algorithm optimizes
the value distribution more centrally, and has fewer bad
values.

Through the above simulation, the superiority of proposed
DABC algorithm is verified.

VI. CONCLUSION
Aiming at the COA selection problem of aviation swarm
combat, a novel COA optimized selection model and
algorithm of aviation swarm based on DINs and DABC is
constructed. The consistency test method based on KTC
method is used to obtain key parameters such as h value
and g value in accordance with the opinion of the most
authoritative expert group. Based on this, an optimiza-
tion model based on DINs is constructed, and finally,
DABC algorithm is adopted to solve the model. Simula-
tion experiments show that, the model constructed in this
paper is reasonable, and the proposed algorithm is effec-
tive and superior. Through the research in this paper, it is
possible to efficiently generate the optimal or better COA
of aviation swarm, thereby improving the combat efficiency
of aviation swarm in performing a variety of air combat
tasks.

The future research work can address the uncertainty in
air combat [14], i.e., an interval optimization model needs
to be established due to the uncertainty nature of parame-
ters [15], such as the prior probability, benchmark probability
and influence strength value, and an interval optimization
algorithm should be used to solve it.
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