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ABSTRACT We have witnessed a rapid growth over past decades in sensor data mining (SDM), which aims
at extracting valuable information automatically from large repositories of moving activity data. One of the
significant SDM tasks is identifying humans through their transit modes using a variety of user-tracking
systems. However, to the best of our knowledge, distinguishing traces of users and understanding their
behaviors are difficult tasks in most real-life cases for the following reasons: 1) activity data containing both
temporal and spatial contexts are of high order and sparse; 2) living patterns are not as regular as expected,
and the route choice uncertainties due to their vagueness and randomness ; 3) owing to the complexity
and sparseness of urban travel methods, although some deep learning-based models can produce relatively
good classification results, they can still be improved by combining external information. To address these
challenges, we propose a novel scenario-based deep learning method which is based on the assumption that
people visit places with explicit purposes (e.g., to go to work or visit a park). We first represent semantic
patterns from daily life and create various scenarios and utilize an attention neural network to embed points
of trajectories by considering both semantic and geographical information. Then, we construct a Semantic
Structure Neural Network (S2N2) framework to perform the end–end classification. Our S2N2 model is
applied to an interesting yet challenging topic: distinguishing suspect transit behavior on a real-life data
set collected by mobile devices. Although the problem is not entirely solved, the extensive evaluation
presented here demonstrates that our model outperforms conventional classification methods, anomaly
detection methods, and state-of-the-art sequential deep learning models, especially when trajectory semantic
vectors are incorporated. We also provide statistical analysis and intuitive explanations to help interpret the
characteristics of user mobility.

INDEX TERMS User classification, interpretive trajectory structure, human behavior understanding.

I. INTRODUCTION
Advances in location-acquisition techniques and the
prevalence of location-based services have generated a mas-
sive amount of spatial trajectory data, which represent the
mobility of a diversity of moving objects, such as people,
vehicles, and animals. Due to the recent cloud environ-
ment’s achievements in resource allocation algorithms and
minimizing workflow execution costs, processing large-scale
trajectory data has become more efficient [1], [2]. Estimating
users’ contexts from their movement trajectories obtained
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from devices such as mobile phones with GPS is crucial
for location-based services, and understanding knowledge
obtained from trajectory data allows us to draw an overall
picture of human activities and extract regular life patterns
from it.

Trajectory pattern mining through transit modes is of great
importance for a broad spectrum of tracking systems, e.g.,
transportation mode mining, urban planning, and recommen-
dation systems.With the development of location recognition
technology, the end-to-end recognition classification model
proposed in [3] has obtained a fairly high accuracy rate in
this field. This is important for enriching the background sig-
nificance of the trajectory. In particular, object identification
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FIGURE 1. Uncertainty of urban trajectories.

has become increasingly popular with the development of
computing technology and the availability of trajectory data
containing sufficient semantic and geographic information.
For example, in Beijing the police turn to Google to find
crime suspects by seeking data from mobile phones in target
areas, and the identification of suspected pickpockets has
been realized by mining public transport records [4]. How-
ever, the data of automated fare collection systems (AFC) are
following fixed routes, in our situation, people travel in the
city, and their movement behaviours are more complicated.
Therefore, it is very important to propose a new monitoring
and a tracking framework to detect all kinds of users.

Unfortunately, in many cases, it is not a trivial task to
identify users from their travel records. On the one hand,
it is because collected trajectories are sparse and diverse,
on the other hand, there are uncertainties in behavior choices
in an urban environment. The uncertainties that transporta-
tion researchers frequently encounter and are uncomfortable
dealing with can be divided into two different types [5].
One is randomness due to the nondeterministic nature of
choice behavior problems and random utility models based
on probability distributions have been employed to deal with
this randomness. The second type of uncertainty is vagueness
due to a lack of familiarity with road networks and the linguis-
tic information associated with network attributes [6]. Song
et al. [7] has studied millions of users and has pointed out that
the movement patterns of users can easily appear random and
unpredictable.

In this paper, we will use a case study to illustrate the
characteristics of urban trajectories in Fig. 1.We collect urban
movement data of users from their mobile phones, including
spatial and temporal information. Moreover, each place has
its unique category by its installed place, such as hotel, road-
side, park, or railway station. For example, we choose two
frequently visited locations named S1 and D1, and note that
there are several different trajectories between two points,
such as T1, T2, and T3. We further illustrate the random-
ness and vagueness of route choice by statistical evaluations,
we calculate the lengths of all trajectories between S1 and
D1 and show that from an observation point of view, there
are many various length paths through these two points and
they are quite different. To further illustrate the uncertainty
of trajectories, we select and calculate some major travel
features of trajectories such as velocity, scope of activity,

FIGURE 2. The motivation of S2N2. There are three trajectories and four
different semantic scenarios.

curve rate, speed, and HCR in Fig. 3, from which we can see
the diverse distributions of all the features.

Generally, trajectory feature-based classification applica-
tions, extracting effective transit features was a fundamental
task. The purpose and behavior of a user traveling through
the city are considered as features of trajectories (i.e., trajec-
tory length, duration, head change rate (HCR), and velocity
change rate (VCR)) [8]. Based on previous studies, feature-
based trajectory classification gives a better performance in
the case of high-precision continuous data, such as GPS
signals. Instead of GPS, the WiFi sensor data in our study
are discrete,vagueness and randomness mentioned in Fig. 3,
which prevents the acquisition of effective trajectory features
for feature-based models.

Some recent deep-learning-based methods embed every
point of a trajectory into a unique vector, present each trajec-
tory as a sequence of points and could improve the accuracy
of many trajectory tasks [9]–[11]. In some specific cases,
the accuracy of RNN classification based on TrajectoryNet
method [12] can even reach above 95%. However, if we
consider a trajectory to consist of a series of points, all the
visited points are treated the same, and the semantics of the
trajectory is a negligible part. Thus, when understanding each
trajectory, it is necessary to capture these path-concept and
semantic-concept associations. Our experiment in Section VI
also demonstrates that neither traditional machine learning
methods nor recurrent neural network methods are able to
achieve excellent performance for whole trajectories.

To address the challenges mentioned above, in this
paper, our solution is to select and integrate semantic sce-
narios with trajectories during the learning process. For
example, in Fig. 2, there are three trajectories and four
location categories. Trajectory 1 has the semantic path
‘‘station–school–community’’, whereas trajectory 3 has only
semantic ‘‘community’’. Under the path view, the points
that three trajectories pass are discrete and totally dif-
ferent, thus the trajectories have the sparse, randomness
and vagueness problems. But if under the semantic view,
couple < trajectory1, trajectory2 > has closer semantics
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FIGURE 3. Number distributions of motion features in the city.

than couple < trajectory1, trajectory3 >, which could build
a novel representation for classifying and understanding
mobility.

Based on above motivation, we propose a Semantic Struc-
ture Neural Network(S2N2) model to select some target
extensional scenarios, pre-trained points with semantic infor-
mation, and utilizes trajectory vectors for end-to-end classi-
fication, which could significantly improve the performance
of models.

Our contributions are summarized as follows:
• We propose an end-to-end framework containing
well-selected scenarios and embedding with the aim of
classifying individuals by their long-range and sparse
trajectories. Our framework is generally applicable to all
classification problems and does not depend on human-
selected features.

• We leverage attention-based network to represent the
points of trajectories by using two tasks: masked point
model and segment similarity prediction model. After
that, we use trajectory structure information as joint
features for learning. To the best of our knowledge, our
framework is the first to identify users by deep semantic
trajectories.

• We evaluate the precision, recall, and F-score on a
real-life mobility dataset. Compared with the results
of classical classification methods, anomaly detection
methods, and state-of-the-art deep learningmodels, such
as long short-term memory (LSTM) in sequential mod-
els, the evaluation results for our model demonstrate that
it outperforms all the baselines.

• We give the explanations to classification models,
including propose LIME and SHAP values as a unified
measure of feature importance and demonstrating which
scenarios are more effective to describe human mobil-
ity. Our explanation is simple but easy to aid decision
makers to understand trajectories in critical semantic
domains.

The remainder of this paper is organized as follows.
Section II provides a brief review of related work. Section III
presents the problem definition and notation. Section IV gives
a detailed description of the S2N2 framework, and this is
followed in Section V by a description of the experiment.
In Section VI, we discuss how our classification approach can

be used to understand user travel behavior. Finally, we con-
clude the paper in Section VII.

II. RELATED WORK
Spatiotemporal pattern mining has emerged as an active
research field, with examples including urban traffic network
analysis, automatic intersection recognition, and movement
behavior mining. In this section, we provide a brief review of
related work, including three categories: movement pattern
mining, trajectory classification and behavior understanding.

A. MOVEMENT PATTERN MINING
The enormous amount of spatiotemporal data that are avail-
able can be used to mine movement patterns. Gong et al. [13]
proposed a methodology to detect five travel models (walk,
car, bus, subway and commuter rail) from the amount of
data generated by GPS in New York. In [14], Pinelli and
co-workers proposed an extension of the sequential pat-
tern mining paradigm to analyze the trajectories of moving
objects. The REMO (relativemotion) method [15] is based on
a traditional cartographic approach of comparing snapshots
and is a comparison method based on the use of motion
parameters to reveal movement patterns. In [16], a complete
and computationally tractable model was presented for esti-
mating and predicting trajectories based on sparse sampling
and anonymous GPS landmarks called GPS snippets. In [17],
spatiotemporal patterns were identified from GPS traces of
taxis for night bus route planning. In [18], an attempt was
made to reflect the common routing preferences of previous
passengers by finding the most frequent path in a certain
period. The approach described in [19] discovers and explains
movement patterns of a set of moving objects (e.g., track
management, bird migration, or spread of disease). These
previous works have given us inspiration for representation of
a trajectory, and the traditional machine learning approaches
proposed therein have been used to provide baselines for
comparison in Section V.

B. TRAJECTORY CLASSIFICATION
A number of techniques for detecting user behavior have
also been proposed. For example, the approach pre-
sented in [4] extracts user features from subway transit
records and explores abnormal travel behavior to discover
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pickpocket suspects. In the context of location-based
anomaly detection, a framework that learns the context of
different functional regions in a city was presented in [20],
and this provides the basis of our feature extraction approach.
Traditional trajectory-based similarity calculations use the
longest common substring to calculate the similarity of user
history trajectories [21], [22]. Abul et al. [23] proposed a
W4M (wait for me) method, which uses the edit distance
to measure the similarity of different paths. Considering the
mobility similarity between user group, Zhang et al. [24]
proposed the GMove modeling method to share significant
movement regularity. In recent research, some deep learn-
ing methods have been applied to encode the trajectory.
ST-ResNet [9] is designed to forecast the flow of a crowd.
The DeepMove [10] model predicts human mobility with a
recurrent attentional network, and HST-LSTM [11] captures
location prediction by spatiotemporal LSTM. Our approach
shares some aspects with the abovementioned embedding
techniques, but, unlike classical classification models, our
model describes users’ behaviors on the basis of their move-
ment scenarios and classifies users by a convolutional neural
network without selecting effective features.

C. SEMANTIC TRAJECTORY AND BEHAVIOR
UNDERSTANDING
Several datamodels have been proposed for efficiently query-
ing raw trajectory data [25], [26], but only a few approaches
are able to consider a trajectory together with its background
geographic information and deep meaning. In [27], it was
pointed out that mining trajectory data should not focus on
trajectories alone, but should also utilize the rich contexts
from the background to provide a semantic understanding of
these trajectories. In [28], a semantic model was proposed
for trajectories as well as for the relationships of trajecto-
ries with background geographic information. However, this
model is applicable only for special areas and has serious
limitations. Another problem is that none of these models are
easy to interpret. Therefore, in this paper, we use GEOHASH
to demarcate a range and divide specific trajectory points
into regional blocks with specific meanings. The resulting
trajectory uses changes in regional block type as its semantics
and fuses these with the semantics of the original trajec-
tory, thereby combining trajectory and trajectory background
information and making them easier to interpret during
analysis.

Human behavioral characteristics exhibit regularity, per-
sistence, and other characteristics. The behavior in which a
person often engages can reflect their preferences, personality
characteristics, and even temperament to a certain extent.
Reference [29] proposed an algorithm for identifying human
behavior through image features, but it is difficult to obtain
good behavior understanding under our trajectory dataset.
We obtain a large amount of user behavior information [30],
after user trajectory feature extraction and preprocessing.
This includes location, duration, and other information. After
analysis, we can mine a large amount of similar user behavior

TABLE 1. Some important notation.

characteristic information from massive data, and classify
users through these similar trajectories, in order to achieve the
purpose of distinguishing different types of followed groups.

III. PRELIMINARIES
We introduce the definitions of several basic concepts and
provide a formal definition of the scenario-based user iden-
tification problem. The notation that we use is summarized
in Table 1.
Definition 1: A trajectory Pu

i = {O1,O2, . . . ,On} con-
sists of a series of points belonging to a certain people u, and
each point can be represented as Oui (g, k), abbreviated as Oi,
where g is position information (latitude and longitude) and k
is the type of this point, which is used to construct semantics.

For instance, in Fig. 2,Pu
1 = {O1,O2,O3,O4,O5,O6,O7}

represents the first trajectory where Oi means the i− th point
in this trajectory.
Definition 2: A semantic segment Su(Pi) represents a

semantic block of trajectory P, which is named Pi and
belongs to a certain people u. It is a list, the length of
which is the same as the length of the trajectory. In Fig.2,
Su(P1) = 〈gas station, gas station, street, street, school,
street, home community〉 represents the semantic block of the
trajectory Pu

1
Combining Definitions 1 and 2, we can accurately describe

the trajectory characteristics of a trajectory and its semantic
characteristics.
Definition 3: A type of key point Ti represents the loca-

tion type of a key point and We can obtain some specific
motion patterns from it.

Because in the original data more than 60% of the sensors
were placed in places that have little information, such as
intersections, roadsides, etc., we consider that the remaining
points in the trajectory after removing these locations are key
points.
Definition 4: The user classification problem is defined

as the classification of whether a given user u is a sus-
pect or not and find out the Ty of this user by giving tra-
jectories 〈P〉 and the semantic block 〈S〉 of the trajectory
belonging to this user.

In this paper, our data include two different people cate-
gories called residents and suspects. We focus on residents
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FIGURE 4. Two types of trajectory classification approaches: one is
feature based and the other is deep learning based.

who have long-range and high-quality trajectory data. More-
over, in order to generate discriminative features of mobility,
we compress the spatial and temporal information of trajec-
tories by using PRESS [31], which proposes a Hybrid Spatial
Compression (HSC) algorithm and error Bounded Temporal
Compression (BTC) algorithm respectively.

IV. S2N2 FRAMEWORK
In this section, we introduce the major concepts of the
S2N2 framework, including 1) scenario selection and latent
similar trajectories cluster model; 2) attention based trajec-
tory embed and fusion model; 3) the semantic combined end-
to-end classification model.

A. DETAILS OF S2N2 FRAMEWORK
1) SEMANTICS OF TRAJECTORIES
To generate an intermediate representation of the moving
record that is less noisy and more suitable for the process
of understanding motion patterns, we extract the semantics
of trajectories from visited location categories, and we find
observed motion patterns via some frequent item mining
methods, which find interesting subsequences or substruc-
tures in a large-scale moving data set.

We map every point in a trajectory to its related location
category, and generate a semantic path. We counted the num-
ber of occurrences of each place in the raw data and then we
perform the following two steps to integrate the data as much
as possible while retaining the meaning of the place:

Step1:Blur the details of the original place, such as turning
the ‘‘Sailing Hotel’’ into ‘‘Hotel’’, making the clustering
more universal.

Step2:Abstract similar places into general representative
areas, such as ‘‘high school’’ and ‘‘primary school’’ collec-
tively referred to as ‘‘school’’.

After that we can get 15 labels. In these 15 labels, because
of most sensors are installed on the roadside and lack clear
location semantics we remove these ‘‘street’’ points. So in
the end we separate points into other 14 labels: hotel, govern-
ment, Internet cafe, labor market, home community, super-
market, gas station, shopping mall, police station, hospital,
scenic spot, cinema, school, or bank. Every trajectory can
then be represented by one of these semantic categories. For
example, in Fig. 2, the semantics of trajectories 1 and 2

are gas station–school–home community and gas station–
school–hospital. We then find motion patterns via a fre-
quent mining approach, such as a priori-based approach or a
pattern-growth approach. Either of these methods is suitable
for our framework. Each segment has a related set of labels.
For instance, trajectory 1 has 〈gas station, school, home
community〉.

Finally, several similarity functions for trajectories are
given to measure the similarity of different trajectories,
including dynamic time warping (DTW), longest common
subsequence (LCSS), andmodifiedHausdorff distance. Since
the lengths of segments in our study are relatively small
and most points have the same label ‘‘street’’, merely using
DTW or LCSS is not suitable for direct measurement. In
the end, we decided to use a method called unite-similarity
which combined DTW and Jaccard to calculate the similarity
between trajectories. For example, after processing the origi-
nal trajectory data (Pu

1 (O) and S
u(P1)) by deleting the invalid

points, we can get two trajectories: t1 = 〈p1, p2, . . . , pn〉,
with labels 〈T1, T2, . . . , Tn〉, and t2 = 〈q1, q2, . . . , qm〉, with
labels 〈T1, T2, . . . , Tm〉. Then we use Jaccard distance to
calculate the similarity of semantic features between these
two trajectories (in algorithm 1:line 2-6), and use DTW to
calculate the similarity of trajectory features between them
(in algorithm 1:line 7-13) and then form a two-dimensional
vector. Then the Euclidean distance from this vector to the
point (0,0) is used to measure the unite-similarity between
the two trajectories (in algorithm 1:line 14). So for algo-
rithm 1, its time complexity consists of two parts. One of
them is the time complexity for calculating Jaccard similarity
is about O(n), and the other is the time complexity for calcu-
lating DTW is about O(n2). So the total time complexity of
algorithm 1 is O(n2) (n represents the average length of the
trajectories).

2) TrajBERT: ATTENTION PRETRAINING MODEL
In natural language tasks such as question answering (QA)
and natural language inference (NLI), the pretraining models
such as BERT (bidirectional encoder representations from
transformers) achieve the greatest success. Here, inspired
by BERT, we propose a novel method named TrajBERT to
train the vectors of each point in a trajectory with semantic
information. In our model there are two subtasks: the masked
point model and segment similarity prediction model.
Masked Point Model: Although the masked language

model (MLM) is strictly more powerful than the single model
and the bidirectional directional model, the randomly select
strategy in original mask procedure ignores the semantics
and weight of points in the trajectory and would reduce
the performance of classification due to the randomness and
vagueness situations.

Furthermore, since the one-shot representations for points
and semantic labels are too sparse to train, we utilize an
embedding operation to convert the initialized vectors to low-
dimensional vectors with dense values. We take the label
ci as example, and in this case the converted vector ei is
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Algorithm 1 Similarity in Trajectory
Input:Two different trajectories and their semantic block,

Pu
1 (O), P

u′
2 (O), Su(P1) and Su

′

(P2)
Output:A real number SIM representing the similarity of

these two trajectories
1: Initialize:Mc←∞; n = length(P1); m = length(P2);
2: A ← unique(Su(P1)) //unique means removing

duplicate data to ensure element uniqueness
3: B← unique(Su′ (P2))
4: k1← size(A ∩ B)
5: k2← size(A ∪ B)
6: Y ← 1− k1/k2
7: for each point Oi ∈

〈
Pu
1 (O)

〉
do

8: for each point Oj ∈
〈
Pu′
2 (O)

〉
do

9: dismat[i][j] = getEuclideanDistance(Oi(g), Oj(g))
10: Mc[i][j] = min(Mc[i− 1][j],Mc[i][j− 1],Mc[i−

1][j− 1])
11: end for
12: end for
13: X ← Mc[n][m]
14: SIM ← getEuclideanDistance((X ,Y ), (0, 0))
15: return SIM

represented as

ei = ciWu, (1)

where Wu ∈ RL×d2 are the parameters of the embedding
layer.

Then, we select masked tokens with their related cate-
gory labels. We refer to this procedure as ‘‘semantic masked
point.’’ In all of our experiments, we set a parameter δ to
decidewhether a point should bemasked. For each segment in
a trajectory, we replace the i-th point with the [MASK] token
if the generated random value is larger than δ. Moreover,
we select entities from points and choose parts of entities
at random. To reflect the correlation between location labels
and duplicated points in a trajectory, we mask these points by
[MASK] at the same time and predict these masked points by
corresponding hidden vectors.

In our training procedure, the strategy of point replacement
is similar as in BERT. We replace the chosen point by the
following rules: 1) the token [MASK] 80% of the time;
2) a random point 10% of the time. Then, the transformer
function is used to predict the original point or label with
cross entropy loss.
Segment Similarity Prediction: In order to consider the

latent semantic during the pre-train procedure, segment simi-
larity prediction task is created to understand the relationship
of segments.

Compared with next sentence prediction in BERT,
the length of a segment is shorter than the text corpus, thus
we design a strategy to generate the relationships of different
trajectories by their semantic motion patterns. In this work,
we use algorithm 1 to calculate the semantic similarity value

FIGURE 5. Details of S2N2 method.

of two trajectories and note that the larger the SIM value we
get, the greater the difference between them. In terms of sim-
ilarity between a selected trajectory and all other trajectories,
we utilize SIM as a basis to extract pairs of segment, in which
segments in the same pair have more similar semantics than
segments in different pairs.

In our paper, when choosing the folds A and B for each
example, 50% of the time B is the actual related trajec-
tory that follows A (labeled as similar latent semantic), and
50% of the time it is an irrelevant trajectory from the data
set(labeled as dissimilar latent semantic). Segment similarity
prediction task is designed as a binary classification task
and is closely related to representation learning objectives
used in [32]. By using pretrained embedding, like prior work,
only point embeddings are transferred to classification down-
stream task, where we transfers all parameters to initialize
End2End model parameters.

B. SEMANTIC FUSION AND End2End CLASSIFICATION
Motivated by the success of embedding techniques in other
areas, we now utilize deep neural networkmethods to classify
trajectories. After preprocessing movement records and type
of location by the TrajBERT andW2Vmethods, We integrate
trajectory features with their location semantic features to
generate a vector of trajectories and a vector of semantics and
both of them are 64-dimensional. We then concatenate these
two vectors as a new 128-dimensional vector that provides a
better reflection of the characteristics of the trajectories and
human behavior than any previous vector.

Here, we show how this input vector X , which obviously
includes both trajectory and semantic features, is obtained:

Xk = Pk ⊕ Sk , (2)

where⊕ is the operation that concatenates two vectors into a
long vector, Pk is the vector of trajectories that are learned by
TrajBERT, and Sk is the vector of semantics that are trained
by W2V.

After that, we use the Gated Recurrent Unit (GRU) model
to train and predict the data that has been preprocessed. This
model is simpler than the standard LSTMmodel. The effect is
similar to LSTM, but the parameters are 1/3 less, and it is not
easy to overfit. The biggest advantage of GRU is simplicity
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(because there are only two gates), and the computational
overhead is small, which is more suitable for large-scale data
sets. And rt is the reset gate and Zt is the update gate [33].
The update gate Zt is calculated first and its value is

between 0 and 1:

Zt = θ (Wz ∗ [ht−1, xt ]) (3)

where ht−1 is the previous hidden state and xt is the current
input. Then, a sigmoid function is used to obtain a result of 0
to 1, which determines how much information is retained in
the previous hidden state and how much content needs to be
remembered. Then we calculate the reset gate:

rt = θ (Wr ∗ [ht−1, xt ]) (4)

It resets ht−1, that is, how much information needs to be
forgotten, and then sends it to the tanh function with the
current input xt to get the new memory content h̃t :

h̃t = tanh(Wh̃ ∗ [rt ∗ ht−1, xt ]) (5)

The memory calculation formula for the current time
step is:

ht = (1− Zt ) ∗ ht−1 + Zt ∗ h̃t (6)

V. EXPERIMENTS
A. DATASET DESCRIPTION
Our real-life dataset was collected by WiFi sensors installed
in an eastern city of China and includes MAC address,
timestamp and geo-information. Due to the huge amount of
moving data and privacy considerations, we only selected
a small number of MACs randomly as negative instances.
While all the MACs of suspects are selected as positive
instances. Since our study focuses on the mobility pattern
of trajectories, we needed to do preprocessing to choose
actual residents in two steps. First, according to the top-10
best-selling and most popular phones in China, we checked
if the MAC belonged to one of the following Android brands,
which accounted for over 75% of the market: Huawei, OPPO,
Vivo, Xiaomi, Meizu, Gionee, Samsung, Letv, and Lephone.
We then selected those residents whose MACs had enough
activity track records in total and have at least two weeks
of data in a month. As a result, in the dataset, we collected
7 518 185 records with 2291 different mobile phones during
September and October 2019.

Based on the data of residents and suspects, we calcu-
lated the proportion of different scenario categories of two
groups in Table 2. We also illustrate the importance and co-
occurrence among various semantic labels in Fig. 6, where the
darker areas of the pair of labels receive the more attention.
For normal residents, community and hotel have a close rela-
tionship. However, for suspects, the motion patterns become
more complicated, in that there are more dark areas and
more co-occurrence situations, such as 〈school, community〉,
〈police station, school〉, and 〈shopping mall, hospital〉.
From Fig. 6, it can be seen that residents and suspects have
different travel motion patterns.

TABLE 2. Data statistics in different semantic categories.

FIGURE 6. Heatmaps of location concurrence.

B. EXPERIMENTAL SETUP
The platform was a Dell server 64-bit system (16-core CPU,
each with 2.6 GHz, four GTX 1080ti GPUs, and 32 GB main
memory). The algorithms and models were implemented in
Python 3.

C. BASELINE APPROACHES
Our method is compared with a variety of competing meth-
ods grouped into three categories: classification model(CM),
anomaly detection(AD) and deep learningmodel(DL). As the
positive instances (suspects) are extremely low in our
experiment, we use an under-sampling method on negative
instances (residents) to balance the data in training process.
All the methods are repeated 10 times in the training and
validation processes with randomly selected data sets, and the
averaged results are presented.
Classification Method (CM): Any supervised machine

learning algorithm requires a set of informative, discriminat-
ing, and independent features. Since the movement data are
too trivial, we do some preprocessing operations to extract
features for classification. We generate features of trajectory
from article [8], such as distance,velocity, activity scope,
stop rate, HCR, VCR and curve rate for classification. After
that, the classification methods, including native Bayes (NB),
random forest (RF), Support Vector Machine (SVM), logistic
regression (LR), Decision Tree (DTree), lightGBM (LGB),
XGboost (XGB) and k-nearest-neighbor (KNN), are fitted
with the training set and evaluated with the test data set.

Then, we use a two-step framework to capture the iden-
tification task. In the first step, classification methods are
fitted with the training set using the above features to classify
whether a trajectory belongs to a suspect. In the second step,
prediction results with regard to each trajectory of the first
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TABLE 3. Performance evaluations with various classifiers.

step are utilized to predict human groups by applying the
same classification method as in the previous step, like a
voting mechanism.
Anomaly Detection (AD): The anomaly detection method

is unsupervised and finds outliers by measuring the deviation
of a given data point with its neighbors. In this work, we use
One Class SVM (OCSVM), isolation forest (iForest) and
Local Outlier Factor (LOF) to identify suspects, leaving only
negative instances in the training set. The features of the AD
methods are the same as those of the CF methods.
Deep Learning (DL): As with other techniques for human

mobility prediction such as DeepMove [10] and HST-
LSTM [11], which use an LSTM architecture to generate
trajectories and time sections as joint features. Therefore,
we generate point embedding by word to vector method, and
present trajectories by LSTM models. We also adopt Fast-
Text, which is based on Facebook and is a library for efficient
learning of word representations and text classification [34].
We use it to compute vector representations of points (as
words) or movement paths (as text) for classification.We feed
our data to FastText without time information, since we
want to use this approach to examine whether the model
will work when solving this problem from the viewpoint of
locations alone.

D. EXPERIMENTAL RESULTS
1) PERFORMANCE COMPARISON
We adopt three widely usedmetrics, namely, precision, recall,
and F1, as measures to evaluate the accuracy of different
methods. The experimental data set is unbalanced, i.e., the
number of resident instances is much larger than the number
of suspects. Therefore, we also calculate the micro and macro
F-scores to illustrate the effectiveness of the models. For the
F1-micro value, basically the number of correctly identified
predictions is divided by the total number of predictions,
whereas for the F1-macro value, equal weight is given to all
data categories.

2) ANALYSIS OF RESULTS
As Table 3 shows, first, AD methods are less capable than
other methods, which means trajectories are diverse and

difficult to cluster. And it is worth noting that the recall of
OCSVM is very high, but in fact, its classification ability is
not excellent, it is reasonable to believe that in the OCSVM
classification process, it blindly think the predicted sample is
positive which leads to this situation.

Second, the precision of human-selected features based
on CF methods (except for LGB and XGB) is much lower
than that of S2N2. This indicates that the movement pattern
features in previous trajectory classification studies are not
discriminative in our dataset.

Third, the performance of W2V-LSTM is better than that
of CFmethods but worse than those of LGB, XGB and S2N2.
Because w2v only considers the features of the trajectory
but ignores a lot of other information, the vector it generates
is not good enough for classification. W2V-LSTM could
be treated as another two-step method, learning features by
model instead of by human definition.

Furthermore, the performance of FastText indicates that
trajectory data cannot be considered simply as context.
Unlike words organized in paragraphs, here, the number of
distinct points is relatively small and the composition patterns
of points are totally different from natural language patterns.

In the S2N2 model, we use TrajBERT to train trajec-
tory features, and then obtain trajectory vectors for classi-
fication. Its effect is better than W2V-LSTM, which means
that the method of feature extraction in TrajBERT is better
than ordinary W2V. However, due to the lack of the tra-
jectory semantic information, the effect has not improved
much. In S2N2semantic model, on the basis of S2N2 model,
we embed the semantic features in the vector of trajectory fea-
tures and classify them based on this. The precision reached
0.5771 is significantly better than other existing methods.

Above all, End to End methods would have better per-
formance than two-step methods with either human selected
features or learned features and when trajectory classification
is performed, the semantic information of the trajectory has a
significant impact on the prediction results.

3) PERFORMANCE IN DIFFERENT SPECIAL CONTEXTS
To analyze the performance of various models in different
semantic scenarios, we choose four semantic patterns for our
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FIGURE 7. Performance in various scenarios.

experiments: community, police station, school, and shop-
ping mall. Although the roadside has a positive impact on
classification, we discard this scenario because its semantics
road side are too vague.

We choose these four scenarios because they have more
data and a greater impact on model output according to
Table 2 and Fig. 10. We select the LGB, XGB, DTree, NB,
and LR models, as well as our two models. In Fig. 7, the per-
formance precision of S2N2 is better than that of XGB for
police station, but a little poorer for the other three scenario.
However, in terms of recall, our models are much better
than the other methods, so S2N2 with or without semantics
has much higher F1-score. From Table 3, we find that the
precision and F1-score of S2N2 are improved with the use
of semantic vectors in the global overview, which means that
our models are more suitable for classification in complex
and diverse situations.

VI. INTERPRETIVE MODEL AND CASE STUDY
In above sections, we have tried several different classi-
fiers, including those based on features, sequential data, and
semantic fusion models, to classify trajectories and their
owners. If a machine learning model performs well, could
we just trust the model and ignore the reasons for its deci-
sions? In this section, we aim to explain users’ behav-
ior and extract more important features for understanding
trajectories. Understanding the reasons behind predictions
is important in assessing trust. Such understanding also
provides insights into a model, which can be used to trans-
form an untrustworthy model or prediction into a trustwor-
thy one. We utilize popular explanation techniques, namely,
LIME and SHAP, to interpret features in our model, because
they have excellent performance in this regard. In more detail,
we choose LIME [35] because it explains the predictions of
our classifier in an interpretable and faithful manner, by learn-
ing an interpretable model locally around the prediction.
We also use a unified framework for interpreting predictions,
SHAP [36]. SHAP assigns each feature an importance value
for a particular prediction and unifies six existing methods.
These models exhibit good computational performance and
consistency with human intuition.

FIGURE 8. Feature selection via LIME.

A. CLASSIFYING TRAJECTORIES VIA FEATURES
To evaluate which features are more effective, we use the
LIME tool to measure each feature for the LGB model. The
visualization results are shown in Fig. 8, and we can observe
that two major effective features are related to travel speed
and route complexity. The velocity features represent the
travel mode, such as by walking or by vehicle, the VCR
(velocity change rate) represents a change in trajectory of the
travel mode, and HCR (head change rate) indicates whether
the travel route is complex or simple.

We also show a characteristic illustration of the entire
positive case (suspects) in Fig. 9, from which we can see
that only half of the suspects have obvious distinguishable
travel characteristics. Therefore, it is difficult to obtain good
prediction performance through a feature-based model.

B. SEMANTIC INTERPRETATION OF PLACE PREFERENCE
CHOICES
Since the S2N2 model is based on the semantics of trajecto-
ries, here, we use SHAP to explain the different route choices
for two groups of users. In Fig. 10, we first generate the
visited location categories under user views, and then use
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FIGURE 9. Illustration of all suspect samples.

FIGURE 10. SHAP values of features for LGB.

the LGB algorithm to classify the types of users. We use the
SHAP value to represent the impact of location semantics
on classification. We observe that nearly half of the seman-
tic features could help us to distinguish normal residents
and suspects. In particular, the ‘‘roadside’’ feature is more
effective in the case of positive instances, which means that,
compared with ordinary residents, suspects prefer to hang
out by the road, whereas residents prefer to stay at home,
in the community, shopping mall, school, bank, or even the
police station. Base on above observations, we select several
locations as our focus scenario to be combined with trajectory
embedding.

VII. CONCLUSION AND FUTURE WORK
In this paper, we have investigated the problem of user clas-
sification from scenario views. We have proposed a frame-
work named S2N2, which is based on a neural network and
related semantics of scenarios. Since trajectory intention is
difficult to understand because of travel behavior vague-
ness and randomness, S2N2 first generates frequent semantic
patterns from a large number of trajectories, and then inte-
grates points and semantic vectors to represent trajectories.
Extensive experiments have shown that our end–end model
significantly outperforms all the baselines, including clas-
sification models and anomaly detection models, on a real
data set. We have also used visualization tools to present the

weights of different features and explain why these features
are more important for understanding and classifying user
transit behavior.

There are several possible future directions for our work.
First, we have only used the frequent pattern method to create
semantic scenarios, and there are other approaches that could
be used to describe user transit intention. Second, our current
work does not consider the influence of group activities,
especially for the group concurrence condition. Third, in this
paper, S2N2 does not embed the time interval dimension,
although this involves important features of trajectories, such
as stay points. Furthermore, our classification framework is a
general one, and we plan to apply it to other trajectory-based
problems of interest in regional function design and public
security prediction.
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